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Chapter 20

SERIES

20.1. Introduction

In this chapter, we are concerned with expressions of the type
oo
an:x1+x2+x3+..., (1)
n=1

where x,, € R for every n € N.
Before we proceed in any formal way, let us examine three examples.

ExaMPLE 20.1.1. Consider the expression

Lol 11
o2 408 T

We shall try to interpret this by looking at a practical situation. Consider a square of area 1. Let us
first of all shade half of it, then half of what remains, then half of what remains, and so on. Note that
we are shading parts of area 1/2, 1/4, 1/8, and so on. Since at every stage, we are shading half of what
remains, the total area of the shaded part will get closer to 1 the longer we keep at it. More precisely,
after IV steps, the shaded part will have area

N
11 1 1 1 1
B N N [
SN ;w 5Tyt Ton N
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Note that sy — 1 as N — oco. It is therefore reasonable to say that

o0

1
— =1
Z on
n=1
ExaMPLE 20.1.2. Consider the expression
LTSI
o= 5Tt
n=1
For every N € N, write
N
1 1 1 1
tn = —=1 - - -.
N ; S=ltgtgtot g

Then it is easy to see that ¢y is an increasing sequence. Is ¢5 bounded above? Let us examine some
special values of N. Suppose that N = 2™ for some m € N. Then

gm
1
QM:E -
n

n=1

() () (=) et (o
-T2\ 3 74 50778 9 ") T \amty1 T T om

1 1 1 1 1 m
14+=44—2)=4+(8—-4)=4+(16—8)— +...+ (2™ —2m 1) — =14 —.
> +2+( )4+( )8+( )16+ + ( )2m +2

It follows that ¢5 can be made as large as we please by choosing N large enough, so that ¢y is not
bounded above. Since ty is increasing, it follows that ¢ty — oo as N — oo. This means that the
expression

> !
n=1 n
is infinite.

ExAMPLE 20.1.3. Consider the expression

oo

()" tP=1—-1+1-1+....

n=1
For every N € N, write
N
sy=y (1"
n=1
Then s1 = s3 =85 =...=1and so = s4 = s¢ = ... = 0. It follows that the sequence sy does not

converge, so that we cannot attach any value, finite or infinite, to the expression

oo
(- t=1-141-1+....

n=1

We are now in a reasonable position to formulate a definition.
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DEFINITION. For every NV € N, the expression

N
SN = E Tn
n=1

is called the N-th partial sum of the series (1). If sy converges to a finite limit s as N — oo, then we
say that the series (1) is convergent with sum s, and write

o0

If sy diverges as N — oo, then we say that the series (1) is divergent.
REMARK. Since the convergence or divergence of a series is determined by the convergence or divergence
of the sequence of partial sums, we can use techniques for sequences to study the sequence of partial
sums. Indeed, we have used this approach in our three examples so far.
ExaMPLE 20.1.4. The series

— 1

> 5

n=1

is convergent with sum 1.

ExAMPLE 20.1.5. The series

i % and i(—l)"‘1
n=1 n=1

both diverge.

REMARK. It is not necessary to start the series with n = 1. In fact, in many instances, it is convenient
to study series of the form

an:m0+x1+x2+x3+....

n=0

The convention is that if we consider the series
o0
g T,y
n=~k

then for every N € N satisfying N > k, we write
N
SN = Z Ty
n==k

For the remainder of this section, we shall discuss a few very basic results concerning convergence
of series. The proofs are very simple and are included here. However, they depend on knowledge on
sequences. Before going any further, the reader is advised to study Chapter 19 again in detail.

PROPOSITION 20A. The convergence or divergence of a series is unaffected if a finite number of
terms are inserted, deleted or altered.
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ProoF. Note that if Ny is large enough, then all insertions, deletions or alterations will occur before the
No-th term. It follows that for every N € N such that N > Ny, the partial sum sy has been altered by
a fixed finite amount, and this does not affect the convergence or divergence of the sequence sy. O

PROPOSITION 20B. Suppose that

i Tp =8 and i Yn = L. (2)
n=1 n=1

Then for every a,b € R, we have

o0

Z(axn + byn) = as + bt. (3)

n=1

PROOF. If sy and tx represent the sequences of partial sums of the two series in (2) respectively, then
asy + bty represents the sequence of partial sums of the series in (3). O

PROPOSITION 20C. Suppose that the series (1) is convergent. Then x, — 0 as n — co.
Proor. Note that z,, = s, —s,-1 > s—s=0asn —o0. O

REMARK. Suppose that x,, = 1/n. Note that x,, — 0 as n — oo. Note also that the series
>
n
n=1
is divergent. Compare this to Proposition 20C.

In fact, Proposition 20C is more useful if stated in the following equivalent form.

PROPOSITION 20D. Suppose that the sequence x, does mot converge to 0 as n — oo. Then the
series (1) is divergent.

EXAMPLE 20.1.6. The series

>~ 2n+3
13n—f—4

is divergent, since the sequence

2n+3 2
2z
3n+4 3

as n — oQ.

20.2. Some Well Known Series

In this section, we shall study two well known series which underpin much of the discussion on convergence
and divergence of many other series.

PROPOSITION 20E. Suppose that a € R. Then the geometric series

o0
a" '=14a+a>+d>+...

n=1

converges if and only if |a| < 1.
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PRrOOF. Consider the sequence of partial sums

N
sN=Za”fl=1—|—a—|—a2—|—a3—|—...+aN*1.
n=1

Then sy = Nifa=1 and

1_N

SN=—— ifa#l.
1—a

If |a| < 1, then a®¥ — 0 as N — oo, so that the series is convergent with sum (1 —a)~!. If |a| > 1, then
a™ ! does not converge to 0 as n — oo, so that the series in divergent in view of Proposition 20D. O

In Section 20.7, we shall establish the following important result concerning harmonic series.

PROPOSITION 20F. Suppose that p € R. Then the series

00
n~P

n=1

is convergent if p > 1 and divergent if p < 1.
ExaMpPLE 20.2.1. The series

1

>

n=1
is convergent. It can be shown that its sum is equal to 72/6.
ExaMPLE 20.2.2. The series

>

3
n=1 n

is convergent. Its sum is usually denoted by ((3). It was a major achievement in number theory when
Roger Apéry showed that ((3) is irrational.

20.3. Series of Non-Negative Terms

The ideas in the following two results are used in the proof of Proposition 20F. The simple proofs are
included here.

PROPOSITION 20G. Suppose that x,, > 0 for every n € N. Then either the series (1) converges, or
its sequence of partial sums diverges to infinity.

PRrOOF. Note that the sequence of partial sums form an increasing sequence. The result now follows
from Proposition 19E. O
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PROPOSITION 20H. (COMPARISON TEST) Suppose that for every n € N, we have x,, > 0, y,, > 0
and x, < Cy,, where C is a fixed positive constant. If the series

Z Yn (4)

s convergent, then the series

> (5)
n=1

is convergent. On the other hand, if the series (5) is divergent, then the series (4) is divergent.

PROOF. Note that the second assertion follows from the first. To prove the first assertion, let

N N
SN:Zmn and tN:Zyn
n=1 n=1

denote the sequences of partial sums of the series. Then clearly sy and ¢y are increasing sequences.
If the series (4) is convergent, then ¢ty converges and so is bounded above. Since sy < Cty for every
N € N, it follows that sy is bounded above. It follows from Proposition 19E that the series (5) is
convergent. ()

ExXAMPLE 20.3.1. Consider the series

Since 27" < 1 for every n € N, it follows that

2—”
n3/2

< 1
= p3/2

for every n € N. On the other hand, it follows from Proposition 20F that the series
S
3/2
n=1 n /

is convergent. It therefore follows from the Comparison test that the original series is convergent.

20.4. Conditional Convergence

EXAMPLE 20.4.1. Recall that the series

1 1
> - =1 + +o+.
—n 3
diverges. Let us now consider the series
- 1 1 1
=l—c-+-—=4....
> (-1 stz t (6)

n=1

Chapter 20 : Series page 6 of 17




First Year Calculus © W W L Chen, 1982, 2008

Denote the partial sum by

N

SN = 2(71)%1%.

n=1
Then it is not too difficult to see that for every m € N, we have
812832852 ... 2 82m—1 2 S2m = .-+ = 86 = S4 = Sa.

It follows that the sequence si,s3, S5, ... is decreasing and bounded below by s, while the sequence
S2, 54, Sg, - - - 18 increasing and bounded above by s;. So both sequences converge. Note also that

Sam-1 = Sam = 5 = 0

as m — 00, so that the two sequences converge to the same limit. This means that the sequence sy
converges as N — 0o, so that the series (6) is convergent.

A similar argument will establish the following result. The proof will be given in Section 20.7.

PROPOSITION 20J. (ALTERNATING SERIES TEST) Suppose that
(a) an >0 for every n € N;

(b) ay is a decreasing sequence; and

(¢) ap, — 0 asn — oo.

Then the series

oo

(71)”716Ln

=

n=

18 convergent.

REMARK. It is quite clear that the convergence of the series (6) is due entirely to the fact that there is
sufficient cancellation between positive and negative terms.

ExXAMPLE 20.4.2. The logarithmic series

00 o "
;(—1) 1;

is convergent (with sum log?2) if 2 = 1 and divergent if z = —1.

20.5. Absolute Convergence

EXAMPLE 20.5.1. We have just shown that the series (6) is convergent. Let s be its sum. In other
words, let
1 1

1
=1—- — _ — =
5 s T3 17"

Let us now rearrange the terms and consider the series

PSS S S U O N S O
2 4 3 6 8 5 10 12 7

EORNE NS A WA NS S S WS N S B
B 4 3 6 8 5 10 12 T
1
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Note that no term has been omitted or inserted in the rearrangement. Note also that s # 0. But yet
we end up with a different sum. The only possible explanation is that the convergence of the original
and the rearranged series depend on cancallation between positive and negative terms. The difference
therefore has to arise from the nature of such cancellation.

Suppose now that the convergence of a series does not depend on the cancellation between positive
and negative terms. Then it is reasonable to ask whether any rearrangement of the terms may still alter
the sum of the series.

The first step towards an answer to this question is summarized below. See Section 20.7 for a proof.

PROPOSITION 20K. it Suppose that the series

> lzal (7)

converges. Then the series

> (®)
n=1

converges. Furthermore, we have

%) %)
PIEAEDBLAL
n=1 n=1

EXAMPLE 20.5.2. Let C' > 0 be a constant. Suppose that |a(n)| < C for every n € N. Then

am)l _ o1

n? = n?

for every n € N. Since the series

>

2

n=1 n
is convergent, it follows from the Comparison test that the series
o0 o0
Z (n) _ Z la(n)]

n? | n?

n=1 n=1
is convergent. It now follows from Proposition 20K that the series

e

=

is convergent.
DEFINITION. We say that the series (8) is absolutely convergent if the series (7) is convergent.
REMARK. Proposition 20K essentially states that every absolutely convergent series is convergent.

The Comparison test can now be stated in the following stronger form, in view of Proposition 20K.
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PROPOSITION 20L. (COMPARISON TEST) Suppose that for every n € N, we have y, > 0 and
|z | < Cyn, where C is a fized positive constant. If the series

oo
E Yn
n=1

is convergent, then the series

o0
>
n=1

is absolutely convergent.

The Comparison test is one of the most important results in the study of convergence of series. In
particular, the following two important tests for convergence are established by comparing the series in
question with artificially constructed convergent geometric series.

PROPOSITION 20M. (RATIO TEST) Suppose that the sequence x,, satisfies

xn+1
Tn

— 1 asn — oo.

Then the series
>
n=1
is absolutely convergent if | <1 and divergent if [ > 1.
PROPOSITION 20N. (ROOT TEST) Suppose that the sequence x,, satisfies
1/n

| —1 asn— 0.

Then the series

WE

Ln
1

3
I

is absolutely convergent if | < 1 and divergent if I > 1.

REMARK. No firm conclusion can be drawn if [ = 1. In the case of the Ratio test, consider the two series
o0 o0
1 1
— and —.
> % >
n=1 n=1
It is easy to show that [ = 1 in both cases. Note from Proposition 20F that the first series is divergent

while the second series is convergent.

ExAMPLE 20.5.3. Consider the series

i n!(3n)! o
— (4n)!
Here

~ nl(3n)!
T Ty
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so that

(n+1)!(3n+3)1(4n)!19" " 9(n+1)(3n+3)(3n+2)(3n+1) 243
B (dn + 4197 (dn+4H)@dn+3)[dn+2)(dn+1) 256

Ln41
Tn

as n — o0o. Hence the series is absolutely convergent.

EXAMPLE 20.5.4. Consider the series
oo
> wtar
n=1

where p € Z and a € R are fixed. If a = 0, then clearly the series is convergent, so we assume that a # 0.
Here x,, = nPa™, so that
n+ 1\
= |a| — lal
n

as n — oo. Hence the series is absolutely convergent if |a| < 1 and divergent if |a| > 1. If @ = 1, then
Zn = nP, and we can appeal to Proposition 20F. If a = —1, then z,, = (—1)"n?. We have two cases. If
p > 0, then |x,| /& 0 as n — oo, and we can appeal to Proposition 20D to conclude that the series is
divergent. If p < 0, then the sequence nP decreases to the limit 0 as n — oo, and we can appeal to the
Alternating series test to conclude that the series is convergent.

(n+ 1)Pant!
nPam

xn+1
T

We conclude this section by answering the question first raised at the beginning of this section. See
Section 20.7 for a proof of the result below.

PROPOSITION 20P. Any rearrangement of an absolutely convergent series does not alter its sum.

20.6. Relationship with Integrals

Quite often, the question of the convergence or divergence of a series can be translated to a question of
the convergence or divergence of some improper integrals. Here we mention one of the simplest cases.
The proof can be found in Section 20.7.

PROPOSITION 20Q. Suppose that
(a) f(x) >0 for every x € R; and

(b) f(x) is a decreasing function for x > 1, so that for every x1,z2 € R satisfying 1 < x1 < z2, we have

f(z1) > f(z2).

Then the sequence

N N
ox =St~ [ fl)da
n=1 1
is a decreasing sequence and converges to a limit 0 € R as N — oo, where 0 < o < f(1). Furthermore,

Z f(n) and /100 f(z)dx

are either both convergent or both divergent.
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ExampLE 20.6.1. Let p € R and k € N. If £ is sufficiently large, then the series

— 1 — 1 = 1
— d . — d
nz::k np an nz::k n(logn)P an nz::k nlogn(loglogn)p

are all convergent if p > 1 and all divergent if p < 1.

ExampLE 20.6.2. It follows from Proposition 20Q that

N N
1 1 1 1 dx
Ifofototo—lgN=2--[ &
Tty Tios Zon /1 z

as n — oo, where 0 < v < 1. The number 7 is called Euler’s constant. It is not known whether v is

rational or irrational.

20.7. Further Discussion
In this section, we shall give the proofs of a number of results discussed earlier.

PrOOF OF PROPOSITION 20F. Consider the sequence of partial sums

N
SN = E nP.

n=1

Clearly sy is an increasing sequence. We shall use Proposition 19E.

(a) For p = 1, we have already shown that the sequence

N
tN = Z n ! - oo
n=1
as N — oo, so that the series diverges.

(b) Suppose now that p < 1. Note that for every N € N, we have sy > ty. It follows that

1 1

0< < —.
SN tN

Note now that 1/txy — 0 as N — oo. It follows from the Squeezing principle that 1/sy — 0 as N — oo,

so that sy — oo as N — oo, whence the series diverges.

(c) Suppose now that p > 1. It is enough to show that sy is bounded above. Let ¢t € N satisfy

N <2t — 1. Then

1 1 1
SN§82t_1:1+§+37p+...+(2t_71)p

e [ (v A [ (I e (S e a—
= TR ot gttty et o

L2 408 2 1 1\ /1 L\,
Sy tmtetotgyy Tty o) Fotles) =5
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where
2 3 0o n—1
1 1 1 1

is the sum of a convergent geometric series. ()

ProOOF OoF PrROPOSITION 20J. Consider the sequence of partial sums

N

SN = Z(—l)"ilan.
n=1
In view of conditions (a) and (b), it is not too difficult to see that for every m € N, we have

812832852 ...2 823m-12= 82m = ... 2 86 = 84 = S2.

It follows that the sequence si,s3,ss, ... is decreasing and bounded below by so, while the sequence
S2, 84, S6, - - - 1s increasing and bounded above by s;. So both sequences converge. Note also that in view
of condition (c), we have

S9m—1 — S2m = A2y — 0

as m — oo, so that the two sequences converge to the same limit. Hence the sequence sy converges as
N — 0. O

PROOF OF PROPOSITION 20K. For every n € N, we clearly have z,, = z,} — z;,, where

D if ,, >0,
10 ifax, <O,
and
o= — 0 if z, >0,
n\ -z, ifz,<O.

Furthermore, 0 < 27 < |z,| and 0 < z,, < |,| for every n € N. It follows from the Comparison test
that

o oo
+ —
E ) and g x,,
n=1 n=1

are both convergent. It now follows from Proposition 20B that

oo

S =3t~ o)

n=1
is convergent. To prove the second assertion, write, for every N € N,

N

TN:Z“’UM—

n=1

N

E Tyl -

n=1

Then it can be shown that Ty is a non-negative convergent sequence. Hence

9]
E Tnl -
n=1

< lim Tn = —
0 Nl N E ‘ |$n|
['he second assertion follows. O
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PrROOF OF PROPOSITION 20M. Suppose first of all that [ < 1. Let L = %(1 +1). Clearly | < L < 1.
Since

x
Tl L asn— 0,
Zn
there exists an integer N such that
x
ntl < L whenever n > N.
Ln
It follows that
x
|zn| < %L” whenever n > N.

On the other hand, the geometric series
oo
> L
n=1
is convergent. It follows from Comparison test, using Proposition 20A if necessary, that the series

o0
D Ll
n=1

is convergent. Suppose next that [ > 1. Then clearly |z,| /4 0 as n — oo. The result follows from
Proposition 20D. O

PROOF OF PROPOSITION 20N. Suppose first of all that { < 1. Let L = (1 41). Clearly I < L < 1.
Since

lzn |V — 1 as n — oo,
there exists an integer N such that

1/n

|xn| /™ < L whenever n > N.

It follows that
|z,| < L™ whenever n > N.

On the other hand, the geometric series
o0
> L
n=1
is convergent. It follows from Comparison test, using Proposition 20A if necessary, that the series

oo
> el
n=1

is convergent. Suppose next that ! > 1. Then clearly |z,| /4 0 as n — oo. The result follows from
Proposition 20D. O
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PRrROOF OF PROPOSITION 20P. Suppose that the series

o0
> e
n=1

(© W W L Chen, 1982, 2008

converges absolutely, and that the sequence y,, is a rearrangement of the sequence x,,. We now define
xb @, Yty asin the same way as in the proof of Proposition 20K. Then y," is a rearrangement of

and y,, is a rearrangement of x;,. Clearly the series

is convergent. Also, the sequence

is increasing and bounded above by

so that

IA
NE
5

3
I
A

o0
+
> s
n=1

Arguing in the opposite way, we must have

]
3H+
INA
M8
S

3
Il
_
3
Il
_

Hence we must have

¢
S
I
NE
:aJr

3
Il
=

Similarly,

It now follows that
o0 o0 o0 o0 o0
Dun =D b=y =Y x> a, = w,
n=1 n=1 1 n=1 n=1

and the proof is complete. ()
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PrOOF OF PROPOSITION 20Q. Note first of all that
N+1 N+1
one1—on = f(N+1) / flz)de = / (F(V + 1) — f(2)dz <0,
N N

since f(N + 1) < f(z) whenever N < x < N + 1. Next, note that

n=2

on = F(1)+ iﬂn) -/ Y@= )+ 3 (7= [ srac)

n

—fm+Y / (f(n) - f())dz < £(1)

and

n+1

N-1 N N-1
ox = 1)+ X 500 = [ @as =0+ X (500 - [

N-1 n+t1
— I+ Y [ () ) do = ) 2 0

f(z) dx)

Hence oy is a decreasing sequence bounded below. It follows from Proposition 19F that oy converges
to some number o € R as N — o0o. Since 0 < o < f(1) for every N € N, we must have 0 < o < f(1).
Finally, if we write

N N
sN:Zf(n) and IN:/ f(z)de,
n=1 1
then oy = sy — Iny. Hence
sy =on + In and In = sy —on.

Since oy converges as N — oo, it now follows from Proposition 19C that the convergence of one of sy
and Iy leads to the convergence of the other. ()
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First Year Calculus

PROBLEMS FOR CHAPTER 20
1. Let x, = —1/n if 3 divides n, and x,, = 1/n otherwise. Show, by considering the partial sums sz,

o0
that the series Z ., diverges.

n=1

2. For each of the following, use the Comparison test to determine whether the series is convergent:
o0

= pl/? b n
a);nz—k?) )nz::ln2+5n—3
. cosnm “n3+Tn+3
)Y D v e
n=1 n=1

3. For each of the following, use the Ratio test to determine whether the series is convergent:
2 > (3n)!(2n)!

2) Z;L" b) ; (4n)In!

4. For each of the following, use the Alternating series test to show that the series is convergent:

a) n:l(—l) (Vn+1-+n) b) ;7n2_6n+10

5. For each of the following, determine whether the series is convergent:

=1 . /nnm = 1/n
a) Z —sin (7) b) Z(n')
n=1 n=1
—~/1 3 /1 (=)
el d il
C);(n2+n) );<n3+ n )
= [ (n))? n3/2 = /(2n)! 1
3" f - —
¢) ; ((Qn)! T ) nz::l (2 2
\" = nl
6. Use the Ratio test and the fact that (1 + ) — e as n — oo to show that the series Z n is
n nn
n=1
convergent.
7. Find real sequences x,, and y, such that z, —y, — 0 as n — oo, the series Z T, diverges, but the
n=1
series Z Yn cOnverges.
n=1

=4
-

a) Show that a,, > 0 for every n € N.

b) Show that a, — 0 as n — 0.

8. For every n € N, let ap, = —7
nl/2

o0
c) Explain why the series Z(—l)”*lan is divergent.
n=1
[REMARK: This shows that we cannot omit the condition that a,, is decreasing in the hypothesis of

the Alternating series test.]
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9.

10.

11.

oo

For each of the following, determine all the values a € R for which the series Z T, converges:
n=1
cosna
a) T, = — b) x, = a”’ ¢) x, =nla" d) z, =nla™
n

HARDER PROBLEMS FOR CHAPTER 20
Suppose that Ty >0 and yn > 0 for every n € N. Suppose further that =, /y, — 1 as n — oo.
Show that Z x, and Z yn, either both converge or both diverge.

n=1 n=1
o0 o0 o0

Suppose that Z x, and z Y, are both convergent series with positive terms. Show that Z TnYn

n=1 n=1 n=1
converges. Discuss the case when x, and vy, can take negative values.
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