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Chapter 20

SERIES

20.1. Introduction

In this chapter, we are concerned with expressions of the type

∞∑
n=1

xn = x1 + x2 + x3 + . . . , (1)

where xn ∈ R for every n ∈ N.

Before we proceed in any formal way, let us examine three examples.

Example 20.1.1. Consider the expression

∞∑
n=1

1
2n

=
1
2

+
1
4

+
1
8

+ . . . .

We shall try to interpret this by looking at a practical situation. Consider a square of area 1. Let us
first of all shade half of it, then half of what remains, then half of what remains, and so on. Note that
we are shading parts of area 1/2, 1/4, 1/8, and so on. Since at every stage, we are shading half of what
remains, the total area of the shaded part will get closer to 1 the longer we keep at it. More precisely,
after N steps, the shaded part will have area

sN =
N∑

n=1

1
2n

=
1
2

+
1
4

+
1
8

+ . . .+
1

2N
= 1− 1

2N
.
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Note that sN → 1 as N →∞. It is therefore reasonable to say that

∞∑
n=1

1
2n

= 1.

Example 20.1.2. Consider the expression

∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+ . . . .

For every N ∈ N, write

tN =
N∑

n=1

1
n

= 1 +
1
2

+
1
3

+ . . .+
1
N
.

Then it is easy to see that tN is an increasing sequence. Is tN bounded above? Let us examine some
special values of N . Suppose that N = 2m for some m ∈ N. Then

t2m =
2m∑
n=1

1
n

= 1 +
1
2

+
(

1
3

+
1
4

)
+
(

1
5

+ . . .+
1
8

)
+
(

1
9

+ . . .+
1
16

)
+ . . .+

(
1

2m−1 + 1
+ . . .+

1
2m

)
> 1 +

1
2

+ (4− 2)
1
4

+ (8− 4)
1
8

+ (16− 8)
1
16

+ . . .+ (2m − 2m−1)
1

2m
= 1 +

m

2
.

It follows that tN can be made as large as we please by choosing N large enough, so that tN is not
bounded above. Since tN is increasing, it follows that tN → ∞ as N → ∞. This means that the
expression

∞∑
n=1

1
n

is infinite.

Example 20.1.3. Consider the expression

∞∑
n=1

(−1)n−1 = 1− 1 + 1− 1 + . . . .

For every N ∈ N, write

sN =
N∑

n=1

(−1)n−1.

Then s1 = s3 = s5 = . . . = 1 and s2 = s4 = s6 = . . . = 0. It follows that the sequence sN does not
converge, so that we cannot attach any value, finite or infinite, to the expression

∞∑
n=1

(−1)n−1 = 1− 1 + 1− 1 + . . . .

We are now in a reasonable position to formulate a definition.
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Definition. For every N ∈ N, the expression

sN =
N∑

n=1

xn

is called the N -th partial sum of the series (1). If sN converges to a finite limit s as N → ∞, then we
say that the series (1) is convergent with sum s, and write

∞∑
n=1

xn = s.

If sN diverges as N →∞, then we say that the series (1) is divergent.

Remark. Since the convergence or divergence of a series is determined by the convergence or divergence
of the sequence of partial sums, we can use techniques for sequences to study the sequence of partial
sums. Indeed, we have used this approach in our three examples so far.

Example 20.1.4. The series

∞∑
n=1

1
2n

is convergent with sum 1.

Example 20.1.5. The series

∞∑
n=1

1
n

and
∞∑

n=1

(−1)n−1

both diverge.

Remark. It is not necessary to start the series with n = 1. In fact, in many instances, it is convenient
to study series of the form

∞∑
n=0

xn = x0 + x1 + x2 + x3 + . . . .

The convention is that if we consider the series

∞∑
n=k

xn,

then for every N ∈ N satisfying N ≥ k, we write

sN =
N∑

n=k

xn.

For the remainder of this section, we shall discuss a few very basic results concerning convergence
of series. The proofs are very simple and are included here. However, they depend on knowledge on
sequences. Before going any further, the reader is advised to study Chapter 19 again in detail.

PROPOSITION 20A. The convergence or divergence of a series is unaffected if a finite number of
terms are inserted, deleted or altered.
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Proof. Note that if N0 is large enough, then all insertions, deletions or alterations will occur before the
N0-th term. It follows that for every N ∈ N such that N > N0, the partial sum sN has been altered by
a fixed finite amount, and this does not affect the convergence or divergence of the sequence sN . ©

PROPOSITION 20B. Suppose that

∞∑
n=1

xn = s and
∞∑

n=1

yn = t. (2)

Then for every a, b ∈ R, we have

∞∑
n=1

(axn + byn) = as+ bt. (3)

Proof. If sN and tN represent the sequences of partial sums of the two series in (2) respectively, then
asN + btN represents the sequence of partial sums of the series in (3). ©

PROPOSITION 20C. Suppose that the series (1) is convergent. Then xn → 0 as n→∞.

Proof. Note that xn = sn − sn−1 → s− s = 0 as n→∞. ©

Remark. Suppose that xn = 1/n. Note that xn → 0 as n→∞. Note also that the series

∞∑
n=1

1
n

is divergent. Compare this to Proposition 20C.

In fact, Proposition 20C is more useful if stated in the following equivalent form.

PROPOSITION 20D. Suppose that the sequence xn does not converge to 0 as n → ∞. Then the
series (1) is divergent.

Example 20.1.6. The series
∞∑

n=1

2n+ 3
3n+ 4

is divergent, since the sequence

2n+ 3
3n+ 4

→ 2
3

as n→∞.

20.2. Some Well Known Series

In this section, we shall study two well known series which underpin much of the discussion on convergence
and divergence of many other series.

PROPOSITION 20E. Suppose that a ∈ R. Then the geometric series

∞∑
n=1

an−1 = 1 + a+ a2 + a3 + . . .

converges if and only if |a| < 1.
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Proof. Consider the sequence of partial sums

sN =
N∑

n=1

an−1 = 1 + a+ a2 + a3 + . . .+ aN−1.

Then sN = N if a = 1 and

sN =
1− aN

1− a
if a 6= 1.

If |a| < 1, then aN → 0 as N →∞, so that the series is convergent with sum (1− a)−1. If |a| ≥ 1, then
an−1 does not converge to 0 as n→∞, so that the series in divergent in view of Proposition 20D. ©

In Section 20.7, we shall establish the following important result concerning harmonic series.

PROPOSITION 20F. Suppose that p ∈ R. Then the series

∞∑
n=1

n−p

is convergent if p > 1 and divergent if p ≤ 1.

Example 20.2.1. The series

∞∑
n=1

1
n2

is convergent. It can be shown that its sum is equal to π2/6.

Example 20.2.2. The series

∞∑
n=1

1
n3

is convergent. Its sum is usually denoted by ζ(3). It was a major achievement in number theory when
Roger Apéry showed that ζ(3) is irrational.

20.3. Series of Non-Negative Terms

The ideas in the following two results are used in the proof of Proposition 20F. The simple proofs are
included here.

PROPOSITION 20G. Suppose that xn ≥ 0 for every n ∈ N. Then either the series (1) converges, or
its sequence of partial sums diverges to infinity.

Proof. Note that the sequence of partial sums form an increasing sequence. The result now follows
from Proposition 19E. ©
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PROPOSITION 20H. (COMPARISON TEST) Suppose that for every n ∈ N, we have xn ≥ 0, yn ≥ 0
and xn ≤ Cyn, where C is a fixed positive constant. If the series

∞∑
n=1

yn (4)

is convergent, then the series

∞∑
n=1

xn (5)

is convergent. On the other hand, if the series (5) is divergent, then the series (4) is divergent.

Proof. Note that the second assertion follows from the first. To prove the first assertion, let

sN =
N∑

n=1

xn and tN =
N∑

n=1

yn

denote the sequences of partial sums of the series. Then clearly sN and tN are increasing sequences.
If the series (4) is convergent, then tN converges and so is bounded above. Since sN ≤ CtN for every
N ∈ N, it follows that sN is bounded above. It follows from Proposition 19E that the series (5) is
convergent. ©

Example 20.3.1. Consider the series

∞∑
n=1

2−n

n3/2
.

Since 2−n ≤ 1 for every n ∈ N, it follows that

2−n

n3/2
≤ 1
n3/2

for every n ∈ N. On the other hand, it follows from Proposition 20F that the series

∞∑
n=1

1
n3/2

is convergent. It therefore follows from the Comparison test that the original series is convergent.

20.4. Conditional Convergence

Example 20.4.1. Recall that the series

∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+ . . .

diverges. Let us now consider the series

∞∑
n=1

(−1)n−1 1
n

= 1− 1
2

+
1
3
− 1

4
+ . . . . (6)
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Denote the partial sum by

sN =
N∑

n=1

(−1)n−1 1
n
.

Then it is not too difficult to see that for every m ∈ N, we have

s1 ≥ s3 ≥ s5 ≥ . . . ≥ s2m−1 ≥ s2m ≥ . . . ≥ s6 ≥ s4 ≥ s2.

It follows that the sequence s1, s3, s5, . . . is decreasing and bounded below by s2, while the sequence
s2, s4, s6, . . . is increasing and bounded above by s1. So both sequences converge. Note also that

s2m−1 − s2m =
1

2m
→ 0

as m → ∞, so that the two sequences converge to the same limit. This means that the sequence sN

converges as N →∞, so that the series (6) is convergent.

A similar argument will establish the following result. The proof will be given in Section 20.7.

PROPOSITION 20J. (ALTERNATING SERIES TEST) Suppose that
(a) an > 0 for every n ∈ N;
(b) an is a decreasing sequence; and
(c) an → 0 as n→∞.
Then the series

∞∑
n=1

(−1)n−1an

is convergent.

Remark. It is quite clear that the convergence of the series (6) is due entirely to the fact that there is
sufficient cancellation between positive and negative terms.

Example 20.4.2. The logarithmic series

∞∑
n=1

(−1)n−1x
n

n

is convergent (with sum log 2) if x = 1 and divergent if x = −1.

20.5. Absolute Convergence

Example 20.5.1. We have just shown that the series (6) is convergent. Let s be its sum. In other
words, let

s = 1− 1
2

+
1
3
− 1

4
+ . . . .

Let us now rearrange the terms and consider the series

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
+ . . .

=
(

1− 1
2
− 1

4

)
+
(

1
3
− 1

6
− 1

8

)
+
(

1
5
− 1

10
− 1

12

)
+ . . .

=
(

1
2
− 1

4

)
+
(

1
6
− 1

8

)
+
(

1
10
− 1

12

)
+ . . . =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6

)
=
s

2
.
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Note that no term has been omitted or inserted in the rearrangement. Note also that s 6= 0. But yet
we end up with a different sum. The only possible explanation is that the convergence of the original
and the rearranged series depend on cancallation between positive and negative terms. The difference
therefore has to arise from the nature of such cancellation.

Suppose now that the convergence of a series does not depend on the cancellation between positive
and negative terms. Then it is reasonable to ask whether any rearrangement of the terms may still alter
the sum of the series.

The first step towards an answer to this question is summarized below. See Section 20.7 for a proof.

PROPOSITION 20K. it Suppose that the series

∞∑
n=1

|xn| (7)

converges. Then the series

∞∑
n=1

xn (8)

converges. Furthermore, we have ∣∣∣∣∣
∞∑

n=1

xn

∣∣∣∣∣ ≤
∞∑

n=1

|xn|.

Example 20.5.2. Let C > 0 be a constant. Suppose that |a(n)| ≤ C for every n ∈ N. Then

|a(n)|
n2

≤ C 1
n2

for every n ∈ N. Since the series

∞∑
n=1

1
n2

is convergent, it follows from the Comparison test that the series

∞∑
n=1

∣∣∣∣a(n)
n2

∣∣∣∣ =
∞∑

n=1

|a(n)|
n2

is convergent. It now follows from Proposition 20K that the series

∞∑
n=1

a(n)
n2

is convergent.

Definition. We say that the series (8) is absolutely convergent if the series (7) is convergent.

Remark. Proposition 20K essentially states that every absolutely convergent series is convergent.

The Comparison test can now be stated in the following stronger form, in view of Proposition 20K.
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PROPOSITION 20L. (COMPARISON TEST) Suppose that for every n ∈ N, we have yn ≥ 0 and
|xn| ≤ Cyn, where C is a fixed positive constant. If the series

∞∑
n=1

yn

is convergent, then the series

∞∑
n=1

xn

is absolutely convergent.

The Comparison test is one of the most important results in the study of convergence of series. In
particular, the following two important tests for convergence are established by comparing the series in
question with artificially constructed convergent geometric series.

PROPOSITION 20M. (RATIO TEST) Suppose that the sequence xn satisfies∣∣∣∣xn+1

xn

∣∣∣∣→ l as n→∞.

Then the series
∞∑

n=1

xn

is absolutely convergent if l < 1 and divergent if l > 1.

PROPOSITION 20N. (ROOT TEST) Suppose that the sequence xn satisfies

|xn|1/n → l as n→∞.

Then the series
∞∑

n=1

xn

is absolutely convergent if l < 1 and divergent if l > 1.

Remark. No firm conclusion can be drawn if l = 1. In the case of the Ratio test, consider the two series

∞∑
n=1

1
n

and
∞∑

n=1

1
n2
.

It is easy to show that l = 1 in both cases. Note from Proposition 20F that the first series is divergent
while the second series is convergent.

Example 20.5.3. Consider the series
∞∑

n=1

n!(3n)!
(4n)!

9n.

Here

xn =
n!(3n)!
(4n)!

9n,
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so that ∣∣∣∣xn+1

xn

∣∣∣∣ =
(n+ 1)!(3n+ 3)!(4n)!9n+1

n!(3n)!(4n+ 4)!9n
=

9(n+ 1)(3n+ 3)(3n+ 2)(3n+ 1)
(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

→ 243
256

as n→∞. Hence the series is absolutely convergent.

Example 20.5.4. Consider the series

∞∑
n=1

npan

where p ∈ Z and a ∈ R are fixed. If a = 0, then clearly the series is convergent, so we assume that a 6= 0.
Here xn = npan, so that ∣∣∣∣xn+1

xn

∣∣∣∣ =
∣∣∣∣ (n+ 1)pan+1

npan

∣∣∣∣ =
(
n+ 1
n

)p

|a| → |a|

as n → ∞. Hence the series is absolutely convergent if |a| < 1 and divergent if |a| > 1. If a = 1, then
xn = np, and we can appeal to Proposition 20F. If a = −1, then xn = (−1)nnp. We have two cases. If
p ≥ 0, then |xn| 6→ 0 as n → ∞, and we can appeal to Proposition 20D to conclude that the series is
divergent. If p < 0, then the sequence np decreases to the limit 0 as n→∞, and we can appeal to the
Alternating series test to conclude that the series is convergent.

We conclude this section by answering the question first raised at the beginning of this section. See
Section 20.7 for a proof of the result below.

PROPOSITION 20P. Any rearrangement of an absolutely convergent series does not alter its sum.

20.6. Relationship with Integrals

Quite often, the question of the convergence or divergence of a series can be translated to a question of
the convergence or divergence of some improper integrals. Here we mention one of the simplest cases.
The proof can be found in Section 20.7.

PROPOSITION 20Q. Suppose that
(a) f(x) > 0 for every x ∈ R; and
(b) f(x) is a decreasing function for x ≥ 1, so that for every x1, x2 ∈ R satisfying 1 ≤ x1 < x2, we have

f(x1) ≥ f(x2).
Then the sequence

σN =
N∑

n=1

f(n)−
∫ N

1

f(x)dx

is a decreasing sequence and converges to a limit σ ∈ R as N →∞, where 0 ≤ σ ≤ f(1). Furthermore,

∞∑
n=1

f(n) and
∫ ∞

1

f(x) dx

are either both convergent or both divergent.
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Example 20.6.1. Let p ∈ R and k ∈ N. If k is sufficiently large, then the series

∞∑
n=k

1
np

and
∞∑

n=k

1
n(log n)p

and
∞∑

n=k

1
n log n(log log n)p

are all convergent if p > 1 and all divergent if p ≤ 1.

Example 20.6.2. It follows from Proposition 20Q that

1 +
1
2

+
1
3

+ . . .+
1
N
− logN =

N∑
n=1

1
n
−
∫ N

1

dx
x
→ γ

as n → ∞, where 0 ≤ γ ≤ 1. The number γ is called Euler’s constant. It is not known whether γ is
rational or irrational.

20.7. Further Discussion

In this section, we shall give the proofs of a number of results discussed earlier.

Proof of Proposition 20F. Consider the sequence of partial sums

sN =
N∑

n=1

n−p.

Clearly sN is an increasing sequence. We shall use Proposition 19E.

(a) For p = 1, we have already shown that the sequence

tN =
N∑

n=1

n−1 →∞

as N →∞, so that the series diverges.

(b) Suppose now that p < 1. Note that for every N ∈ N, we have sN ≥ tN . It follows that

0 <
1
sN
≤ 1
tN
.

Note now that 1/tN → 0 as N →∞. It follows from the Squeezing principle that 1/sN → 0 as N →∞,
so that sN →∞ as N →∞, whence the series diverges.

(c) Suppose now that p > 1. It is enough to show that sN is bounded above. Let t ∈ N satisfy
N ≤ 2t − 1. Then

sN ≤ s2t−1 = 1 +
1
2p

+
1
3p

+ . . .+
1

(2t − 1)p

= 1 +
(

1
2p

+
1
3p

)
+
(

1
4p

+ . . .+
1
7p

)
+
(

1
8p

+ . . .+
1

15p

)
+ . . .+

(
1

(2t−1)p
+ . . .+

1
(2t − 1)p

)
< 1 +

2
2p

+
4
4p

+
8
8p

+ . . .+
2t−1

(2t−1)p
= 1 +

1
2p−1

+
(

1
2p−1

)2

+
(

1
2p−1

)3

+ . . .+
(

1
2p−1

)t−1

< B,
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where

B = 1 +
1

2p−1
+
(

1
2p−1

)2

+
(

1
2p−1

)3

+ . . . =
∞∑

n=1

(
1

2p−1

)n−1

is the sum of a convergent geometric series. ©

Proof of Proposition 20J. Consider the sequence of partial sums

sN =
N∑

n=1

(−1)n−1an.

In view of conditions (a) and (b), it is not too difficult to see that for every m ∈ N, we have

s1 ≥ s3 ≥ s5 ≥ . . . ≥ s2m−1 ≥ s2m ≥ . . . ≥ s6 ≥ s4 ≥ s2.

It follows that the sequence s1, s3, s5, . . . is decreasing and bounded below by s2, while the sequence
s2, s4, s6, . . . is increasing and bounded above by s1. So both sequences converge. Note also that in view
of condition (c), we have

s2m−1 − s2m = a2m → 0

as m→∞, so that the two sequences converge to the same limit. Hence the sequence sN converges as
N →∞. ©

Proof of Proposition 20K. For every n ∈ N, we clearly have xn = x+
n − x−n , where

x+
n =

{
xn if xn ≥ 0,
0 if xn < 0,

and

x−n =
{

0 if xn ≥ 0,
−xn if xn < 0.

Furthermore, 0 ≤ x+
n ≤ |xn| and 0 ≤ x−n ≤ |xn| for every n ∈ N. It follows from the Comparison test

that
∞∑

n=1

x+
n and

∞∑
n=1

x−n

are both convergent. It now follows from Proposition 20B that

∞∑
n=1

xn =
∞∑

n=1

(x+
n − x−n )

is convergent. To prove the second assertion, write, for every N ∈ N,

TN =
N∑

n=1

|xn| −

∣∣∣∣∣
N∑

n=1

xn

∣∣∣∣∣ .
Then it can be shown that TN is a non-negative convergent sequence. Hence

0 ≤ lim
N→∞

TN =
∞∑

n=1

|xn| −

∣∣∣∣∣
∞∑

n=1

xn

∣∣∣∣∣ .
The second assertion follows. ©
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Proof of Proposition 20M. Suppose first of all that l < 1. Let L = 1
2 (1 + l). Clearly l < L < 1.

Since ∣∣∣∣xn+1

xn

∣∣∣∣→ l as n→∞,

there exists an integer N such that ∣∣∣∣xn+1

xn

∣∣∣∣ < L whenever n ≥ N.

It follows that

|xn| <
|xN |
LN

Ln whenever n > N.

On the other hand, the geometric series

∞∑
n=1

Ln

is convergent. It follows from Comparison test, using Proposition 20A if necessary, that the series

∞∑
n=1

|xn|

is convergent. Suppose next that l > 1. Then clearly |xn| 6→ 0 as n → ∞. The result follows from
Proposition 20D. ©

Proof of Proposition 20N. Suppose first of all that l < 1. Let L = 1
2 (1 + l). Clearly l < L < 1.

Since

|xn|1/n → l as n→∞,

there exists an integer N such that

|xn|1/n < L whenever n > N.

It follows that

|xn| < Ln whenever n > N.

On the other hand, the geometric series

∞∑
n=1

Ln

is convergent. It follows from Comparison test, using Proposition 20A if necessary, that the series

∞∑
n=1

|xn|

is convergent. Suppose next that l > 1. Then clearly |xn| 6→ 0 as n → ∞. The result follows from
Proposition 20D. ©
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Proof of Proposition 20P. Suppose that the series

∞∑
n=1

xn

converges absolutely, and that the sequence yn is a rearrangement of the sequence xn. We now define
x+

n , x
−
n , y

+
n , y

−
n as in the same way as in the proof of Proposition 20K. Then y+

n is a rearrangement of x+
n

and y−n is a rearrangement of x−n . Clearly the series

∞∑
n=1

x+
n

is convergent. Also, the sequence

N∑
n=1

y+
n

is increasing and bounded above by

∞∑
n=1

x+
n ,

so that

∞∑
n=1

y+
n ≤

∞∑
n=1

x+
n .

Arguing in the opposite way, we must have

∞∑
n=1

x+
n ≤

∞∑
n=1

y+
n .

Hence we must have

∞∑
n=1

y+
n =

∞∑
n=1

x+
n .

Similarly,

∞∑
n=1

y−n =
∞∑

n=1

x−n .

It now follows that

∞∑
n=1

yn =
∞∑

n=1

y+
n −

∞∑
n=1

y−n =
∞∑

n=1

x+
n −

∞∑
n=1

x−n =
∞∑

n=1

xn,

and the proof is complete. ©
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Proof of Proposition 20Q. Note first of all that

σN+1 − σN = f(N + 1)−
∫ N+1

N

f(x) dx =
∫ N+1

N

(f(N + 1)− f(x)) dx ≤ 0,

since f(N + 1) ≤ f(x) whenever N ≤ x ≤ N + 1. Next, note that

σN = f(1) +
N∑

n=2

f(n)−
∫ N

1

f(x) dx = f(1) +
N∑

n=2

(
f(n)−

∫ n

n−1

f(x) dx
)

= f(1) +
N∑

n=2

∫ n

n−1

(f(n)− f(x)) dx ≤ f(1)

and

σN = f(N) +
N−1∑
n=1

f(n)−
∫ N

1

f(x) dx = f(N) +
N−1∑
n=1

(
f(n)−

∫ n+1

n

f(x) dx
)

= f(N) +
N−1∑
n=1

∫ n+1

n

(f(n)− f(x)) dx ≥ f(N) ≥ 0.

Hence σN is a decreasing sequence bounded below. It follows from Proposition 19F that σN converges
to some number σ ∈ R as N →∞. Since 0 ≤ σN ≤ f(1) for every N ∈ N, we must have 0 ≤ σ ≤ f(1).
Finally, if we write

sN =
N∑

n=1

f(n) and IN =
∫ N

1

f(x)dx,

then σN = sN − IN . Hence

sN = σN + IN and IN = sN − σN .

Since σN converges as N →∞, it now follows from Proposition 19C that the convergence of one of sN

and IN leads to the convergence of the other. ©
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Problems for Chapter 20

1. Let xn = −1/n if 3 divides n, and xn = 1/n otherwise. Show, by considering the partial sums s3N ,

that the series
∞∑

n=1

xn diverges.

2. For each of the following, use the Comparison test to determine whether the series is convergent:

a)
∞∑

n=1

n1/2

n2 + 3
b)

∞∑
n=1

n

n2 + 5n− 3

c)
∞∑

n=1

cosnπ
n3

d)
∞∑

n=1

n3 + 7n+ 3
2n5 + 3

3. For each of the following, use the Ratio test to determine whether the series is convergent:

a)
∞∑

n=1

n2

2n
b)

∞∑
n=1

(3n)!(2n)!
(4n)!n!

c)
∞∑

n=1

(3n)!(2n)!
(4n)!n!

3n d)
∞∑

n=1

(3n)!(2n)!
(4n)!n!

2n

4. For each of the following, use the Alternating series test to show that the series is convergent:

a)
∞∑

n=1

(−1)n(
√
n+ 1−

√
n) b)

∞∑
n=1

(−1)n

n2 − 6n+ 10

5. For each of the following, determine whether the series is convergent:

a)
∞∑

n=1

1
n

sin
(nπ

2

)
b)

∞∑
n=1

(n!)1/n

c)
∞∑

n=1

(
1
n2

+
3
n

)
d)

∞∑
n=1

(
1
n3

+
(−1)n

n

)

e)
∞∑

n=1

(
(n!)2

(2n)!
3n +

n3/2

4n3 + 1

)
f)

∞∑
n=1

(
(2n)!
(n!)2

− 1
n2

)

6. Use the Ratio test and the fact that
(

1 +
1
n

)n

→ e as n → ∞ to show that the series
∞∑

n=1

n!
nn

is

convergent.

7. Find real sequences xn and yn such that xn− yn → 0 as n→∞, the series
∞∑

n=1

xn diverges, but the

series
∞∑

n=1

yn converges.

8. For every n ∈ N, let an =
1

n1/2
+

(−1)n

n
.

a) Show that an ≥ 0 for every n ∈ N.
b) Show that an → 0 as n→∞.

c) Explain why the series
∞∑

n=1

(−1)n−1an is divergent.

[Remark: This shows that we cannot omit the condition that an is decreasing in the hypothesis of
the Alternating series test.]
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9. For each of the following, determine all the values a ∈ R for which the series
∞∑

n=1

xn converges:

a) xn =
cosna
n2

b) xn = an2
c) xn = n!an d) xn = n!an!

Harder Problems for Chapter 20

10. Suppose that xn ≥ 0 and yn ≥ 0 for every n ∈ N. Suppose further that xn/yn → 1 as n → ∞.

Show that
∞∑

n=1

xn and
∞∑

n=1

yn either both converge or both diverge.

11. Suppose that
∞∑

n=1

xn and
∞∑

n=1

yn are both convergent series with positive terms. Show that
∞∑

n=1

xnyn

converges. Discuss the case when xn and yn can take negative values.

Chapter 20 : Series page 17 of 17


