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7.1. Gauss Sums

Recall the Law of quadratic reciprocity, that if p and q are distinct odd primes, then
(

q

p

)

L

(
p

q

)

L

= (−1)(
p−1
2 )( q−1

2 ).

There are many proofs of this – Gauss alone discovered six. Our aim here, however, is to give a
second proof of this result, a proof discovered by Dirichlet and based on ideas from Fourier series.

Throughout this chapter, we use the notation that e(y) = e2πiy for every y ∈ R.
Suppose that q ∈ N and a ∈ Z satisfy (a, q) = 1. The Gauss sum

S(q, a) =
q∑

x=1

e

(
ax2

q

)

has many interesting properties, the first of which is a multiplicative property which simplifies its
evaluation to cases when q is a prime power.

Theorem 7.1. Suppose that q1, q2 ∈ N satisfy (q1, q2) = 1. Suppose further that a ∈ Z satisfies
(a, q1q2) = 1. Then

S(q1q2, a) = S(q1, q2a)S(q2, q1a).

Proof. Since (q1, q2) = 1, it follows from Theorem 3.5 that as x1 and x2 run through complete
sets of residues modulo q1 and q2 respectively, q2x1 + q1x2 runs through a complete set of residues
modulo q1q2. Hence

S(q1q2, a) =
q1q2∑

z=1

e

(
az2

q1q2

)
=

q1∑

x1=1

q2∑

x2=1

e

(
a(q2x1 + q1x2)2

q1q2

)
.

Note now that (q2x1 + q1x2)2 ≡ q2
2x2

1 + q2
1x2

2 mod q1q2. It follows that

S(q1q2, a) =
q1∑

x1=1

q2∑

x2=1

e

(
aq2x2

1

q1
+

aq1x2
2

q2

)
=

q1∑

x1=1

e

(
aq2x2

1

q1

) q2∑

x2=1

e

(
aq1x2

2

q2

)
.

The result follows. ©

The Law of quadratic reciprocity can be deduced from Theorem 7.1 and the two results below.

Theorem 7.2. Suppose that p ∈ N is an odd prime, and a ∈ Z satisfies (a, p) = 1. Then

(7.1) S(p, a) =
(

a

p

)

L

S(p, 1).

47
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Theorem 7.3. Suppose that q ∈ N is odd. Then S(q, 1) = εqq
1
2 , where

εq =
{

1, if q ≡ 1 mod 4,
i, if q ≡ −1 mod 4.

To deduce the Law of quadratic reciprocity, note that by Theorems 7.1 and 7.2, we have, for distinct
primes p, q ∈ N, that

S(pq, 1) = S(p, q)S(q, p) =
(

q

p

)

L

S(p, 1)
(

p

q

)

L

S(q, 1).

It follows from Theorem 7.3 that
(

q

p

)

L

(
p

q

)

L

=
S(pq, 1)

S(p, 1)S(q, 1)
=

εpq

εpεq
.

Note now that the right hand side has value −1 if p ≡ q ≡ −1 mod 4 and value 1 otherwise. The
Law of quadratic reciprocity follows.

Proof of Theorem 7.2. Consider the congruence x2 ≡ n mod p. Clearly the number of solutions
of this congruence is given by 1 + (n/p)L, so that

S(p, a) =
p∑

x=1

e

(
ax2

p

)
=

p∑

n=1

(
1 +

(
n

p

)

L

)
e

(
an

p

)
=

p∑

n=1

(
n

p

)

L

e

(
an

p

)
,

since
p∑

n=1

e

(
an

p

)
= 0.

We now make the substitution an ≡ m mod p, and note that as n runs through a complete set of
residues modulo p, so does m. Hence, denoting by a−1 the natural number satisfying 1 ! a−1 < p
and aa−1 ≡ 1 mod p, we have

(7.2) S(p, a) =
p∑

m=1

(
a−1m

p

)

L

e

(
m

p

)
=

(
a−1

p

)

L

p∑

m=1

(
m

p

)

L

e

(
m

p

)
=

(
a

p

)

L

p∑

m=1

(
m

p

)

L

e

(
m

p

)
.

In particular, putting a = 1 in (7.2), we obtain

(7.3) S(p, 1) =
p∑

m=1

(
m

p

)

L

e

(
m

p

)
.

The identity (7.1) now follows on combining (7.2) and (7.3). ©

To complete the proof of the Law of quadratic reciprocity, it remains to establish Theorem 7.3,
which we do in Section 7.3. As the proof involves ideas concerning the convergence of Fourier series,
we first make a very brief study of this in the next section.

7.2. Convergence of Fourier Series

Suppose that a function f : R → C is Riemann integrable over the interval [0, 1] and is periodic
with period 1. We define the Fourier coefficient ch, for every h ∈ Z, by

ch = ch(f) =
∫ 1

0
f(y)e(−hy) dy.

The formal series
∞∑

h=−∞
ch(f)e(hy)

is called the Fourier series of the function f .
Our task here is to obtain sufficient conditions for the Fourier series of a given function f to converge

to f , or at least some function closely related to f . The basic theorem in this study is the following
result.



7.2. CONVERGENCE OF FOURIER SERIES 49

Theorem 7.4 (Riemann–Lebesgue lemma). Suppose that a, b ∈ R and a < b. Suppose further that
the function f : [a, b]→ R is Riemann integrable over the interval [a, b]. For any number λ ∈ R, let

I(λ, f) =
∫ b

a
f(y)eiλy dy.

Then I(λ, f)→ 0 as λ→∞.

Proof. Our first task is to approximate f in [a, b] by a step function. Let ε > 0 be given. For any
sufficiently large k ∈ N, there exists a dissection

∆k : a = y0 < y1 < . . . < yk = b

of [a, b] such that the upper sum S(f,∆k) and the lower sum s(f,∆k) satisfy

0 ! S(f,∆k)− s(f,∆k) < ε.

For every y ∈ [a, b], define

fk(y) =
{

sup{f(y) : y ∈ [yj−1, yj ]}, if y ∈ (yj−1, yj ],
fk(y1), if y = y0.

Clearly fk is a step function in, and hence Riemann integrable over, the interval [a, b]. Furthermore,
f(y) ! fk(y) for all y ∈ [a, b]. It follows that fk − f is Riemann integrable over [a, b], and

|fk(y)− f(y)| = fk(y)− f(y)

for all y ∈ [a, b]. Hence

|I(λ, fk)− I(λ, f)| =
∫ b

a
|fk(y)− f(y)|dy =

∫ b

a
(fk(y)− f(y)) dy = S(f,∆k)−

∫ b

a
f(y) dy < ε.

On the other hand,

I(λ, fk) =
k∑

j=1

∫ yj

yj−1

fk(yj)eiλy dy =
k∑

j=1

fk(yj)
eiλyj − eiλyj−1

iλ
→ 0

as λ → ∞, so that |I(λ, fk)| < ε for all sufficiently large λ. Then |I(λ, f)| < 2ε for all sufficiently
large λ. ©

We now establish a result concerning the convergence of a Fourier series.

Theorem 7.5. Suppose that a function f : R → C is Riemann integrable over the interval [0, 1]
and is periodic with period 1. Let y ∈ R. Suppose that the limits

f(y±) = lim
δ→0±

f(y + δ) and f ′±(y) = lim
δ→0±

f(y + δ)− f(y±)
δ

all exist, and the functions

(7.4) g±(u) =






f(u)− f(y±)
u− y

− f ′±(y), if u '= y,

0, if u = y,

are Riemann integrable over [y, y + 1
2 ] and [y − 1

2 , y] respectively. Then

lim
H→∞

H∑

n=−H

ch(f)e(hy) =
f(y+) + f(y−)

2
.

Proof. In view of periodicity, we can write

ch(f) =
∫ y+ 1

2

y− 1
2

f(u)e(−hu) du.

For every H ∈ N, let

SH =
H∑

n=−H

ch(f)e(hy).
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Then

SH =
∫ y+ 1

2

y− 1
2

f(u)
H∑

n=−H

e(h(y − u)) du.

Simple calculations give

(7.5)
H∑

n=−H

e(h(y − u)) =






sinπ(2H + 1)(y − u)
sinπ(y − u)

, if u '= y,

2H + 1, if u = y.

Note that the right hand side of (7.5) is continuous and Riemann integrable. Hence SH = I1 + I2,
where

I1 =
∫ 0

− 1
2

f(y + v)
sin π(2H + 1)v

sinπv
dv and I2 =

∫ 1
2

0
f(y + v)

sinπ(2H + 1)v
sinπv

dv.

Consider now the integral I1. Clearly it follows from (7.4) that

I1 =
∫ 0

− 1
2

g−(y + v)
v

sinπv
sinπ(2H + 1)v dv

+ f ′−(y)
∫ 0

− 1
2

v

sinπv
sinπ(2H + 1)v dv + f(y−)

∫ 0

− 1
2

sinπ(2H + 1)v
sinπv

dv.

By Theorem 7.4, the first two integrals on the right hand side both converge to 0 as H → ∞. The
last term is equal to

f(y−)
∫ 0

− 1
2

H∑

h=−H

e(hv) dv = f(y−)




1
2

+
H∑

h=−H
h&=0

1− (−1)h

2πih



 =
1
2
f(y−).

Similarly I2 → 1
2f(y+) as H →∞. ©

7.3. Proof of Theorem 7.3

Let q ∈ N be odd. For every real number θ ∈ [0, 1], let

f(θ) =
q−1∑

n=0

e

(
(n + θ)2

q

)
,

and note that S(q, 1) = f(0) = f(1). The function f has the Fourier series
∞∑

h=−∞
che(hy),

where, for every h ∈ Z, the coefficient

ch =
∫ 1

0

q−1∑

n=0

e

(
(n + θ)2

q

)
e(−hθ) dθ =

q−1∑

n=0

∫ n+1

n
e

(
φ2

q
− hφ

)
e(hn) dφ =

∫ q

0
e

(
φ2

q
− hφ

)
dφ

= q

∫ 1

0
e(qθ2 − qhθ) dθ = qe

(
−qh2

4

) ∫ 1

0
e

(
q

(
θ − h

2

)2
)

dθ = qe

(
−qh2

4

) ∫ 1−h
2

−h
2

e(qθ2) dθ.

By Theorem 7.5, the Fourier series converges to f in [0, 1], so that

(7.6) S(q, 1) = lim
N→∞

N∑

h=−N

che(h0) = lim
N→∞

N∑

h=−N

ch.
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If h is even, then −qh2/4 ∈ Z. It follows that as N →∞, we have
2N∑

h=−2N
h even

ch =
2N∑

h=−2N
h even

qe

(
−qh2

4

) ∫ 1−h
2

−h
2

e(qθ2) dθ =
2N∑

h=−2N
h even

q

∫ 1−h
2

−h
2

e(qθ2) dθ(7.7)

= q

∫ N+1

−N
e(qθ2) dθ → q

∫ ∞

−∞
e(qθ2) dθ = q

1
2 I,

where

I =
∫ ∞

−∞
e(θ2) dθ.

If h is odd, then h2 ≡ 1 mod 4, and so qh2 ≡ q mod 4. It follows that as N →∞, we have
2N∑

h=−2N
h odd

ch =
2N∑

h=−2N
h odd

qe

(
−qh2

4

) ∫ 1−h
2

−h
2

e(qθ2) dθ = qe
(
−q

4

) 2N∑

h=−2N
h odd

∫ 1−h
2

−h
2

e(qθ2) dθ(7.8)

= qe
(
−q

4

) ∫ N+ 1
2

−N+ 1
2

e(qθ2) dθ → q
1
2 e

(
−q

4

)
I.

Combining (7.6)–(7.8), we have

(7.9) S(q, 1) = q
1
2

(
1 + e

(
−q

4

))
I.

Putting q = 1 in (7.9), we have 1 = (1− i)I. Hence

S(q, 1) =
q

1
2 (1 + e(−q/4))

1− i
.

Theorem 7.3 follows easily.


