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2.1. Introduction

By an arithmetic function, we mean a function of the form f : N→ C. We say that an arithmetic
function f : N→ C is multiplicative if f(mn) = f(m)f(n) whenever m, n ∈ N and (m, n) = 1.

Example. The function U : N → C, defined by U(n) = 1 for every n ∈ N, is an arithmetic
function. Furthermore, it is multiplicative.

Theorem 2.1. Suppose that the function f : N→ C is multiplicative. Then the function g : N→ C,
defined by

g(n) =
∑

m|n

f(m)

for every n ∈ N, is multiplicative.

Here the summation
∑

m|n denotes a sum over all positive divisors m of n.

Proof of Theorem 2.1. Suppose that a, b ∈ N and (a, b) = 1. If u is a positive divisor of a
and v is a positive divisor of b, then clearly uv is a positive divisor of ab. On the other hand, by
Theorem 1.4, every positive divisor m of ab can be expressed uniquely in the form m = uv, where u
is a positive divisor of a and v is a positive divisor of b. It follows that

g(ab) =
∑

m|ab

f(m) =
∑

u|a

∑

v|b

f(uv) =
∑

u|a

∑

v|b

f(u)f(v) =




∑

u|a

f(u)








∑

v|b

f(v)



 = g(a)g(b),

and this completes the proof. ©

2.2. The Divisor Functions

We define the divisor function d : N→ C by writing

(2.1) d(n) =
∑

m|n

1

for every n ∈ N. Here the sum is taken over all positive divisors m of n. In other words, the value
d(n) denotes the number of positive divisors of the natural number n. On the other hand, we define
the function σ : N→ C by writing

(2.2) σ(n) =
∑

m|n

m

for every n ∈ N. Clearly, the value σ(n) denotes the sum of all the positive divisors of the natural
number n.
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8 2. ARITHMETIC FUNCTIONS

Theorem 2.2. Suppose that n ∈ N and that n = pu1
1 . . . pur

r is the canonical decomposition of n.
Then

d(n) = (1 + u1) . . . (1 + ur) and σ(n) =
pu1+1
1 − 1
p1 − 1

. . .
pur+1

r − 1
pr − 1

.

Proof. Every positive divisor m of n is of the form m = pv1
1 . . . pvr

r , where for every j = 1, . . . , r,
the integer vj satisfies 0 ! vj ! uj . It follows from (2.1) that d(n) is the number of choices for the
r-tuple (v1, . . . , vr). Hence

d(n) =
u1∑

v1=0

. . .
ur∑

vr=0

1 = (1 + u1) . . . (1 + ur).

On the other hand, it follows from (2.2) that

σ(n) =
u1∑

v1=0

. . .
ur∑

vr=0

pv1
1 . . . pvr

r =

(
u1∑

v1=0

pv1
1

)
. . .

(
ur∑

vr=0

pvr
r

)
.

Note now that for every j = 1, . . . , r, we have
uj∑

vj=0

p
vj

j = 1 + pj + p2
j + . . . + p

uj

j =
p

uj+1
j − 1
pj − 1

.

The second result follows. ©

The result below is a simple deduction from Theorem 2.2.

Theorem 2.3. The arithmetic functions d : N→ C and σ : N→ C are both multiplicative.

Natural numbers n ∈ N where σ(n) = 2n are of particular interest, and are known as perfect
numbers. A perfect number is therefore a natural number which is equal to the sum of its own proper
divisors; in other words, the sum of all its positive divisors other than itself.

Examples. It is easy to see that 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect numbers.

It is not known whether any odd perfect number exists. However, we can classify the even perfect
numbers.

Theorem 2.4 (Euclid–Euler). Suppose that m ∈ N. If 2m − 1 is a prime, then the number
2m−1(2m − 1) is an even perfect number. Furthermore, there are no other even perfect numbers.

Proof. Suppose that n = 2m−1(2m − 1), and 2m − 1 is prime. Clearly

(2m−1, 2m − 1) = 1.

It follows from Theorems 2.2 and 2.3 that

σ(n) = σ(2m−1)σ(2m − 1) =
2m − 1
2− 1

2m = 2n,

so that n is a perfect number, clearly even since m " 2.
Suppose now that n ∈ N is an even perfect number. Then we write n = 2m−1u, where m ∈ N and

m > 1, and where u ∈ N is odd. By Theorem 2.2, we have

2mu = σ(n) = σ(2m−1)σ(u) = (2m − 1)σ(u),

so that

(2.3) σ(u) =
2mu

2m − 1
= u +

u

2m − 1
.

Note that σ(u) and u are integers and σ(u) > u. Hence u/(2m − 1) ∈ N and is a divisor of u. Since
m > 1, we have 2m − 1 > 1, and so u/(2m − 1) %= u. It now follows from (2.3) that σ(u) is equal
to the sum of two of its positive divisors. But σ(u) is equal to the sum of all its positive divisors.
Hence u must have exactly two positive divisors, so that u is prime. Furthermore, we must have
u/(2m − 1) = 1, so that u = 2m − 1. ©

We are interested in the behaviour of d(n) and σ(n) as n → ∞. If n ∈ N is a prime, then clearly
d(n) = 2. Also, the magnitude of d(n) is sometimes greater than that of any power of log n. More
precisely, we have the following result.
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Theorem 2.5. For any fixed real number c > 0, the inequality

d(n)' (log n)c

as n→∞ does not hold.

Proof. The idea of the proof is to consider integers which are divisible by many different primes.
Suppose that c > 0 is given and fixed. Let " ∈ N ∪ {0} satisfy

" ! c < " + 1.

For every j = 1, 2, 3, . . . , let pj denote the j-th positive prime in increasing order of magnitude, and
consider the integer

n = (p1 . . . p!+1)
m.

In view of Theorem 2.2, we have

(2.4) d(n) = (m + 1)!+1 >

(
log n

log(p1 . . . p!+1)

)!+1

> K(c)(log n)!+1 > K(c)(log n)c,

where the positive constant

K(c) =
(

1
log(p1 . . . p!+1)

)!+1

depends only on c. The result follows on noting that the inequality (2.4) holds for every m ∈ N. ©

On the other hand, the order of magnitude of d(n) cannot be too large either.

Theorem 2.6. For any fixed real number ε > 0, we have

d(n)'ε nε

as n→∞.

Proof. For every natural number n > 1, let n = pu1
1 . . . pur

r be its canonical decomposition. It
follows from Theorem 2.2 that

d(n)
nε

=
(1 + u1)

pεu1
1

. . .
(1 + ur)

pεur
r

.

We may assume without loss of generality that ε < 1. If 2 ! pj < 21/ε, then

p
εuj

j " 2εuj = eεuj log 2 > 1 + εuj log 2 > (1 + uj)ε log 2,

so that
(1 + uj)

p
εuj

j

<
1

ε log 2
.

On the other hand, if pj " 21/ε, then pε
j " 2, and so

(1 + uj)
p

εuj

j

! 1 + uj

2uj
! 1.

It follows that
d(n)
nε

<
∏

p<21/ε

1
ε log 2

,

a positive constant depending only on ε. ©

We see from Theorems 2.5 and 2.6 and the fact that d(n) = 2 infinitely often that the magnitude
of d(n) fluctuates a great deal as n→∞. It may then be more fruitful to average the function d(n)
over a range of values n, and consider, for positive real numbers X ∈ R, the value of the average

1
X

∑

n!X

d(n).
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Theorem 2.7. As X →∞, we have
∑

n!X

d(n) = X log X + (2γ − 1)X + O(X
1
2 ).

Here γ is Euler’s constant and is defined by

γ = lim
Y→∞




∑

n!Y

1
n
− log Y



 = 0.5772156649 . . . .

Remark. It is an open problem in mathematics to determine whether Euler’s constant γ is rational
or irrational.

The proof of Theorem 2.7 depends on the following intermediate result.

Theorem 2.8. As Y →∞, we have
∑

n!Y

1
n

= log Y + γ + O

(
1
Y

)
.

Proof. As Y →∞, we have

∑

n!Y

1
n

=
∑

n!Y

(
1
Y

+
∫ Y

n

1
u2

du

)
=

[Y ]
Y

+
∑

n!Y

∫ Y

n

1
u2

du =
[Y ]
Y

+
∫ Y

1

1
u2




∑

n!u

1



 du

=
[Y ]
Y

+
∫ Y

1

[u]
u2

du =
[Y ]
Y

+
∫ Y

1

1
u

du−
∫ Y

1

u− [u]
u2

du

= log Y + 1 + O

(
1
Y

)
−

∫ ∞

1

u− [u]
u2

du +
∫ ∞

Y

u− [u]
u2

du

= log Y +
(

1−
∫ ∞

1

u− [u]
u2

du

)
+ O

(
1
Y

)
.

It is a simple exercise to show that

1−
∫ ∞

1

u− [u]
u2

du = γ,

and this completes the proof. ©
Proof of Theorem 2.7. As X →∞, we have

∑

n!X

d(n) =
∑

x,y
xy!X

1 =
∑

x!X1/2

∑

y! X
x

1 +
∑

y!X1/2

∑

x! X
y

1−
∑

x!X1/2

∑

y!X1/2

1

= 2
∑

x!X1/2

[
X

x

]
− [X

1
2 ]

2
= 2

∑

x!X1/2

X

x
+ O(X

1
2 )− (X

1
2 + O(1))

2

= 2X

(
log X

1
2 + γ + O

(
1

X
1
2

))
+ O(X

1
2 )−X

= X log X + (2γ − 1)X + O(X
1
2 ),

and this completes the proof. ©
We next turn our attention to the study of the behaviour of σ(n) as n→∞. Every number n ∈ N

has divisors 1 and n, so we must have σ(1) = 1 and σ(n) > n if n > 1. On the other hand, it follows
from Theorem 2.6 that for any fixed real number ε > 0, we have σ(n) ! nd(n)'ε n1+ε as n→∞.

In fact, it is rather easy to prove a slightly stronger result.

Theorem 2.9. We have σ(n)' n log n as n→∞.

Proof. As n→∞, we have

σ(n) =
∑

m|n

n

m
! n

∑

m!n

1
m
' n log n,

and this completes the proof. ©
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The magnitude of σ(n) also fluctuates a great deal as n→∞. As before, we average the function
σ(n) over a range of values n, and consider some average version of the function. Corresponding to
Theorem 2.7, we have the following result.

Theorem 2.10. As X →∞, we have
∑

n!X

σ(n) =
π2

12
X2 + O(X log X).

Proof. As X →∞, we have
∑

n!X

σ(n) =
∑

n!X

∑

m|n

n

m
=

∑

m!X

∑

n!X
m|n

n

m
=

∑

m!X

∑

r! X
m

r =
∑

m!X

1
2

[
X

m

] (
1 +

[
X

m

])

=
1
2

∑

m!X

(
X

m
+ O(1)

)2

=
X2

2

∑

m!X

1
m2

+ O



X
∑

m!X

1
m



 + O




∑

m!X

1





=
X2

2

∞∑

m=1

1
m2

+ O

(
X2

∑

m>X

1
m2

)
+ O(X log X) =

π2

12
X2 + O(X log X),

and this completes the proof. ©

2.3. The Möbius Function

We define the Möbius function µ : N→ C by writing

µ(n) =






1, if n = 1,
(−1)r, if n = p1 . . . pr, a product of distinct primes,
0, otherwise.

A natural number which is not divisible by the square of any prime is called a squarefree number.
Note that 1 is both a square and a squarefree number. Note also that a number n ∈ N is squarefree
if and only if µ(n) = ±1.

The motivation for the definition of the Möbius function lies rather deep. To understand the
definition, one needs to study the Riemann zeta function, crucial in the study of the distribution of
primes. At this point, it suffices to remark that the Möbius function is defined so that if we formally
multiply the two series

∞∑

n=1

1
ns

and
∞∑

n=1

µ(n)
ns

,

then the product is identically equal to 1. Heuristically, note that
( ∞∑

k=1

1
ks

) ( ∞∑

m=1

µ(m)
ms

)
=

∞∑

n=1

∞∑

k=1

∞∑

m=1
km=n

µ(m)
ns

=
∞∑

n=1




∑

m|n

µ(m)



 1
ns

.

It follows that the product is identically equal to 1 if
∑

m|n

µ(m) =
{

1, if n = 1,
0, if n > 1.

We establish this last fact and study some of its consequences over the next four theorems.

Theorem 2.11. The Möbius function µ : N→ C is multiplicative.

Proof. Suppose that a, b ∈ N and (a, b) = 1. If a or b is not squarefree, then neither is ab, and
so µ(ab) = 0 = µ(a)µ(b). On the other hand, if both a and b are squarefree, then since (a, b) = 1,
ab must also be squarefree. Furthermore, the number of prime factors of ab must be the sum of the
numbers of prime factors of a and of b. ©



12 2. ARITHMETIC FUNCTIONS

Theorem 2.12. Suppose that n ∈ N. Then
∑

m|n

µ(m) =
{

1, if n = 1,
0, if n > 1.

Proof. Consider the function f : N→ C defined by writing

f(n) =
∑

m|n

µ(m)

for every n ∈ N. It follows from Theorems 2.1 and 2.11 that f is multiplicative. For n = 1, the result
is trivial. To complete the proof, it therefore suffices to show that f(pk) = 0 for every prime p and
every k ∈ N. Indeed,

f(pk) =
∑

m|pk

µ(m) = µ(1) + µ(p) + µ(p2) + . . . + µ(pk) = 1− 1 + 0 + . . . + 0 = 0,

and this completes the proof. ©

Theorem 2.12 plays the central role in the proof of the following two results which are similar in
nature.

Theorem 2.13. For any function f : N→ C, if the function g : N→ C is defined by writing

g(n) =
∑

m|n

f(m)

for every n ∈ N, then for every n ∈ N, we have

f(n) =
∑

m|n

µ(m)g
( n

m

)
=

∑

m|n

µ
( n

m

)
g(m).

Proof. The second equality is obvious. Also

∑

m|n

µ(m)g
( n

m

)
=

∑

m|n

µ(m)




∑

k| n
m

f(k)



 =
∑

k,m
km|n

µ(m)f(k) =
∑

k|n

f(k)




∑

m| n
k

µ(m)



 = f(n),

in view of Theorem 2.12. ©

Theorem 2.14. For any function g : N→ C, if the function f : N→ C is defined by writing

f(n) =
∑

m|n

µ
( n

m

)
g(m)

for every n ∈ N, then for every n ∈ N, we have

g(n) =
∑

m|n

f(m) =
∑

m|n

f
( n

m

)
.

Proof. The second equality is obvious. Also

∑

m|n

f
( n

m

)
=

∑

m|n




∑

k| n
m

µ
( n

mk

)
g(k)



 =
∑

k|n

g(k)




∑

m| n
k

µ

(
n/k

m

)

 =
∑

k|n

g(k)




∑

m| n
k

µ(m)



 = g(n),

in view of Theorem 2.12. ©

Remark. In number theory, it occurs quite often that in the proof of a theorem, a change of order
of summation of the variables is required, as illustrated in the proofs of Theorems 2.13 and 2.14. This
process of changing the order of summation does not depend on the summand in question. In both
instances, we are concerned with a sum of the form

∑

m|n

∑

k| n
m

A(k,m).
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This means that for every positive divisor m of n, we first sum the function A over all positive divisors
k of n/m to obtain the sum

∑

k| n
m

A(k, m),

which is a function of m. We then sum this sum over all divisors m of n. Now observe that for
every natural number k satisfying k | n/m for some positive divisor m of n, we must have k | n.
Consider therefore a particular natural number k satisfying k | n. We must find all natural numbers
m satisfying the original summation conditions, namely m | n and k | n/m. These are precisely those
natural numbers m satisfying m | n/k. We therefore obtain, for every positive divisor k of n, the sum

∑

m| n
k

A(k, m).

Summing over all positive divisors k of n, we obtain
∑

k|n

∑

m| n
k

A(k,m).

Since we are summing the function A over the same collection of pairs (k, m), and have merely
changed the order of summation, we must have

∑

m|n

∑

k| n
m

A(k, m) =
∑

k|n

∑

m| n
k

A(k, m).

2.4. The Euler Function

We define the Euler function φ : N→ C as follows. For every n ∈ N, we let φ(n) denote the number
of elements in the set {1, 2, . . . , n} which are coprime to n.

Theorem 2.15. For every number n ∈ N, we have
∑

m|n

φ(m) = n.

Proof. We partition the set {1, 2, . . . , n} into d(n) disjoint subsets Bm, where for every positive
divisor m of n,

Bm = {x : 1 ! x ! n, (x, n) = m}.
If x ∈ Bm, let x = mx′. Then (mx′, n) = m if and only if (x′, n/m) = 1. Also 1 ! x ! n if and only
if 1 ! x′ ! n/m. Hence

B′m = {x′ : 1 ! x′ ! n/m, (x′, n/m) = 1}
has the same number of elements as Bm. Note now that the number of elements of B′m is exactly
φ(n/m). Since every element of the set {1, 2, . . . , n} falls into exactly one of the subsets Bm, we must
have

n =
∑

m|n

φ
( n

m

)
=

∑

m|n

φ(m),

and this completes the proof. ©

Apply the Möbius inversion formula to the conclusion of Theorem 2.15, we obtain immediately the
following result.

Theorem 2.16. For every number n ∈ N, we have

φ(n) =
∑

m|n

µ(m)
n

m
= n

∑

m|n

µ(m)
m

.

Theorem 2.17. The Euler function φ : N→ C is multiplicative.

Proof. Since the Möbius function µ is multiplicative, it follows that the function f : N → C,
defined by f(n) = µ(n)/n for every n ∈ N, is multiplicative. The result now follows from Theorem 2.1.
©
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Theorem 2.18. Suppose that n ∈ N and n > 1, and n = pu1
1 . . . pur

r is the canonical decomposition
of n. Then

φ(n) = n
r∏

j=1

(
1− 1

pj

)
=

r∏

j=1

p
uj−1
j (pj − 1).

Proof. The second equality is trivial. On the other hand, for every prime p and every u ∈ N, we
have, by Theorem 2.16, that

φ(pu)
pu

=
∑

m|pu

µ(m)
m

= 1 +
µ(p)

p
= 1− 1

p
.

The result now follows since φ is multiplicative. ©

We now study the magnitude of φ(n) as n→∞. Clearly φ(1) = 1 and φ(n) < n if n > 1.
Suppose first of all that n has many different prime factors. Then n must have many different

divisors, and so σ(n) must be large relative to n. But then many of the numbers 1, . . . , n cannot be
coprime to n, and so φ(n) must be small relative to n. On the other hand, suppose that n has very
few prime factors. Then n must have very few divisors, and so σ(n) must be small relative to n.
But then many of the numbers 1, . . . , n are coprime to n, and so φ(n) must be large relative to n. It
therefore appears that if one of the two values σ(n) and φ(n) is large relative to n, then the other
must be small relative to n. Indeed, our heuristics are upheld by the following result.

Theorem 2.19. For every n ∈ N, we have

1
2

<
σ(n)φ(n)

n2
! 1.

Proof. The result is obvious if n = 1, so suppose that n > 1. Let n = pu1
1 . . . pur

r be the canonical
decomposition of n. Recall Theorems 2.2 and 2.18. We have

σ(n) =
r∏

j=1

p
uj+1
j − 1
pj − 1

= n
r∏

j=1

1− p
−uj−1
j

1− p−1
j

and

φ(n) = n
r∏

j=1

(1− p−1
j ).

Hence

σ(n)φ(n)
n2

=
r∏

j=1

(1− p
−uj−1
j ).

The upper bound follows at once. On the other hand,
r∏

j=1

(1− p
−uj−1
j ) "

∏

p|n

(1− p−2) "
n∏

m=2

(
1− 1

m2

)
=

n + 1
2n

>
1
2
,

and this completes the proof. ©

Combining Theorems 2.9 and 2.19, we have the following result.

Theorem 2.20. As n→∞, we have

φ(n)) n

log n
.

We now consider some average version of the Euler function.

Theorem 2.21. As X →∞, we have
∑

n!X

φ(n) =
3
π2

X2 + O(X log X).
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Proof. As X →∞, we have, by Theorem 2.16, that
∑

n!X

φ(n) =
∑

n!X

∑

m|n

µ(m)
n

m
=

∑

m!X

µ(m)
∑

n!X
m|n

n

m
=

∑

m!X

µ(m)
∑

r! X
m

r

=
∑

m!X

µ(m)
1
2

[
X

m

] (
1 +

[
X

m

])
=

1
2

∑

m!X

µ(m)
(

X

m
+ O(1)

)2

=
X2

2

∑

m!X

µ(m)
m2

+ O



X
∑

m!X

1
m



 + O




∑

m!X

1





=
X2

2

∞∑

m=1

µ(m)
m2

+ O

(
X2

∑

m>X

1
m2

)
+ O(X log X)

=
X2

2

∞∑

m=1

µ(m)
m2

+ O(X log X).

It remains to show that
∞∑

m=1

µ(m)
m2

=
6
π2

.

But
( ∞∑

n=1

1
n2

) ( ∞∑

m=1

µ(m)
m2

)
=

∞∑

k=1

1
k2




∑

n,m
nm=k

µ(m)



 =
∞∑

k=1

1
k2




∑

m|k

µ(m)



 = 1,

in view of Theorem 2.12. ©

2.5. Dirichlet Convolution

We denote the class of all arithmetic functions by A, and the class of all multiplicative functions
by M.

Given arithmetic functions f, g ∈ A, we define the function f ∗ g : N→ C by writing

(f ∗ g)(n) =
∑

m|n

f(m)g
( n

m

)

for every n ∈ N. This function is called the Dirichlet convolution of f and g.
It is not difficult to show that Dirichlet convolution of arithmetic functions is commutative and

associative. In other words, for every f, g, h ∈ A, we have

f ∗ g = g ∗ f and (f ∗ g) ∗ h = f ∗ (g ∗ h).

Furthermore, the arithmetic function I : N → C, defined by I(1) = 1 and I(n) = 0 for every
n ∈ N satisfying n > 1, is an identity element for Dirichlet convolution. It is easy to check that
I ∗ f = f ∗ I = f for every f ∈ A.

On the other hand, an inverse may not exist under Dirichlet convolution. Consider, for example,
the function f ∈ A satisfying f(n) = 0 for every n ∈ N.

Theorem 2.22. For any f ∈ A, the following two statements are equivalent:
(i) We have f(1) %= 0.
(ii) There exists a unique g ∈ A such that f ∗ g = g ∗ f = I.

Proof. Suppose that (ii) holds. Then f(1)g(1) = 1, so that f(1) %= 0. Conversely, suppose that
f(1) %= 0. We define g ∈ A iteratively by writing

(2.5) g(1) =
1

f(1)
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and

(2.6) g(n) = − 1
f(1)

∑

d|n
d>1

f(d)g
(n

d

)

for every n ∈ N satisfying n > 1. It is easy to check that this gives an inverse. Moreover, every
inverse must satisfy (2.5) and (2.6), and so must be unique. ©

Next we describe Theorem 2.12 and Möbius inversion in terms of Dirichlet convolution.
Recall that the function U ∈ A is defined by U(n) = 1 for all n ∈ N.

Theorem 2.23.
(i) We have µ ∗ U = I.
(ii) If f ∈ A and g = f ∗ U , then f = g ∗ µ.
(iii) If g ∈ A and f = g ∗ µ, then g = f ∗ U .

Proof. (i) follows from Theorem 2.12. To prove (ii), note that

g ∗ µ = (f ∗ U) ∗ µ = f ∗ (U ∗ µ) = f ∗ I = f.

To prove (iii), note that

f ∗ U = (g ∗ µ) ∗ U = g ∗ (µ ∗ U) = g ∗ I = g.

This completes the proof. ©

We conclude this chapter by exhibiting some group structure within A and M.

Theorem 2.24. The sets

A′ = {f ∈ A : f(1) %= 0} and M′ = {f ∈M : f(1) = 1}
form abelian groups under Dirichlet convolution.

Remark. Note that if f ∈ M is not identically zero, then f(n) %= 0 for some n ∈ N. Since
f(n) = f(1)f(n), we must have f(1) = 1.

Proof of Theorem 2.24. For A′, this is now trivial. We now consider M′. Clearly I ∈ M′. If
f, g ∈M′ and (m, n) = 1, then

(f ∗ g)(mn) =
∑

d|mn

f(d)g
(mn

d

)
=

∑

d1|m

∑

d2|n

f(d1d2)g
(

mn

d1d2

)

=




∑

d1|m

f(d1)g
(

m

d1

)






∑

d2|n

f(d2)g
(

n

d2

)

 = (f ∗ g)(m)(f ∗ g)(n),

so that f ∗ g ∈ M. Since (f ∗ g)(1) = f(1)g(1) %= 0, we have f ∗ g ∈ M′. It remains to show that if
f ∈ M′, then f has an inverse in M′. Clearly f has an inverse in A′ under Dirichlet convolution.
Let this inverse be h. We now define g ∈ A by writing g(1) = 1,

g(pk) = h(pk)

for every prime p and k ∈ N, and

g(n) =
∏

pk‖n

g(pk)

for every n > 1. Then g ∈M′. Furthermore, for every integer n > 1, we have

(f ∗ g)(n) =
∏

pk‖n

(f ∗ g)(pk) =
∏

pk‖n

(f ∗ h)(pk) =
∏

pk‖n

I(pk) = I(n),

so that g is an inverse of f . ©


