FUNDAMENTALS OF ANALYSIS

W W L CHEN

© W W L Chen, 1983, 2008.

This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990.

It is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied, with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system without permission from the author, unless such system is not accessible to any individuals other than its owners.

Chapter 7

FURTHER TREATMENT OF LIMITS

7.1. Upper and Lower Limits of a Real Sequence

Suppose that x_n is a sequence of real numbers bounded above. For every $n \in \mathbb{N}$, let

$$K_n = \sup\{x_n, x_{n+1}, x_{n+2}, \ldots\}.$$

Then K_n is a decreasing sequence, and converges as $n \to \infty$ if it is bounded below.

DEFINITION. Suppose that x_n is a sequence of real numbers bounded above. The number

$$\Lambda = \lim_{n \to \infty} \left(\sup_{r > n} x_r \right),$$

if it exists, is called the upper limit of x_n , and denoted by

$$\Lambda = \limsup_{n \to \infty} x_n$$
 or $\Lambda = \overline{\lim}_{n \to \infty} x_n$.

DEFINITION. Suppose that x_n is a sequence of real numbers bounded below. The number

$$\lambda = \lim_{n \to \infty} \left(\inf_{r \ge n} x_r \right),\,$$

if it exists, is called the lower limit of x_n , and denoted by

$$\lambda = \liminf_{n \to \infty} x_n$$
 or $\lambda = \underline{\lim}_{n \to \infty} x_n$.

REMARK. It is obvious that $\lambda \leq \Lambda$, since the infimum of a bounded set of real number never exceeds the corresponding supremum.

EXAMPLE 7.1.1. For the sequence $x_n = (-1)^n$, we have $\Lambda = 1$ and $\lambda = -1$.

EXAMPLE 7.1.2. For the sequence $x_n = n/(n+1)$, we have $\Lambda = \lambda = 1$.

EXAMPLE 7.1.3. For the sequence $x_n = n(1 + (-1)^n)$, we have $\lambda = 0$ and Λ does not exist.

EXAMPLE 7.1.4. For the sequence $x_n = \sin \frac{1}{2} n \pi$, we have $\Lambda = 1$ and $\lambda = -1$.

THEOREM 7A. Suppose that x_n is a sequence of real numbers. Then the following two statements are equivalent:

- (a) We have $\Lambda = \limsup_{n \to \infty} x_n$.
- (b) For every $\epsilon > 0$, we have
 - (i) $x_n < \Lambda + \epsilon$ for all sufficiently large $n \in \mathbb{N}$; and
 - (ii) $x_n > \Lambda \epsilon$ for infinitely many $n \in \mathbb{N}$.

PROOF. $((a)\Rightarrow(b))$ Suppose that

$$\Lambda = \limsup_{n \to \infty} x_n = \lim_{n \to \infty} K_n, \quad \text{where} \quad K_n = \sup_{r > n} x_r.$$

Given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|K_N - \Lambda| < \epsilon$, so that in particular, $K_N < \Lambda + \epsilon$. It follows that $x_n < \Lambda + \epsilon$ for every $n \ge N$, giving (i). On the other hand, for every $\epsilon > 0$ and every $N \in \mathbb{N}$, there exists $n \ge N$ such that $x_n > K_N - \epsilon$. Clearly $K_N \ge \Lambda$ for every $N \in \mathbb{N}$, giving (ii).

((b) \Rightarrow (a)) Given any $\epsilon > 0$, it follows from (i) that $K_n \leq \Lambda + \epsilon$ for all sufficiently large $n \in \mathbb{N}$, and from (ii) that $K_n > \Lambda - \epsilon$ for every $n \in \mathbb{N}$. Clearly $K_n \to \Lambda$ as $n \to \infty$. \bigcirc

Similarly, we have the following result.

THEOREM 7B. Suppose that x_n is a sequence of real numbers. Then the following two statements are equivalent:

- (a) We have $\lambda = \liminf_{n \to \infty} x_n$.
- (b) For every $\epsilon > 0$, we have
 - (i) $x_n > \lambda \epsilon$ for all sufficiently large $n \in \mathbb{N}$; and
 - (ii) $x_n < \lambda + \epsilon$ for infinitely many $n \in \mathbb{N}$.

We now establish the following important result.

THEOREM 7C. Suppose that x_n is a sequence of real numbers. Then

$$\lim_{n \to \infty} x_n = \ell \quad \text{if and only if} \quad \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = \ell.$$

PROOF. (\Rightarrow) Suppose that $x_n \to \ell$ as $n \to \infty$. Then the upper and lower limits of the sequence x_n clearly exist, since x_n is bounded in this case. Also, given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\ell - \epsilon < x_n < \ell + \epsilon$ for every $n \geq N$. The conclusion follows immediately from Theorems 7A and 7B.

 (\Leftarrow) Suppose that the upper and lower limits are both equal to ℓ . Then it follows from Theorem 7A that $x_n < \ell + \epsilon$ for all sufficiently large $n \in \mathbb{N}$, and from Theorem 7B that $x_n > \ell - \epsilon$ for all sufficiently large $n \in \mathbb{N}$. Hence $|x_n - \ell| < \epsilon$ for all sufficiently large $n \in \mathbb{N}$, whence $x_n \to \ell$ as $n \to \infty$. \bigcirc

Chapter 7: Further Treatment of Limits

7.2. Double and Repeated Limits

We shall consider a double sequence z_{mn} of complex numbers, represented by a doubly infinite array

of complex numbers. More precisely, a double sequence of complex numbers is simply a mapping from $\mathbb{N} \times \mathbb{N}$ to \mathbb{C} .

DEFINITION. We say that a double sequence z_{mn} converges to a finite limit $z \in \mathbb{C}$, denoted by $z_{mn} \to z$ as $m, n \to \infty$ or by

$$\lim_{m,n\to\infty} z_{mn} = z,$$

if, given any $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{R}$, depending on ϵ , such that $|z_{mn} - z| < \epsilon$ whenever m, n > N. Furthermore, we say that a double sequence z_{mn} is convergent if it converges to some finite limit z as $m, n \to \infty$, and that a double sequence z_{mn} is divergent if it is not convergent.

EXAMPLE 7.2.1. For the double sequence

$$z_{mn} = \frac{1}{m+n},$$

we have $z_{mn} \to 0$ as $m, n \to \infty$.

EXAMPLE 7.2.2. The double sequence

$$z_{mn} = \frac{m}{m+n}$$

does not converge to a finite limit as $m, n \to \infty$. Note that for all sufficiently large $m, n \in \mathbb{N}$ with m = n, we have $z_{mn} = \frac{1}{2}$, whereas for all sufficiently large $m, n \in \mathbb{N}$ with m = 2n, we have $z_{mn} = \frac{2}{3}$.

The question we want to study is the relationship, if any, between the following three limiting processes when applied to a double sequence z_{mn} of complex numbers:

- $m, n \to \infty$.
- $n \to \infty$ followed by $m \to \infty$.
- $m \to \infty$ followed by $n \to \infty$.

THEOREM 7D. Suppose that a double sequence z_{mn} satisfies the following conditions:

- (a) The double limit $\lim_{m,n\to\infty} z_{mn}$ exists.
- (b) For every $m \in \mathbb{N}$, the limit $\lim_{n \to \infty} z_{mn}$ exists.

Then the repeated limit $\lim_{m\to\infty} \left(\lim_{n\to\infty} z_{mn}\right)$ exists, and is equal to the double limit $\lim_{m,n\to\infty} z_{mn}$.

REMARK. We need to make the assumption (b), as it does not necessarily follow from assumption (a). Consider, for example, the double sequence

$$z_{mn} = \frac{(-1)^n}{m}.$$

PROOF OF THEOREM 7D. Suppose that $z_{mn} \to z$ as $m, n \to \infty$. Suppose also that for every $m \in \mathbb{N}$, $z_{mn} \to \zeta_m$ as $n \to \infty$. We need to show that $\zeta_m \to z$ as $m \to \infty$. Given any $\epsilon > 0$, there exists $N \in \mathbb{R}$ such that

$$|z_{mn} - z| < \frac{\epsilon}{2}$$
 whenever $m, n > N$.

On the other hand, given any $m \in \mathbb{N}$, there exists $M(m) \in \mathbb{R}$ such that

$$|z_{mn} - \zeta_m| < \frac{\epsilon}{2}$$
 whenever $n > M(m)$.

Now let m > N. Then choosing $n > \max\{N, M(m)\}$, we have

$$|\zeta_m - z| \le |z_{mn} - \zeta_m| + |z_{mn} - z| < \epsilon.$$

Hence $\zeta_m \to z$ as $m \to \infty$. \bigcirc

We immediately have the following generalization.

THEOREM 7E. Suppose that a double sequence z_{mn} satisfies the following conditions:

- (a) The double limit $\lim_{m,n\to\infty} z_{mn}$ exists.
- (b) For every $m \in \mathbb{N}$, the limit $\lim_{n \to \infty} z_{mn}$ exists.
- (c) For every $n \in \mathbb{N}$, the limit $\lim_{m \to \infty} z_{mn}$ exists.

Then the repeated limits $\lim_{m\to\infty} \left(\lim_{n\to\infty} z_{mn}\right)$ and $\lim_{n\to\infty} \left(\lim_{m\to\infty} z_{mn}\right)$ exist, and are both equal to the double limit $\lim_{m,n\to\infty} z_{mn}$.

We can further generalize the above to a result concerning series.

DEFINITION. Suppose that z_{mn} is a double sequence of complex numbers. For every $m, n \in \mathbb{N}$, let

$$s_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} z_{ij}.$$

If the double sequence $s_{mn} \to s$ as $m, n \to \infty$, then we say that the double series

$$\sum_{m,n=1}^{\infty} z_{mn}$$

is convergent, with sum s.

THEOREM 7F. Suppose that a double sequence z_{mn} satisfies the following conditions:

- (a) The double series $\sum_{m,n=1}^{\infty} z_{mn}$ is convergent, with sum s.
- (b) For every $m \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} z_{mn}$ is convergent.
- (c) For every $n \in \mathbb{N}$, the series $\sum_{m=1}^{\infty} z_{mn}$ is convergent.

Then the repeated series $\sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} z_{mn}\right)$ and $\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} z_{mn}\right)$ are both convergent, with sum s.

7.3. Infinite Products

An infinite product is an expression of the form

$$(1+z_1)(1+z_2)(1+z_3)\dots$$

with an infinitude of factors. We denote this by

$$\prod_{n=1}^{\infty} (1+z_n). \tag{1}$$

We also make the natural assumption that $z_n \neq -1$ for any $n \in \mathbb{N}$.

For every $N \in \mathbb{N}$, let

$$p_N = \prod_{n=1}^N (1+z_n) = (1+z_1)\dots(1+z_N).$$

We shall call p_N the N-th partial product of the infinite product (1).

DEFINITION. If the sequence p_N converges to a non-zero limit p as $N \to \infty$, then we say that the infinite product (1) converges to p and write

$$\prod_{n=1}^{\infty} (1+z_n) = p.$$

In this case, we sometimes simply say that the infinite product (1) is convergent. On the other hand, if the sequence p_N does not converge to a non-zero limit as $N \to \infty$, then we say that the infinite product (1) is divergent. In particular, if $p_N \to 0$ as $N \to \infty$, then we say that the infinite product (1) diverges to zero.

Let us first examine the special case when all the terms z_n are real.

THEOREM 7G. Suppose that $a_n \geq 0$ for every $n \in \mathbb{N}$. Then the infinite product

$$\prod_{n=1}^{\infty} (1 + a_n)$$

is convergent if and only if the series

$$\sum_{n=1}^{\infty} a_n$$

is convergent.

PROOF. Let s_N be the N-th partial sum of the series. Since $a_n \geq 0$ for every $n \in \mathbb{N}$, the sequences s_N and p_N are both increasing. On the other hand, note that $1 + a \leq e^a$ for every $a \geq 0$. It follows that for every $N \in \mathbb{N}$, we have

$$a_1 + \ldots + a_N \le (1 + a_1) \ldots (1 + a_N) \le e^{a_1 + \ldots + a_N}$$

so that $s_N \leq p_N \leq e^{s_N}$. It follows that the sequences s_N and p_N are bounded or unbounded together. The result follows from Theorem 2E. \bigcirc

If $a_n \leq 0$ for every $n \in \mathbb{N}$, then we write $a_n = -b_n$ and consider the infinite product

$$\prod_{n=1}^{\infty} (1 - b_n). \tag{2}$$

THEOREM 7H. Suppose that $0 \le b_n < 1$ for every $n \in \mathbb{N}$. Then the infinite product (2) is convergent if and only if the series

$$\sum_{n=1}^{\infty} b_n \tag{3}$$

is convergent.

This follows immediately from the following two results.

THEOREM 7J. Suppose that $0 \le b_n < 1$ for every $n \in \mathbb{N}$. Suppose further that the series (3) is convergent. Then the infinite product (2) is convergent.

THEOREM 7K. Suppose that $0 \le b_n < 1$ for every $n \in \mathbb{N}$. Suppose further that the series (3) is divergent. Then the infinite product (2) diverges to zero.

PROOF OF THEOREM 7J. Since the series (3) is convergent, there exists $M \in \mathbb{N}$ such that

$$\sum_{n=M+1}^{\infty} b_n < \frac{1}{2}.$$

Hence for every N > M, we have

$$(1-b_{M+1})(1-b_{M+2})\dots(1-b_N) \ge 1-b_{M+1}-b_{M+2}-\dots-b_N > \frac{1}{2}.$$

It follows that the sequence p_N is a decreasing sequence bounded below by $\frac{1}{2}p_M \neq 0$, so that p_N converges to a non-zero limit as $N \to \infty$.

PROOF OF THEOREM 7K. Note that $1 - b \le e^{-b}$ whenever $0 \le b < 1$. It follows that for every $N \in \mathbb{N}$, we have

$$0 \le (1 - b_1) \dots (1 - b_N) \le e^{-b_1 - \dots - b_N}.$$

Note now that $e^{-b_1-...-b_N} \to 0$ as $N \to \infty$. The result follows from the Squeezing principle. \bigcirc

We now investigate the general case, where $z_n \in \mathbb{C} \setminus \{-1\}$ for every $n \in \mathbb{N}$.

DEFINITION. The infinite product (1) is said to be absolutely convergent if the infinite product

$$\prod_{n=1}^{\infty} (1+|z_n|)$$

is convergent.

The following result is an obvious consequence of Theorem 7G.

THEOREM 7L. The infinite product (1) is absolutely convergent if and only if the series

$$\sum_{n=1}^{\infty} z_n \tag{4}$$

is absolutely convergent.

On the other hand, as in series, we have the following result.

THEOREM 7M. Suppose that the infinite product (1) is absolutely convergent. Then it is also convergent.

PROOF. For every $N \in \mathbb{N}$, let

$$p_N = \prod_{n=1}^N (1+z_n)$$
 and $P_N = \prod_{n=1}^N (1+|z_n|).$

If $N \geq 2$, then

$$p_N - p_{N-1} = (1+z_1)\dots(1+z_{N-1})z_N$$
 and $P_N - P_{N-1} = (1+|z_1|)\dots(1+|z_{N-1}|)|z_N|$,

so that

$$|p_N - p_{N-1}| \le P_N - P_{N-1}. \tag{5}$$

If we write $p_0 = P_0 = 0$, then (5) holds also for N = 1. Furthermore, for every $N \in \mathbb{N}$, we have

$$p_N = \sum_{n=1}^{N} (p_n - p_{n-1})$$
 and $P_N = \sum_{n=1}^{N} (P_n - P_{n-1}).$

Since P_N converges as $N \to \infty$, it follows from the Comparison test that p_N converges as $N \to \infty$. It remains to show that p_N does not converge to 0 as $N \to \infty$. Note from Theorem 7L that the series (4) is absolutely convergent, so that $z_n \to 0$ as $n \to \infty$, and so $1 + z_n \to 1$ as $n \to \infty$. Hence the series

$$\sum_{n=1}^{\infty} \left| \frac{z_n}{1 + z_n} \right|$$

is convergent, and so it follows from Theorem 7L that the infinite product

$$\prod_{n=1}^{\infty} \left(1 + \left| -\frac{z_n}{1 + z_n} \right| \right) \tag{6}$$

is convergent. Repeating the first part of our argument on the infinite product (6), we conclude that the sequence

$$\prod_{n=1}^{N} \left(1 - \frac{z_n}{1 + z_n} \right)$$

is convergent as $N \to \infty$. Note now that this product is precisely $1/p_N$. \bigcirc

7.4. Double Integrals

The purpose of this last section is to give a sketch of the proof of the following result concerning double integrals.

THEOREM 7N. Suppose that a function f(x,y) is continuous in a closed rectangle $[A,B] \times [C,D]$, where $A,B,C,D \in \mathbb{R}$ satisfy A < B and C < D. Then the double integrals

$$\int_{A}^{B} dx \int_{C}^{D} f(x, y) dy \quad and \quad \int_{C}^{D} dy \int_{A}^{B} f(x, y) dx$$

exist in the sense of Riemann, and are equal to each other.

SKETCH OF PROOF. The idea is to first show that f(x,y) is uniformly continuous in the rectangle $[A,B] \times [C,D]$, in the spirit of Theorem 6L. Using the uniform continuity, one can then show that the function

$$\phi(y) = \int_{A}^{B} f(x, y) \, \mathrm{d}x$$

is continuous in the closed interval [C, D]. It follows from Theorem 6K that the integral

$$\int_C^D dy \int_A^B f(x,y) dx$$

exists. Similarly the other integral

$$\int_{A}^{B} dx \int_{C}^{D} f(x, y) dy$$

exists. To show that the two integrals are equal, we make use of the uniform continuity again. Given any $\epsilon > 0$, there exist dissections $A = x_0 < x_1 < \ldots < x_k = B$ and $C = y_0 < y_1 < \ldots < y_n = D$ of the intervals [A, B] and [C, D] respectively such that

$$M_{ij} - m_{ij} < \frac{\epsilon}{(B-A)(D-C)}$$
 for every $i = 1, \dots, k$ and $j = 1, \dots, n$,

where

$$M_{ij} = \sup_{\substack{x_{i-1} \le x \le x_i \\ y_{j-1} \le y \le y_j}} f(x, y)$$
 and $m_{ij} = \inf_{\substack{x_{i-1} \le x \le x_i \\ y_{j-1} \le y \le y_j}} f(x, y).$

For every i = 1, ..., k and j = 1, ..., n, we have

$$m_{ij}(x_i - x_{i-1}) \le \int_{x_{i-1}}^{x_i} f(x, y) \, \mathrm{d}x \le M_{ij}(x_i - x_{i-1})$$
 for every $y \in [y_{j-1}, y_j]$,

so that

$$m_{ij}(x_i - x_{i-1})(y_j - y_{j-1}) \le \int_{y_{j-1}}^{y_j} dy \int_{x_{i-1}}^{x_i} f(x, y) dx \le M_{ij}(x_i - x_{i-1})(y_j - y_{j-1}).$$

Summing over all i and j, we obtain

$$\sum_{i=1}^{k} \sum_{j=1}^{n} m_{ij} (x_i - x_{i-1}) (y_j - y_{j-1}) \le \int_{C}^{D} dy \int_{A}^{B} f(x, y) dx \le \sum_{i=1}^{k} \sum_{j=1}^{n} M_{ij} (x_i - x_{i-1}) (y_j - y_{j-1}).$$

A similar argument gives

$$\sum_{i=1}^{k} \sum_{j=1}^{n} m_{ij}(x_i - x_{i-1})(y_j - y_{j-1}) \le \int_{A}^{B} dx \int_{C}^{D} f(x, y) dy \le \sum_{i=1}^{k} \sum_{j=1}^{n} M_{ij}(x_i - x_{i-1})(y_j - y_{j-1}).$$

Hence

$$\left| \int_{C}^{D} dy \int_{A}^{B} f(x,y) dx - \int_{A}^{B} dx \int_{C}^{D} f(x,y) dy \right| \leq \sum_{i=1}^{k} \sum_{j=1}^{n} (M_{ij} - m_{ij})(x_{i} - x_{i-1})(y_{j} - y_{j-1}) < \epsilon.$$

The result now follows since $\epsilon > 0$ is arbitrary and the left hand side is independent of ϵ . \bigcirc

It turns out that the conclusion of Theorem 7N may still hold even if the function f(x,y) is not continuous everywhere in the rectangle $[A,B] \times [C,D]$. We state without proof the following result.

THEOREM 7P. Suppose that a function f(x,y) is continuous in a closed rectangle $[A,B] \times [C,D]$, where $A,B,C,D \in \mathbb{R}$ satisfy A < B and C < D, except possibly at points along a curve of type defined by one of the following:

- (a) $x = \alpha$ for some $\alpha \in [A, B]$.
- (b) $y = \gamma$ for some $\gamma \in [C, D]$.
- (c) $x = \psi(y)$ for $y \in [\gamma, \delta]$, where $C \le \gamma \le \delta \le D$ and $\psi(y)$ is strictly monotonic and continuous. Then the conclusion of Theorem 7N holds.

PROBLEMS FOR CHAPTER 7

- 1. Suppose that x_n and y_n are bounded real sequences.
 - a) Show that

$$\underline{\lim}_{n \to \infty} x_n + \underline{\lim}_{n \to \infty} y_n \le \underline{\lim}_{n \to \infty} (x_n + y_n) \le \underline{\lim}_{n \to \infty} x_n + \overline{\lim}_{n \to \infty} y_n \le \overline{\lim}_{n \to \infty} (x_n + y_n) \le \overline{\lim}_{n \to \infty} x_n + \overline{\lim}_{n \to \infty} y_n.$$

- b) Find sequences x_n and y_n where equality holds nowhere in part (a).
- c) Suppose further that $x_n \geq 0$ and $y_n \geq 0$ for every $n \in \mathbb{N}$. Establish a chain of inequalities as in part (a) but with products in place of sums.
- d) Find sequences x_n and y_n where equality holds nowhere in part (c).
- 2. For each of the following double sequences z_{mn} , find the double limit $\lim_{m,n\to\infty} z_{mn}$ and the repeated

limits
$$\lim_{m\to\infty} \left(\lim_{n\to\infty} z_{mn}\right)$$
 and $\lim_{n\to\infty} \left(\lim_{m\to\infty} z_{mn}\right)$, if they exist:

a)
$$z_{mn} = \frac{m-n}{m+n}$$
 b) $z_{mn} = \frac{m+n}{m^2}$

c)
$$z_{mn} = \frac{m+n}{m^2+n^2}$$
 d) $z_{mn} = (-1)^{m+n} \left(\frac{1}{m} + \frac{1}{n}\right)$

e)
$$z_{mn} = \frac{mn}{m^2 + n^2}$$
 f) $z_{mn} = (-1)^{m+n} \frac{1}{n} \left(1 + \frac{1}{m} \right)$

- 3. Does there exist a double sequence z_{mn} such that z_{mn} converges as $m, n \to \infty$ but also that z_{mn} is not bounded? Justify your assertion.
- 4. Suppose that x_{mn} is a bounded double sequence of real numbers satisfying the following conditions:
 - a) For every fixed $m \in \mathbb{N}$, the sequence x_{mn} is increasing in n.
 - b) For every fixed $n \in \mathbb{N}$, the sequence x_{mn} is increasing in m.
 - Prove that x_{mn} converges as $m, n \to \infty$.
- 5. Use Problem 4 to prove the Comparison test for double series: Suppose that $0 \le u_{mn} \le v_{mn}$ for every $m, n \in \mathbb{N}$. Suppose further that the double series

$$\sum_{m,n=1}^{\infty} v_{mn}$$

is convergent. Then the double series

$$\sum_{m,n=1}^{\infty} u_{mn}$$

is convergent.

6. Using ideas from the proof of the Alternating series test, prove that the infinite product

$$\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^{n-1}}{n} \right)$$

is convergent.

7. Prove Theorem 7N.