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Chapter 7

FURTHER TREATMENT OF LIMITS

7.1. Upper and Lower Limits of a Real Sequence

Suppose that x,, is a sequence of real numbers bounded above. For every n € N, let
K, =sup{@n, Tni1, Tnt2y .-}

Then K, is a decreasing sequence, and converges as n — oo if it is bounded below.

DEFINITION. Suppose that z,, is a sequence of real numbers bounded above. The number

A = lim (supac,«>7

r>n
if it exists, is called the upper limit of x,, and denoted by

A = limsup x, or A= lim z,.

n— oo n—0oo

DEFINITION. Suppose that x,, is a sequence of real numbers bounded below. The number

A= lim (inf xT) ,
n—oo \r>n
if it exists, is called the lower limit of x,,, and denoted by

A = liminf z, or A= lim xz,.
n—oo n—oo
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REMARK. It is obvious that A < A, since the infimum of a bounded set of real number never exceeds the
corresponding supremum.

EXAMPLE 7.1.1. For the sequence z,, = (—1)", we have A =1 and A\ = —1.

EXAMPLE 7.1.2. For the sequence =, = n/(n+ 1), we have A = A = 1.

EXAMPLE 7.1.3. For the sequence z, = n(1 + (—1)"), we have A = 0 and A does not exist.

EXAMPLE 7.1.4. For the sequence x,, = sin %mr, we have A =1 and A = —1.

THEOREM T7A. Suppose that z,, is a sequence of real numbers. Then the following two statements
are equivalent:

(a) We have A = limsup z,,.

(b) For every e > 0, we have
(i) xn, < A+ € for all sufficiently large n € N; and
(ii) x, > A — € for infinitely many n € N.

PrOOF. ((a)=(b)) Suppose that

A =limsupzx, = lim K,, where K, =supz,.
Nn—00 n—o00 r>n

Given any € > 0, there exists N € N such that |Ky — A| < ¢, so that in particular, Ky < A +e. It
follows that z,, < A+e¢ for every n > N, giving (i). On the other hand, for every € > 0 and every N € N,
there exists n > N such that z,, > Ky — €. Clearly Ky > A for every N € N; giving (ii).

((b)=-(a)) Given any € > 0, it follows from (i) that K,, < A + € for all sufficiently large n € N, and
from (ii) that K, > A — € for every n € N. Clearly K,, = A as n — oco. O

Similarly, we have the following result.

THEOREM 7B. Suppose that z,, is a sequence of real numbers. Then the following two statements
are equivalent:
(a) We have X\ = liminf z,,.

(b) For every e > 0, we have
(i) x, > X — € for all sufficiently large n € N; and
(i) x, < X+ € for infinitely many n € N.

We now establish the following important result.
THEOREM 7C. Suppose that x, is a sequence of real numbers. Then

lim z, =¢ if and only if limsupz, = liminfz, = ¢.
n—oo n—oo n— oo

PROOF. (=) Suppose that 2, — ¢ as n — oco. Then the upper and lower limits of the sequence z,
clearly exist, since x, is bounded in this case. Also, given any € > 0, there exists N € N such that
{—e<x, <l+c¢€for every n > N. The conclusion follows immediately from Theorems 7A and 7B.

(<) Suppose that the upper and lower limits are both equal to ¢. Then it follows from Theorem TA
that x,, < £+ € for all sufficiently large n € N, and from Theorem 7B that x,, > ¢ — € for all sufficiently

large n € N. Hence |z, — ¢| < ¢ for all sufficiently large n € N, whence x,, — £ as n — co0.
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7.2. Double and Repeated Limits

We shall consider a double sequence z,,, of complex numbers, represented by a doubly infinite array

211 212 213
221 222 223
231 232 233

of complex numbers. More precisely, a double sequence of complex numbers is simply a mapping from
N x N to C.

DEFINITION. We say that a double sequence z,,, converges to a finite limit z € C, denoted by z,,, — 2
as m,n — 0o or by

lim 2z, =z,
m,n— oo

if, given any € > 0, there exists N = N(e) € R, depending on ¢, such that |zm,, — 2| < € whenever
m,n > N. Furthermore, we say that a double sequence z,,, is convergent if it converges to some finite
limit z as m,n — oo, and that a double sequence z,,, is divergent if it is not convergent.

ExampLE 7.2.1. For the double sequence

1
Z =
T m4n]
we have z,,, — 0 as m,n — oo.
EXAMPLE 7.2.2. The double sequence
m
z = -
mn m + n

does not converge to a finite limit as m,n — oco. Note that for all sufficiently large m,n € N with m = n,
we have z,,,, = %, whereas for all sufficiently large m,n € N with m = 2n, we have z,,, = %

The question we want to study is the relationship, if any, between the following three limiting processes
when applied to a double sequence z,,, of complex numbers:

e m,n — 0o.

e n — oo followed by m — oo.

e m — oo followed by n — oo.

THEOREM 7D. Suppose that a double sequence z,, satisfies the following conditions:
(a) The double limit lim  z,, exists.

m,n— oo

(b) For every m € N, the limit Uim z,,, ezists.

n—oo

Then the repeated limit lim ( lim zmn) exists, and is equal to the double limit lim  zp,,.

m—00 n—0o0 m,n—oo

REMARK. We need to make the assumption (b), as it does not necessarily follow from assumption (a).
Consider, for example, the double sequence
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PrROOF oF THEOREM 7D. Suppose that z,,, — z as m,n — co. Suppose also that for every m € N,
Zmn — CGn as n — 0o. We need to show that (,,, — z as m — oco. Given any € > 0, there exists N € R
such that

€
|zmn — 2| < 3 whenever m,n > N.

On the other hand, given any m € N, there exists M (m) € R such that

€

5 whenever n > M (m).

[2mn = Gm| <
Now let m > N. Then choosing n > max{N, M(m)}, we have
ICm — 2| < |Zmn — Cm| + |2mn — 2| < e
Hence ¢, — z as m — oco. O
We immediately have the following generalization.

THEOREM T7E. Suppose that a double sequence zp,, satisfies the following conditions:
(a) The double limit lim  z,, exists.

m,n— o0

(b) For every m € N, the limit Uim 2z, exists.
n—oo

(c) For every n € N, the limit lim 2z, eists.
m—00

Then the repeated limits lim ( lim zmn) and lim ( lim zmn) exist, and are both equal to the double

m—00 n—oo n—oo m—00

limit  lim  z,,,.

m,n— oo
We can further generalize the above to a result concerning series.
DEFINITION. Suppose that z,,, is a double sequence of complex numbers. For every m,n € N, let
m n
Smn = D D 7
i=1j=1
If the double sequence s,,, — s as m,n — 0o, then we say that the double series
o0
> Fmn
m,n=1
is convergent, with sum s.

THEOREM T7F. Suppose that a double sequence zp,, satisfies the following conditions:

oo
(a) The double series Z Zmn 18 convergent, with sum s.
m,n=1
(oo}
(b) For every m € N, the series Z Zmn 48 convergent.
n=1
o0
(c) For every n € N, the series Z Zmn 18 convergent.
m=1
o0 o0 o0 oo
Then the repeated series Z <Z zmn> and Z <Z zmn> are both convergent, with sum s.
m=1 \n=1 n=1 \m=1
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7.3. Infinite Products
An infinite product is an expression of the form
(T4 21) 1+ 22)(1 +23)...

with an infinitude of factors. We denote this by

[T+ 20 (1)

We also make the natural assumption that z,, # —1 for any n € N.

For every N € N, let

N
pyv = [ +2) =0 +z)...(1+2n)

n=1
We shall call py the N-th partial product of the infinite product (1).

DEFINITION. If the sequence py converges to a non-zero limit p as N — oo, then we say that the infinite
product (1) converges to p and write

o0

H(1+Zn) =p.

n=1

In this case, we sometimes simply say that the infinite product (1) is convergent. On the other hand, if
the sequence py does not cionverge to a non-zero limit as N — oo, then we say that the infinite product
(1) is divergent. In particular, if py — 0 as N — oo, then we say that the infinite product (1) diverges
to zero.

Let us first examine the special case when all the terms z,, are real.

THEOREM 7G. Suppose that a,, > 0 for every n € N. Then the infinite product

H(l—i—an)

n=1

is convergent if and only if the series

oo

D> an

n=1
18 convergent.
PROOF. Let sy be the N-th partial sum of the series. Since a,, > 0 for every n € N, the sequences sy
and py are both increasing. On the other hand, note that 1+ a < e® for every a > 0. It follows that for
every N € N, we have

ar+...+ay < (1+ay)...(1+ay) <etrt—ton

so that sy < py < e*N. It follows that the sequences sy and py are bounded or unbounded together.
The result follows from Theorem 2E. O
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If a,, <0 for every n € N, then we write a,, = —b,, and consider the infinite product
o0
[T =bn). (2)
n=1

THEOREM T7TH. Suppose that 0 < b,, <1 for every n € N. Then the infinite product (2) is convergent
if and only if the series

> bn (3)
n=1

18 convergent.
This follows immediately from the following two results.

THEOREM 7J. Suppose that 0 < b, < 1 for every n € N. Suppose further that the series (3) is
convergent. Then the infinite product (2) is convergent.

THEOREM 7K. Suppose that 0 < b, < 1 for every n € N. Suppose further that the series (3) is
divergent. Then the infinite product (2) diverges to zero.

PROOF OF THEOREM 7J. Since the series (3) is convergent, there exists M € N such that

= 1
Y b < 5
n=M+1
Hence for every N > M, we have
1
(1—b]w+1)(1—bM+2)...(1—bN)21—bM+1—bM+2—...—bN> 5

It follows that the sequence py is a decreasing sequence bounded below by %pM # 0, so that py converges
to a non-zero limit as N — oco. ()

PrROOF OF THEOREM 7K. Note that 1 — b < e~ whenever 0 < b < 1. Tt follows that for every N € N,
we have

0< (1 — bl) (1= bN) < e 1= —bN

Note now that e 01—

~=by 0 as N — oo. The result follows from the Squeezing principle. O
We now investigate the general case, where z,, € C\ {—1} for every n € N.

DEFINITION. The infinite product (1) is said to be absolutely convergent if the infinite product

T1C+1za0)

n=1

is convergent.
The following result is an obvious consequence of Theorem 7G.
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THEOREM 7L. The infinite product (1) is absolutely convergent if and only if the series

S )
n=1

is absolutely convergent.
On the other hand, as in series, we have the following result.

THEOREM 7M. Suppose that the infinite product (1) is absolutely convergent. Then it is also con-
vergent.

PROOF. For every N € N; let

If N > 2, then

pN—pN,1:(1+21)...(1+ZN,1)ZN and PN—PNfl:(1+|21D...(1+|ZN71|)|ZN|,
so that
lIpN —pN-1| < Py — Pn-1. (5)

If we write pg = Py = 0, then (5) holds also for N = 1. Furthermore, for every N € N, we have

N N
pN:Z(pn_pnfl) and PN:Z<Pn_Pn71)

n=1 n=1

Since Py converges as N — oo, it follows from the Comparison test that py converges as N — oco. It
remains to show that py does not converge to 0 as N — oo. Note from Theorem 7L that the series (4)
is absolutely convergent, so that z, — 0 as n — oo, and so 1 + 2z, — 1 as n — oco. Hence the series

o0
>
= 142z,

is convergent, and so it follows from Theorem 7L that the infinite product

ﬁ<1+‘_linzn) (©)

is convergent. Repeating the first part of our argument on the infinite product (6), we conclude that the
sequence

il z
g<11+zn)

is convergent as N — oo. Note now that this product is precisely 1/py. O
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7.4. Double Integrals

The purpose of this last section is to give a sketch of the proof of the following result concerning double
integrals.

THEOREM 7N. Suppose that a function f(x,y) is continuous in a closed rectangle [A, B] x [C, D],
where A, B,C, D € R satisfy A < B and C < D. Then the double integrals

AdeLDf(m,y)dy and /CDdy/jf(x,y)dx

exist in the sense of Riemann, and are equal to each other.
SKETCH OF PROOF. The idea is to first show that f(z,y) is uniformly continuous in the rectangle

[A, B] x [C, D], in the spirit of Theorem 6L. Using the uniform continuity, one can then show that the
function

B
o(y) = /A f(z,y)dz

is continuous in the closed interval [C, D]. It follows from Theorem 6K that the integral

/CDdy/ABf(w,y)dx
Ade/CDf<w,y)dy

exists. To show that the two integrals are equal, we make use of the uniform continuity again. Given
any € > 0, there exist dissections A =zg <1 <...<zxpy=Band C=yg <y; <...<y, =D of the
intervals [A, B] and [C, D] respectively such that

exists. Similarly the other integral

€ . .
M;; —my; < (B-A)(D—-0) foreveryi=1,...,kand j=1,...,n,
where
M;j= sup  f(z,y) and  my;= inf  f(z,y).
zi—1<z<w; Ti—1ST<@;
yj—1<y<y; Yj—1 <Y<y
Foreveryi=1,...,kand j=1,...,n, we have
T
mi;(z; —x-1) < / flz,y)de < My (2 — zi-1) for every y € [y;—1,v;],
Ti—1
so that

Yj T
mij(zi — xi-1)(y; — yj-1) < / dy/ flz,y)de < Myj(z; — 2i-1)(y; — yj-1)-
Yji—1 Ti—1

Summing over all ¢ and j, we obtain

k

n D B k n
DO mij(wi — i)y —yi1) < /C dy/A fla,y)de <Y Mij(a; — zi1)(y; — y5-1)-

i=1j=1 i=1 j=1
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A similar argument gives

k n B D k n
D> mag(wi— i)y —yi1) < / dﬂﬁ/ fla,y)dy <D Mij(wi —xi1)(y; — yj-1)-
A C i=1 j=1

i=1 j=1

Hence

/CDdyABf(x,y>dx_Ade/(ij(x,y>dy

The result now follows since € > 0 is arbitrary and the left hand side is independent of e. ()

k n
<IN (Mg —mig) (@i — @) (Y — yj1) <€

i=1 j=1

It turns out that the conclusion of Theorem 7N may still hold even if the function f(z,y) is not
continuous everywhere in the rectangle [A, B] x [C, D]. We state without proof the following result.

THEOREM T7P. Suppose that a function f(x,y) is continuous in a closed rectangle [A, B] x [C, D],
where A, B,C, D € R satisfy A < B and C < D, except possibly at points along a curve of type defined
by one of the following:

(a) =« for some a € [A, BJ.

(b) y =~ for some~y € [C,D].

(c) ©=1vY(y) fory € [v,0], where C <~ < § <D and ¢(y) is strictly monotonic and continuous.

Then the conclusion of Theorem TN holds.

Chapter 7 : Further Treatment of Limits

page 9 of 10



Fundamentals of Analysis © W W L Chen, 1983, 2008

PROBLEMS FOR CHAPTER 7

1. Suppose that x, and y, are bounded real sequences.
a) Show that

lim z, + lim y, < lim (v, +y,) < lim z, + lim y, < lim (2, +y,) < lim @, + lim y,.
n—00 n—00 n—00 n— oo n—oo n—oo n—oo n—oo

b) Find sequences z,, and y,, where equality holds nowhere in part (a).

c) Suppose further that x,, > 0 and y,, > 0 for every n € N. Establish a chain of inequalities as in
part (a) but with products in place of sums.

d) Find sequences x,, and y,, where equality holds nowhere in part (c).

2. For each of the following double sequences z,,,, find the double limit lim z,,, and the repeated

m,n— oo

limits lim (lim zmn) and lim ( lim zmn>, if they exist:

m-—n m-+n
m+4+n 1 1
mn — o5 . o d mn — -1 mn [ —
c) z o ) = (-1) <m+n>
. mn _ man L 1
e) Zmn — m f) Zmn—(—l) ﬁ <1+m

3. Does there exist a double sequence z;,, such that z,,, converges as m,n — oo but also that z,, is
not bounded? Justify your assertion.

4. Suppose that z,,, is a bounded double sequence of real numbers satisfying the following conditions:
a) For every fixed m € N, the sequence x,,, is increasing in n.
b) For every fixed n € N, the sequence &, is increasing in m.

Prove that x,,, converges as m,n — oo.

5. Use Problem 4 to prove the Comparison test for double series: Suppose that 0 < U, < vy, for
every m,n € N. Suppose further that the double series

o}
g Umn

m,n=1

is convergent. Then the double series

is convergent.

6. Using ideas from the proof of the Alternating series test, prove that the infinite product

i)

is convergent.

7. Prove Theorem 7N.
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