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6.1. Euclid’s Theorem Revisited

We have already seen the elegant and simple proof of Euclid’s theorem, that there are infinitely
many primes. Here we begin by proving a slightly stronger result.

Theorem 6.1. The series
∑

p

1
p

is divergent.

Proof. For every real number X ! 2, write

PX =
∏

p!X

(
1− 1

p

)−1

.

Then

log PX = −
∑

p!X

log
(

1− 1
p

)
= S1 + S2,

where

S1 =
∑

p!X

1
p

and S2 =
∑

p!X

∞∑

h=2

1
hph

.

Since

0 "
∞∑

h=2

1
hph

"
∞∑

h=2

1
ph

=
1

p(p− 1)
,

we have

0 " S2 "
∑

p

1
p(p− 1)

"
∞∑

n=2

1
n(n− 1)

= 1,

so that 0 " S2 " 1. On the other hand, as X →∞, we have

PX =
∏

p!X

( ∞∑

h=0

1
ph

)
!

∑

n!X

1
n
→∞.

The result follows. ©
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For every real number X ! 2, we write

π(X) =
∑

p!X

1,

so that π(X) denotes the number of primes in the interval [2, X]. This function has been studied
extensively by number theorists, and attempts to study it in depth have led to major developments
in other important branches of mathematics.

As can be expected, many conjectures concerning the distribution of primes were made based
purely on numerical evidence, including the celebrated Prime number theorem, proved in 1896 by
Hadamard and de la Vallée Poussin, that

lim
X→∞

π(X) log X

X
= 1.

Here we be concerned with the weaker result of Tchebycheff, that there exist positive absolute con-
stants c1 and c2 such that for every real number X ! 2, we have

c1
X

log X
< π(X) < c2

X

log X
.

6.2. The von Mangoldt Function

The study of the function π(X) usually involves, instead of the characteristic function of the primes,
a function which counts not only primes, but prime powers as well, and with weights. Accordingly,
we introduce the von Mangoldt function Λ : N→ C, defined for every n ∈ N by writing

Λ(n) =
{

log p, if n = pu, with p prime and u ∈ N,
0, otherwise.

Theorem 6.2. For every n ∈ N, we have
∑

m|n

Λ(m) = log n.

Proof. The result is clearly true for n = 1, so it remains to consider the case n ! 2. Suppose that
n = pu1

1 . . . pur
r is the canonical decomposition of n. Then the only non-zero contribution to the sum

on the left hand side comes from those natural numbers m of the form m = p
vj

j with j = 1, . . . , r and
1 " vj " uj . It follows that

∑

m|n

Λ(m) =
r∑

j=1

uj∑

vj=1

log pj =
r∑

j=1

log p
uj

j = log n,

and this completes the proof. ©

Theorem 6.3. As X →∞, we have
∑

m!X

Λ(m)
[
X

m

]
= X log X −X + O(log X).

Proof. It follows from Theorem 6.2 that
∑

n!X

log n =
∑

n!X

∑

m|n

Λ(m) =
∑

m!X

Λ(m)
∑

n!X
m|n

1 =
∑

m!X

Λ(m)
[
X

m

]
.

It therefore suffices to prove that as X →∞, we have

(6.1)
∑

n!X

log n = X log X −X + O(log X).

To prove (6.1), note that log X is an increasing function of X. In particular, for every n ∈ N, we
have

log n "
∫ n+1

n
log u du,
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so that
∑

n!X

log n− log(X + 1) "
∫ X

1
log u du.

On the other hand, for every n ∈ N, we have

log n !
∫ n

n−1
log u du,

so that
∑

n!X

log n =
∑

2!n!X

log n !
∫ [X]

1
log u du =

∫ X

1
log u du−

∫ X

[X]
log u du !

∫ X

1
log u du− log X.

The inequality (6.1) now follows on noting that
∫ X

1
log u du = X log X −X + 1,

and this completes the proof. ©

6.3. Tchebycheff’s Theorem

The crucial step in the proof of Tchebycheff’s theorem concerns obtaining bounds on sums involving
the von Mangoldt function. More precisely, we establish the following result.

Theorem 6.4. There exist positive absolute constants c3 and c4 such that

(6.2)
∑

m!X

Λ(m) ! 1
2
X log 2 if X ! c3

and

(6.3)
∑

X
2 <m!X

Λ(m) " c4X if X ! 0.

Proof. If m ∈ N satisfies X/2 < m " X, then clearly [X/2m] = 0. It follows from this and
Theorem 6.3 that as X →∞, we have

∑

m!X

Λ(m)
([

X

m

]
− 2

[
X

2m

])
=

∑

m!X

Λ(m)
[
X

m

]
− 2

∑

m! X
2

Λ(m)
[

X

2m

]

= (X log X −X + O(log X))− 2
(

X

2
log

X

2
− X

2
+ O(log X)

)
= X log 2 + O(log X).

Hence there exists a positive absolute constant c5 such that for all sufficiently large X, we have
1
2
X log 2 <

∑

m!X

Λ(m)
([

X

m

]
− 2

[
X

2m

])
< c5X.

We now consider the function [α] − 2[α/2]. Clearly [α] − 2[α/2] < α − 2(α/2 − 1) = 2. Note that
the left hand side is an integer, so we must have [α] − 2[α/2] " 1. It follows that for all sufficiently
large X, we have

1
2
X log 2 <

∑

m!X

Λ(m).

The inequality (6.2) follows. On the other hand, if X/2 < m " X, then [X/m] = 1 and [X/2m] = 0,
so that for all sufficiently large X, we have

∑

X
2 <m!X

Λ(m) " c5X.

The inequality (6.3) follows easily. ©

We now state and prove Tchebycheff’s theorem.
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Theorem 6.5 (Tchebycheff). There exist positive absolute constants c1 and c2 such that for every
real number X ! 2, we have

c1
X

log X
< π(X) < c2

X

log X
.

Proof. To prove the lower bound, note that
∑

m!X

Λ(m) =
∑

p,n
pn!X

log p =
∑

p!X

(log p)
∑

1!n![ log X
log p ]

1 =
∑

p!X

(log p)
[
log X

log p

]
" π(X) log X.

It follows from (6.2) that

π(X) ! X log 2
2 log X

if X ! c3.

Since π(2) = 1, we get the lower bound for a suitable choice of c1.
To prove the upper bound, note that in view of (6.3) and the definition of the von Mangoldt

function, the inequality
∑

X
2j+1 <p! X

2j

log p " c4
X

2j

holds for every integer j ! 0 and every real number X ! 0. Suppose that X ! 2. Let the integer
k ! 0 be defined such that 2k < X

1
2 " 2k+1. Then

∑

X
1
2 <p!X

log p "
k∑

j=0

∑

X
2j+1 <p! X

2j

log p " c4X
k∑

j=0

2−j < 2c4X,

so that
∑

X
1
2 <p!X

1 "
∑

X
1
2 <p!X

log p

log X
1
2

<
4c4X

log X
,

whence

π(X) " X
1
2 +

4c4X

log X
<

c2X

log X

for a suitable constant c2. ©

6.4. Some Results of Mertens

We conclude this chapter by obtaining an improvement of Theorem 6.1.

Theorem 6.6 (Mertens). As X →∞, we have

(6.4)
∑

m!X

Λ(m)
m

= log X + O(1),

(6.5)
∑

p!X

log p

p
= log X + O(1),

and

(6.6)
∑

p!X

1
p

= log log X + O(1).

Proof. Recall Theorem 6.3. As X →∞, we have
∑

m!X

Λ(m)
[
X

m

]
= X log X −X + O(log X).

Clearly [X/m] = X/m + O(1), so that as X →∞, we have

∑

m!X

Λ(m)
[
X

m

]
= X

∑

m!X

Λ(m)
m

+ O




∑

m!X

Λ(m)



 .
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It follows from (6.3) that
∑

m!X

Λ(m) "
∞∑

j=0

∑

X
2j+1 <m! X

2j

Λ(m) " 2c4X,

so that as X →∞, we have

X
∑

m!X

Λ(m)
m

= X log X + O(X).

The inequality (6.4) follows. Next, note that
∑

m!X

Λ(m)
m

=
∑

p,k
pk!X

log p

pk
=

∑

p!X

log p

p
+

∑

p!X

(log p)
∑

2!k! log X
log p

1
pk

.

As X →∞, we have
∑

p!X

(log p)
∑

2!k! log X
log p

1
pk

"
∑

p!X

(log p)
∞∑

k=2

1
pk

=
∑

p!X

log p

p(p− 1)
"
∞∑

n=2

log n

n(n− 1)
= O(1).

The inequality (6.5) follows. Finally, for every real number X ! 2, let

T (X) =
∑

p!X

log p

p
.

It follows from (6.5) that there exists a positive absolute constant c6 such that |T (X)− log X| < c6

whenever X ! 2. On the other hand,
∑

p!X

1
p

=
∑

p!X

log p

p

(
1

log X
+

∫ X

p

1
y log2 y

dy

)
=

T (X)
log X

+
∫ X

2

T (y)
y log2 y

dy

=
T (X)− log X

log X
+

∫ X

2

T (y)− log y

y log2 y
dy + 1 +

∫ X

2

1
y log y

dy.

It follows that as X →∞, we have
∣∣∣∣∣∣

∑

p!X

1
p
− log log X

∣∣∣∣∣∣
<

c6

log X
+

∫ X

2

c6

y log2 y
dy + 1− log log 2 = O(1).

The inequality (6.6) follows. ©


