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Chapter 7

FURTHER TREATMENT OF LIMITS

7.1. Upper and Lower Limits of a Real Sequence

Suppose that xn is a sequence of real numbers bounded above. For every n ∈ N, let

Kn = sup{xn, xn+1, xn+2, . . .}.

Then Kn is a decreasing sequence, and converges as n→∞ if it is bounded below.

Definition. Suppose that xn is a sequence of real numbers bounded above. The number

Λ = lim
n→∞

(
sup
r≥n

xr

)
,

if it exists, is called the upper limit of xn, and denoted by

Λ = lim sup
n→∞

xn or Λ = lim
n→∞

xn.

Definition. Suppose that xn is a sequence of real numbers bounded below. The number

λ = lim
n→∞

(
inf
r≥n

xr

)
,

if it exists, is called the lower limit of xn, and denoted by

λ = lim inf
n→∞

xn or λ = lim
n→∞

xn.
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Remark. It is obvious that λ ≤ Λ, since the infimum of a bounded set of real number never exceeds the
corresponding supremum.

Example 7.1.1. For the sequence xn = (−1)n, we have Λ = 1 and λ = −1.

Example 7.1.2. For the sequence xn = n/(n+ 1), we have Λ = λ = 1.

Example 7.1.3. For the sequence xn = n(1 + (−1)n), we have λ = 0 and Λ does not exist.

Example 7.1.4. For the sequence xn = sin 1
2nπ, we have Λ = 1 and λ = −1.

THEOREM 7A. Suppose that xn is a sequence of real numbers. Then the following two statements
are equivalent:
(a) We have Λ = lim sup

n→∞
xn.

(b) For every ε > 0, we have
(i) xn < Λ + ε for all sufficiently large n ∈ N; and

(ii) xn > Λ− ε for infinitely many n ∈ N.

Proof. ((a)⇒(b)) Suppose that

Λ = lim sup
n→∞

xn = lim
n→∞

Kn, where Kn = sup
r≥n

xr.

Given any ε > 0, there exists N ∈ N such that |KN − Λ| < ε, so that in particular, KN < Λ + ε. It
follows that xn < Λ+ε for every n ≥ N , giving (i). On the other hand, for every ε > 0 and every N ∈ N,
there exists n ≥ N such that xn > KN − ε. Clearly KN ≥ Λ for every N ∈ N, giving (ii).

((b)⇒(a)) Given any ε > 0, it follows from (i) that Kn ≤ Λ + ε for all sufficiently large n ∈ N, and
from (ii) that Kn > Λ− ε for every n ∈ N. Clearly Kn → Λ as n→∞. ©

Similarly, we have the following result.

THEOREM 7B. Suppose that xn is a sequence of real numbers. Then the following two statements
are equivalent:
(a) We have λ = lim inf

n→∞
xn.

(b) For every ε > 0, we have
(i) xn > λ− ε for all sufficiently large n ∈ N; and

(ii) xn < λ+ ε for infinitely many n ∈ N.

We now establish the following important result.

THEOREM 7C. Suppose that xn is a sequence of real numbers. Then

lim
n→∞

xn = ` if and only if lim sup
n→∞

xn = lim inf
n→∞

xn = `.

Proof. (⇒) Suppose that xn → ` as n → ∞. Then the upper and lower limits of the sequence xn

clearly exist, since xn is bounded in this case. Also, given any ε > 0, there exists N ∈ N such that
`− ε < xn < `+ ε for every n ≥ N . The conclusion follows immediately from Theorems 7A and 7B.

(⇐) Suppose that the upper and lower limits are both equal to `. Then it follows from Theorem 7A
that xn < `+ ε for all sufficiently large n ∈ N, and from Theorem 7B that xn > `− ε for all sufficiently
large n ∈ N. Hence |xn − `| < ε for all sufficiently large n ∈ N, whence xn → ` as n→∞. ©
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7.2. Double and Repeated Limits

We shall consider a double sequence zmn of complex numbers, represented by a doubly infinite array

z11 z12 z13 . . .

z21 z22 z23 . . .

z31 z32 z33 . . .

...
...

...
. . .

of complex numbers. More precisely, a double sequence of complex numbers is simply a mapping from
N× N to C.

Definition. We say that a double sequence zmn converges to a finite limit z ∈ C, denoted by zmn → z
as m,n→∞ or by

lim
m,n→∞

zmn = z,

if, given any ε > 0, there exists N = N(ε) ∈ R, depending on ε, such that |zmn − z| < ε whenever
m,n > N . Furthermore, we say that a double sequence zmn is convergent if it converges to some finite
limit z as m,n→∞, and that a double sequence zmn is divergent if it is not convergent.

Example 7.2.1. For the double sequence

zmn =
1

m+ n
,

we have zmn → 0 as m,n→∞.

Example 7.2.2. The double sequence

zmn =
m

m+ n

does not converge to a finite limit as m,n→∞. Note that for all sufficiently large m,n ∈ N with m = n,
we have zmn = 1

2 , whereas for all sufficiently large m,n ∈ N with m = 2n, we have zmn = 2
3 .

The question we want to study is the relationship, if any, between the following three limiting processes
when applied to a double sequence zmn of complex numbers:
• m,n→∞.
• n→∞ followed by m→∞.
• m→∞ followed by n→∞.

THEOREM 7D. Suppose that a double sequence zmn satisfies the following conditions:
(a) The double limit lim

m,n→∞
zmn exists.

(b) For every m ∈ N, the limit lim
n→∞

zmn exists.

Then the repeated limit lim
m→∞

(
lim

n→∞
zmn

)
exists, and is equal to the double limit lim

m,n→∞
zmn.

Remark. We need to make the assumption (b), as it does not necessarily follow from assumption (a).
Consider, for example, the double sequence

zmn =
(−1)n

m
.
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Proof of Theorem 7D. Suppose that zmn → z as m,n → ∞. Suppose also that for every m ∈ N,
zmn → ζm as n →∞. We need to show that ζm → z as m →∞. Given any ε > 0, there exists N ∈ R
such that

|zmn − z| <
ε

2
whenever m,n > N.

On the other hand, given any m ∈ N, there exists M(m) ∈ R such that

|zmn − ζm| <
ε

2
whenever n > M(m).

Now let m > N . Then choosing n > max{N,M(m)}, we have

|ζm − z| ≤ |zmn − ζm|+ |zmn − z| < ε.

Hence ζm → z as m→∞. ©

We immediately have the following generalization.

THEOREM 7E. Suppose that a double sequence zmn satisfies the following conditions:
(a) The double limit lim

m,n→∞
zmn exists.

(b) For every m ∈ N, the limit lim
n→∞

zmn exists.

(c) For every n ∈ N, the limit lim
m→∞

zmn exists.

Then the repeated limits lim
m→∞

(
lim

n→∞
zmn

)
and lim

n→∞

(
lim

m→∞
zmn

)
exist, and are both equal to the double

limit lim
m,n→∞

zmn.

We can further generalize the above to a result concerning series.

Definition. Suppose that zmn is a double sequence of complex numbers. For every m,n ∈ N, let

smn =
m∑

i=1

n∑
j=1

zij .

If the double sequence smn → s as m,n→∞, then we say that the double series

∞∑
m,n=1

zmn

is convergent, with sum s.

THEOREM 7F. Suppose that a double sequence zmn satisfies the following conditions:

(a) The double series
∞∑

m,n=1

zmn is convergent, with sum s.

(b) For every m ∈ N, the series
∞∑

n=1

zmn is convergent.

(c) For every n ∈ N, the series
∞∑

m=1

zmn is convergent.

Then the repeated series
∞∑

m=1

( ∞∑
n=1

zmn

)
and

∞∑
n=1

( ∞∑
m=1

zmn

)
are both convergent, with sum s.
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7.3. Infinite Products

An infinite product is an expression of the form

(1 + z1)(1 + z2)(1 + z3) . . .

with an infinitude of factors. We denote this by

∞∏
n=1

(1 + zn). (1)

We also make the natural assumption that zn 6= −1 for any n ∈ N.

For every N ∈ N, let

pN =
N∏

n=1

(1 + zn) = (1 + z1) . . . (1 + zN ).

We shall call pN the N -th partial product of the infinite product (1).

Definition. If the sequence pN converges to a non-zero limit p as N →∞, then we say that the infinite
product (1) converges to p and write

∞∏
n=1

(1 + zn) = p.

In this case, we sometimes simply say that the infinite product (1) is convergent. On the other hand, if
the sequence pN does not cionverge to a non-zero limit as N →∞, then we say that the infinite product
(1) is divergent. In particular, if pN → 0 as N →∞, then we say that the infinite product (1) diverges
to zero.

Let us first examine the special case when all the terms zn are real.

THEOREM 7G. Suppose that an ≥ 0 for every n ∈ N. Then the infinite product

∞∏
n=1

(1 + an)

is convergent if and only if the series

∞∑
n=1

an

is convergent.

Proof. Let sN be the N -th partial sum of the series. Since an ≥ 0 for every n ∈ N, the sequences sN

and pN are both increasing. On the other hand, note that 1 + a ≤ ea for every a ≥ 0. It follows that for
every N ∈ N, we have

a1 + . . .+ aN ≤ (1 + a1) . . . (1 + aN ) ≤ ea1+...+aN ,

so that sN ≤ pN ≤ esN . It follows that the sequences sN and pN are bounded or unbounded together.
The result follows from Theorem 2E. ©
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If an ≤ 0 for every n ∈ N, then we write an = −bn and consider the infinite product

∞∏
n=1

(1− bn). (2)

THEOREM 7H. Suppose that 0 ≤ bn < 1 for every n ∈ N. Then the infinite product (2) is convergent
if and only if the series

∞∑
n=1

bn (3)

is convergent.

This follows immediately from the following two results.

THEOREM 7J. Suppose that 0 ≤ bn < 1 for every n ∈ N. Suppose further that the series (3) is
convergent. Then the infinite product (2) is convergent.

THEOREM 7K. Suppose that 0 ≤ bn < 1 for every n ∈ N. Suppose further that the series (3) is
divergent. Then the infinite product (2) diverges to zero.

Proof of Theorem 7J. Since the series (3) is convergent, there exists M ∈ N such that

∞∑
n=M+1

bn <
1
2
.

Hence for every N > M , we have

(1− bM+1)(1− bM+2) . . . (1− bN ) ≥ 1− bM+1 − bM+2 − . . .− bN >
1
2
.

It follows that the sequence pN is a decreasing sequence bounded below by 1
2pM 6= 0, so that pN converges

to a non-zero limit as N →∞. ©

Proof of Theorem 7K. Note that 1− b ≤ e−b whenever 0 ≤ b < 1. It follows that for every N ∈ N,
we have

0 ≤ (1− b1) . . . (1− bN ) ≤ e−b1−...−bN .

Note now that e−b1−...−bN → 0 as N →∞. The result follows from the Squeezing principle. ©

We now investigate the general case, where zn ∈ C \ {−1} for every n ∈ N.

Definition. The infinite product (1) is said to be absolutely convergent if the infinite product

∞∏
n=1

(1 + |zn|)

is convergent.

The following result is an obvious consequence of Theorem 7G.
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THEOREM 7L. The infinite product (1) is absolutely convergent if and only if the series

∞∑
n=1

zn (4)

is absolutely convergent.

On the other hand, as in series, we have the following result.

THEOREM 7M. Suppose that the infinite product (1) is absolutely convergent. Then it is also con-
vergent.

Proof. For every N ∈ N, let

pN =
N∏

n=1

(1 + zn) and PN =
N∏

n=1

(1 + |zn|).

If N ≥ 2, then

pN − pN−1 = (1 + z1) . . . (1 + zN−1)zN and PN − PN−1 = (1 + |z1|) . . . (1 + |zN−1|)|zN |,

so that

|pN − pN−1| ≤ PN − PN−1. (5)

If we write p0 = P0 = 0, then (5) holds also for N = 1. Furthermore, for every N ∈ N, we have

pN =
N∑

n=1

(pn − pn−1) and PN =
N∑

n=1

(Pn − Pn−1).

Since PN converges as N → ∞, it follows from the Comparison test that pN converges as N → ∞. It
remains to show that pN does not converge to 0 as N →∞. Note from Theorem 7L that the series (4)
is absolutely convergent, so that zn → 0 as n→∞, and so 1 + zn → 1 as n→∞. Hence the series

∞∑
n=1

∣∣∣∣ zn

1 + zn

∣∣∣∣
is convergent, and so it follows from Theorem 7L that the infinite product

∞∏
n=1

(
1 +

∣∣∣∣− zn

1 + zn

∣∣∣∣) (6)

is convergent. Repeating the first part of our argument on the infinite product (6), we conclude that the
sequence

N∏
n=1

(
1− zn

1 + zn

)

is convergent as N →∞. Note now that this product is precisely 1/pN . ©
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7.4. Double Integrals

The purpose of this last section is to give a sketch of the proof of the following result concerning double
integrals.

THEOREM 7N. Suppose that a function f(x, y) is continuous in a closed rectangle [A,B] × [C,D],
where A,B,C,D ∈ R satisfy A < B and C < D. Then the double integrals∫ B

A

dx
∫ D

C

f(x, y) dy and
∫ D

C

dy
∫ B

A

f(x, y) dx

exist in the sense of Riemann, and are equal to each other.

Sketch of Proof. The idea is to first show that f(x, y) is uniformly continuous in the rectangle
[A,B] × [C,D], in the spirit of Theorem 6L. Using the uniform continuity, one can then show that the
function

φ(y) =
∫ B

A

f(x, y) dx

is continuous in the closed interval [C,D]. It follows from Theorem 6K that the integral∫ D

C

dy
∫ B

A

f(x, y) dx

exists. Similarly the other integral ∫ B

A

dx
∫ D

C

f(x, y) dy

exists. To show that the two integrals are equal, we make use of the uniform continuity again. Given
any ε > 0, there exist dissections A = x0 < x1 < . . . < xk = B and C = y0 < y1 < . . . < yn = D of the
intervals [A,B] and [C,D] respectively such that

Mij −mij <
ε

(B −A)(D − C)
for every i = 1, . . . , k and j = 1, . . . , n,

where

Mij = sup
xi−1≤x≤xi

yj−1≤y≤yj

f(x, y) and mij = inf
xi−1≤x≤xi

yj−1≤y≤yj

f(x, y).

For every i = 1, . . . , k and j = 1, . . . , n, we have

mij(xi − xi−1) ≤
∫ xi

xi−1

f(x, y) dx ≤Mij(xi − xi−1) for every y ∈ [yj−1, yj ],

so that

mij(xi − xi−1)(yj − yj−1) ≤
∫ yj

yj−1

dy
∫ xi

xi−1

f(x, y) dx ≤Mij(xi − xi−1)(yj − yj−1).

Summing over all i and j, we obtain

k∑
i=1

n∑
j=1

mij(xi − xi−1)(yj − yj−1) ≤
∫ D

C

dy
∫ B

A

f(x, y) dx ≤
k∑

i=1

n∑
j=1

Mij(xi − xi−1)(yj − yj−1).
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A similar argument gives

k∑
i=1

n∑
j=1

mij(xi − xi−1)(yj − yj−1) ≤
∫ B

A

dx
∫ D

C

f(x, y) dy ≤
k∑

i=1

n∑
j=1

Mij(xi − xi−1)(yj − yj−1).

Hence∣∣∣∣∣
∫ D

C

dy
∫ B

A

f(x, y) dx−
∫ B

A

dx
∫ D

C

f(x, y) dy

∣∣∣∣∣ ≤
k∑

i=1

n∑
j=1

(Mij −mij)(xi − xi−1)(yj − yj−1) < ε.

The result now follows since ε > 0 is arbitrary and the left hand side is independent of ε. ©

It turns out that the conclusion of Theorem 7N may still hold even if the function f(x, y) is not
continuous everywhere in the rectangle [A,B]× [C,D]. We state without proof the following result.

THEOREM 7P. Suppose that a function f(x, y) is continuous in a closed rectangle [A,B] × [C,D],
where A,B,C,D ∈ R satisfy A < B and C < D, except possibly at points along a curve of type defined
by one of the following:
(a) x = α for some α ∈ [A,B].
(b) y = γ for some γ ∈ [C,D].
(c) x = ψ(y) for y ∈ [γ, δ], where C ≤ γ ≤ δ ≤ D and ψ(y) is strictly monotonic and continuous.
Then the conclusion of Theorem 7N holds.
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Problems for Chapter 7

1. Suppose that xn and yn are bounded real sequences.
a) Show that

lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn.

b) Find sequences xn and yn where equality holds nowhere in part (a).
c) Suppose further that xn ≥ 0 and yn ≥ 0 for every n ∈ N. Establish a chain of inequalities as in

part (a) but with products in place of sums.
d) Find sequences xn and yn where equality holds nowhere in part (c).

2. For each of the following double sequences zmn, find the double limit lim
m,n→∞

zmn and the repeated

limits lim
m→∞

(
lim

n→∞
zmn

)
and lim

n→∞

(
lim

m→∞
zmn

)
, if they exist:

a) zmn =
m− n
m+ n

b) zmn =
m+ n

m2

c) zmn =
m+ n

m2 + n2
d) zmn = (−1)m+n

(
1
m

+
1
n

)
e) zmn =

mn

m2 + n2
f) zmn = (−1)m+n 1

n

(
1 +

1
m

)
3. Does there exist a double sequence zmn such that zmn converges as m,n→∞ but also that zmn is

not bounded? Justify your assertion.

4. Suppose that xmn is a bounded double sequence of real numbers satisfying the following conditions:
a) For every fixed m ∈ N, the sequence xmn is increasing in n.
b) For every fixed n ∈ N, the sequence xmn is increasing in m.
Prove that xmn converges as m,n→∞.

5. Use Problem 4 to prove the Comparison test for double series: Suppose that 0 ≤ umn ≤ vmn for
every m,n ∈ N. Suppose further that the double series

∞∑
m,n=1

vmn

is convergent. Then the double series

∞∑
m,n=1

umn

is convergent.

6. Using ideas from the proof of the Alternating series test, prove that the infinite product

∞∏
n=1

(
1 +

(−1)n−1

n

)
is convergent.

7. Prove Theorem 7N.
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