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1.1. Introduction

Lagrange’s theorem that every natural number is a sum of 4 non-negative integer squares, leads
naturally to the question of sums of cubes, biquadrates, primes, etc. Indeed, Waring conjectured
that every natural number could be written as a sum of 9 non-negative integer cubes, a sum of 19
non-negative integer biquadrates, and so on.

The purpose of this chapter is to give a very brief introduction to a technique which enables one
to study some of these and related questions. The method of Hardy and Littlewood was first used in
the early 1900’s to study the conjecture of Waring. Since then, the method has been modified and
adapted in many different ways to study a variety of problems in additive number theory. Here we
only provide a glimpse of the method.

More precisely, Waring’s problem concerns the solubility, or otherwise, of the diophantine equation

(1.1) n=ak 4. 4
where k > 2 is a fixed integer. Given any natural number n € N, the question is how large the integer
s has to be in order to guarantee that there are non-negative integers 1, ...,z such that (1.1) holds.

The number g(k) is defined to be the smallest value of s for which, given any n € N, there exist
non-negative integers 1, . . .,z such that (1.1) holds. Thus Lagrange’s theorem states that g(2) = 4,
and Waring conjectured that g(3) =9, g(4) = 19, and so on.

However, the number g(k) is greatly affected by the number of summands in (1.1) required when
the natural number n € N is relatively small. For example, it is now known that ¢(3) = 9, but apart
from n = 23 and n = 239, every other natural number n € N is a sum of 8 non-negative integer cubes.
It is therefore more natural to consider the number G (k) which is defined to be the smallest value of
s for which, given any sufficiently large n € N, there exist non-negative integers z1,...,zs such that
(1.1) holds. In other words, we allow a finite number of exceptional values of n € N for which (1.1)
is not soluble in non-negative integers x1,...,zs. The only known values of G(k) are G(2) = 4 and
G(4) = 16.

We develop the basic ideas of the Hardy-Littlewood method and prove that G(k) < 2% + 1 for
every integer k > 2.

THEOREM 1.1. Suppose that k > 2 is a fized integer. Suppose further that the integer s > 2% 4 1.
Then there exists Ny such that for every natural number n € N satisfying n > Ny, there exist non-
negative integers x1,...,xs such that n = x% + ...+ z*.

We remark that Theorem 1.1 is not best possible. Note, for example, that it only gives G(2) < 5
and G(4) < 17. Indeed, Vinogradov showed that there exists a positive number C' such that for all
large values of k, the estimate

G(k) < (C+o(1))klogk

is valid. In particular, he showed that one could take C' = 2. However, there was no real progress on
this problem for many years until Wooley showed in the late 1980’s that for all large values of k, the
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2 1. WARING’S PROBLEM

estimate
G(k) < k(logk +loglogk + O(1))
is valid. For small values of k, the best published results up to about 2005 are due to Vaughan and
Wooley, with G(5) < 17, G(6) < 21, G(7) < 33, G(8) < 42 and G(9) < 50.
Throughout the chapter, the natural number k > 2 is chosen and fixed, and the natural number
s> 2% + 1. Also, § denotes a positive real number, chosen to be small enough, and may differ from
one occurrence to the next. Indeed, all estimates involving § will hold with some fixed value of § for

all sufficiently large values of n.
Suppose that m € Z. Then

1 .
1, ifm =0,
/0 e(ma)d“{ 0, ifm#0.

It follows that if n,x1,...,2s € N, then

1 . k k
1, fn=z2f+...4+z
k k ) 1 s
I B da = .
/O e((xy rg —n)a)da {0, e S

For every n € N, let R(n) denote the number of solutions of the equation (1.1), with z1,...,25 € N.
Then clearly

(1.2) Z Z / + 2% —n)a) da.

z1EN zrsEN

On the other hand, note that if n = ¥ +... 4+ 2% then we must have z; < <n'/Fforeveryi=1,...,s.
Hence the summation in (1.2) can be restrlcted to
1<z, 2 énl/k

without altering the value of R(n), so that

(1.3) R(n) = Z Z / .4 2¥ —n)a)da
1<z <nl/k 1<z, <nl/k
1
:/ Z e((z¥ +...+ 2% —n)a)da
0 1<z <nl/k 1<z, <nt/k
1
= / Z e(azh). .. e(az?)e(—an)da
0 1<am<nt/F 1<e,<nl/¥
1
:/ e(azh) ] ... Z e(az®) | e(—an) da
0 1<w1<n1/k 1<z, <nl/k
1
= / an) da,
0
where
N
a) = Z e(az®)
=1
with
N = [n!/k].

The size of the integrand on the right hand side of (1.3) varies greatly as the value of « varies.
Roughly speaking, the size is relatively large when « is close to rational numbers with small denom-
inators, and relatively small otherwise.

The idea of Hardy and Littlewood is therefore to write

(1.4) R(n) = /mz P (a)e(—an) da+/ ff(a)e(—an)da,
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where the two sets 9 and m are disjoint and 9TUm represents a unit interval — note that the integrand
on the right hand side of (1.3) is periodic with period 1. Let v be a sufficiently small positive real
number, and write
P =N".
For every a,q € N satisfying 1 < a < ¢ < P and (a,q) =1, let
M(q,a) = {a €R: |a—a/q| < PN}

The intervals (g, a) are called the major arcs, and are basically short intervals centred at rational
numbers with small denominators. It is not difficult to show that the major arcs are pairwise disjoint,
provided that v is small enough. Indeed, if a/q # a’/q’, then

aq — qd’ 1

=z - M >— >2 P ka,

q q qq qq

provided that v < 1/2, say, and N is sufficiently large. We now write

m=J | Mo,

q<P a=1
(a,q)=1

a d

/

and let
U=(PN*1+PN* and m=U\M.

We say that the intervals in m form the minor arcs.
To prove Theorem 1.1, it suffices to show that R(n) > 0 for all sufficiently large n € N. Our
strategy is to find some sufficiently small positive value of v for which

/ fi(a)e(—an) da > ns/k1
m
and

/ ffla)e(—an)da = o(ns/k_l).

We do not give an explicit value for v, but will indicate the restrictions on its size throughout our
discussion.

In the remainder of this chapter, the implicit constants in estimates may depend on the value of
the fixed integer k.

1.2. The Minor Arcs

In this section, we study the integral

/m F(@)e(—an) da.

It is easy to see that

(1.5)

[ P@e-andal < [ 1@l da< (zggf(a)l)s_2k / (@) da.

We use the following two estimates. Note that the implicit constants may depend on the choice of e.

THEOREM 1.2 (Hua’s lemma). For every j = 1,...,k, we have
1 ' .
(1.6) / |f(a)¥ da < N¥7i%e,
0

THEOREM 1.3 (Weyl’s inequality). Suppose that a,q € N satisfy (a,q) = 1. Suppose further that

a € R satisfies |a — a/q| < ¢~2. Then
[fl@)] < N'F(g™ + N71 4 gN VK,

where K = 281,

To use Weyl’s inequality, we need to study those values of a € m more closely. We need the
following famous result of Dirichlet on diophantine approximation.
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THEOREM 1.4 (Dirichlet). Suppose that a € R. Then for every real number X > 1, there exist
a,q € 7 satisfying (a,q) =1 and 1 < ¢ < X such that

1
<

a

q

PROOF. It clearly suffices to prove the result without the restriction (a,q) = 1. Consider the [X]
numbers

{ta} =ta—[ta], t=1,...,[X],
and the [X] + 1 intervals

i-1 |
I, = {[X]—i—l’ [X]—l—l)’ ji=1.. [ X]+1
If one of the [X] numbers {ta} lies in I; or I[xj11, then the conclusion of the theorem holds with
q = t. On the other hand, if /; and Ix)41 do not contain any of the [X] numbers, then by the
Dirichlet box principle, one of the remaining [X] — 1 intervals must contain two of the [X] numbers.
In other words, there exist integers ', t”, satisfying 1 < ¢/ < t” < [X], and an integer i = 2,...,[X],
such that {t'a}, {t"a} € I;, so that

{70} ~{ o} € ——— < =

< —
X]+1 X’

whence

1
'~ Do — (IH"a) — [ < —.
(" = t)a — ([t"a] — [F'a])| < &
We now take ¢ =t — ¢’ and a = [t"a] — [t'a] to complete the proof. O

Suppose now that o € m. Using Dirichlet’s theorem with X = N*P~! we conclude that there
exist a,q € 7Z satistying (a,q) = 1 and 1 < ¢ < N*P~! such that |a — a/q| < ¢ 'PN~*. Since
a€mC (PN%1—-PN~F), it follows that 1 < a < gq. Furthermore, we must have ¢ > P, for
otherwise a € 9. It now follows from Weyl’s inequality that for every a € m, we must have

(1.7) [f@)] < N (g7  + N7 gNTF)VE
< NlJrE(Pfl _|_N71 _‘_Pfl)l/K
< N1+6P—1/K — N1+6—V/K’

provided that v is sufficiently small. Combining (1.5)—(1.7), we conclude that

(1.8)

/ fs(a)e(_an) da| < N(1+5—V/K)(s—2k)N2k—k+e < ns/k,—l—é
m

for some fixed positive real number J, depending only on our choice of v.
We prove Hua’s lemma and Weyl’s inequality in Section 1.6.

1.3. The Major Arcs

In this section, we study the integral

/ P (a)e(—an)da,
M(q,a)

where a,q € N satisfy 1 <a < ¢ < P and (a,q) = 1.
The first step in our argument is to find a suitable approximation to the generating function f(a).
We introduce the functions

(19) o(B) = 3 g e(m)

and

(1.10) S(g,a) = Eq: e <‘”"k> .
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Here v is obtained from f by replacing the characteristic function of the k-th powers by the probability
that m is a k-th power, and S(g,a) has to be introduced to overcome the handicap that the k-th
powers are generally not uniformly distributed modulo gq.

THEOREM 1.5. Suppose that a,q € N satisfy 1 < a < ¢ < P and (a,q) = 1. Suppose further that
a € M(q,a), and

(1.11) V(a,q,a) = ¢~ 1S(g,a)v (oz - Z) .

Then
f(a) = V(a,q,a) + O(P?).
PRrROOF. Write 8 = o — a/q. Then
k

fl)= % e(“;”)ew):ic(m)e(“’q”)e(ﬁm),

1<a<nl/k m=1
where

o(m) = 1, if m is a k-th power,
“ 1 0, otherwise.

It follows that

@)= s (a= ) = m2= ame(Bm),

q
where
1
€ <am> —q7S(g,a)=m" 1 if m is a k-th power,
Ay = q k
—q'S(q, a)gml/kfl, otherwise.

By partial summation (see Remark below), we have

Z Gy — 271 /O" e(By) Z am | dy.

m=1 m<y

> ame(Bm) = e(Bn)

Note that
k
_ ax -1 Lokt
E Ay, = E e (q) —q S(q,a) E 7 .
m<y ryl/k m<y

First of all, we have

az® . (ark
> (q> Ze<q> S 1=S@a)y e +0(1) =y S(g.a) + O(g).

r<yl/k r=1 xgyl/k
=7 mod ¢q

Secondly, we have, by the Integral test, that
1 Y1
> g/t = [t o) = 4+ 0,
k 1k
m<y
It follows that
> am =0(q).
m<y
Note now that |3] < PN~*. Hence

Z ame(Bm) < (1+6n)g < (1+ PN *n)P < P2

m=1

The result follows immediately. (O
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REMARK. The following partial summation result is often used in analytic number theory, and can
be proved by writing

F(m) = F(X) - / F'(y) dy,

m

and interchanging the order of summation and integration: Suppose that aq,as,as, ... is a sequence
of complex numbers. Suppose further that the function F' has continuous derivative on the interval
[0, X]. Then

X
(1.12) > amF(m)=F(X) Y am 7/0 F'y) | Y am | dy.

m<X m<X m<y
It now follows from Theorem 1.5 that if o € M(q, a), then
F(@) = V*(a,q,a) < N* " f(a) = V(a,q,a)] < N*"1 P2

Summing this error over all the major arcs, we obtain

Z Z / Vs(a,q,a)| da < NS—k—1p5 < ns/k—l—l/kps < ns/k—l—é
q<P a= 1 1 (q7a)
(a,q)=

for some fixed positive number § depending only on our choice of v. If we now write

(1.13) Z Z / (o, q, a)e(—an)da,

q<P l,lq 1_1 M(q, a)
then
(1.14) / f2(a)e(—an) da = Ry(n) + O(n*/F=179),

Combining (1.11) and (1.13), we have

(1.15) ;(agl/ - g, a))*v° (a—Z) e(—an) do
zz/ oo o) (2
-5 & wsaore(-5) [ (o) (- (-] )
-y Z staae (-2 [ ZVV o* (B)e(—~Bn) dB
S d=1

where
S =% 3 s@aye(-2)
<P
and
PN—F
(1.16) Fm= [ e (@e-om)ds.
_PN-k

Our next task is to complete the series to infinity and to replace the interval of integration by a unit
interval.
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Let us first of all consider the series &(n, P). Write

(1.17) zq: ))se (-“q") .
(a ,Q) 1

It is easily seen from Weyl’s inequality that S(g,a) < ¢'T¢"'/% provided that (a,q) = 1. Hence
S(q) < q(g /%)%, and so whenever s > 2* + 1 and € > 0 is sufficiently small, we can conclude that

S(g) < g 7"

Hence
(1.18) &(n)=>_S(q)

converges absolutely and uniformly with respect to n. Note that P = N¥, so
(1.19) S(n, P) — &(n) < nd

for some fixed positive number § depending only on our choice of v. Combining (1.15) and (1.19), we
conclude that

(1.20) Ri(n) = (6(n) + O0(n~%))J*(n) and &(n) < 1.

We consider next the integral J*(n). The reason that we can replace the interval of integration by
the unit interval [—1/2,1/2] is that the function v(3) decays rather rapidly away from S = 0. More
precisley, we have the following estimate.

THEOREM 1.6. Suppose that 5 € R satisfies || < 1/2. Then
v(B) < min{n'/* |57/},
PROOF. Suppose first of all that |3] < 1/n. Then

"1 "1
u(B) < Y Eml/’H = / Exl/kfl dz + 0(1) < n'/F = min{n'/*, |5|71/*}.
m=1 1

Suppose now that |3| > 1/n. Let M = [|3|7}], and write

n

M
= S e e Gm) Y m A e(Bm).
m=1

m=M-+1

Clearly the first term on the right hand side is < M'/* <« min{n'/*,|8|~*/¥}. To study the second
term on the right hand side, we use Abel summation. Let

- 1
Sy = Ze(ﬁr) and ¢, = Eml/k_l.
r=1
Then
S b = 3 el Sa )= 3 eaSue 3 enSi
m=M++1 m=M-+1 m=M++1 m=M-+1
n n—1
Y s $ s,
=M+ m=M
n—1
= cnSn - CMJrISM + Z (Cm - Cm+1)Sm~
m=M-+1

Since S,, < |3|7! and ¢,, is a decreasing sequence, it follows that

n

1 _ - - . _
S pmMEle(Bm) < earpalB)7 <1817V = minfn!/¥,[]71/4Y
m=M-+1

The conclusion follows immediately. (O
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Let

(1.21) J(n) = /j v* (B)e(—Bn) dB.

Then it follows from (1.16) and (1.21) that
1
3

(1.22) J(n) — J*(n) < / R A8 < / Bk A8 < no/kT10
PN—F PN~k
for some fixed positive number § depending only on our choice of v. Also,
(1.23) J(n) < / min{n*/*, |3|79/*}dB <« n*/kL.
0
Hence it follows from (1.20), (1.22) and (1.23) that
(1.24) Ri(n) = (8(n) + O(n="))J (n) + (&(n) + O(n=))(J*(n) — J(n))

= &(n)J (n) +O(n~°|J(n)]) + O(|IT*(n) — J (n))
= 6&(n)J(n) + O(n*/*=179)

for some fixed positive number § depending only on our choice of v.
Finally, we combine (1.4), (1.8), (1.14) and (1.24) to obtain

(1.25) R(n) = &(n)J(n) + O(n*/*=179)

for some fixed positive number § depending only on our choice of v.

1.4. The Singular Integral

In this section, we study the integral

T(n) = / v*(B)e(—fn) dB.
THEOREM 1.7. Suppose that s > 2. Then

_ s l —1(5\, s/k—1 s/k—1/k—1
Jn)=T (l—l—k)F (k)n +O0(n ).

The proof of Theorem 1.7 depends on the following technical result.

THEOREM 1.8. Suppose that A, B € R satisfy A> B >0 and B < 1. Then
> mP T n—m)At =T(B)N(AT (B + AnP A 4 0.

PROOF OF THEOREM 1.7. Note from (1.9) that

J(n):/i Z Z %(ml...ms)l/kfle((ml+...+msfn)ﬂ)dﬂ

1
2 mp=1 ms=1

= Z Z %(ml...ms)l/k*lfé e((mi+...+ms—n)B)dgs.

_1
mi=1 ms=1 2

Since
2 1, ifmi+...+ms=mn,
/ ellm ..+ m, —n)p)df = { 0 otheiwise

it follows that

n n 1
J(n) = Z Z F(ml...ms)l/k_l.
mi=1 mg=1

mi+...+ms=n
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For every integer s > 2, write

= i i %(ml...ms)l/k_l.

mi=1 mg=1
mi+...+ms=n

We prove by induction on s that
1
(1.26) Jo(n) =T* (1 + k) D7 (2) n/Et 4 O /AR,

Using Theorem 1.8 with A = B = 1/k, we have

Z Z k2 (mims2) l/k 1 == Z 1/k— L )1/1@71

mi=1mg=1
mi+mo=n

L (VY o (2 2/k—1 1/k—1 2 LN o1 (2, 2k 1/k—1
= %F z r L) +O0(n )=T 1—|—E r z)n +O(n ).

Suppose now that (1.26) holds for some particular integer s > 2. Then

ANIED D) DD PR ST IR

m=1mi;=1 mg=1
m+mi+...+ms=n

n—1 n—m n—m n—1
1 _ 1 _ 1 _
= Eml/k ! E E ﬁ(ml...ms)l/k 1 — E Eml/k YJo(n —m)
m=1 myi=1 mg=1 m=1

mi+...+ms=n—m

n—1
l ml/k—17s 1 1[5 o \s/k—1 k=17 . \s/k—1/k—1

- r 1+k r- (k>(n m) +0 mZ:lm (n—m)

n—1
( ) ) Z ml/k— L )s/kq L0 (Z m1/k71(n B m)s/kl/kl) '

m=1 m=1

-Sim
Lo
r

Using Theorem 1.8 with A = s/k and B = 1/k on the main term and with A = (s—1)/k and B = 1/k

on the error term, we have
_ 1l Nt (S p (Y p (S p-t (S, s+1y/m—1 s/k—1
@Hmy_ﬁ’0+%>r (Qr(k>rhjr ( k)n +O(n*/* Y

1 1 1 1
= (kF (]{;)) FS <1 + k‘) 1—‘71 (S—I:> n(8+1)/k71 + O(ns/kil)
1 s+1
_ s+l - -1 (s+1)/k—1 s/k—1
r (1 + k:> r ( : > n +O(n ).

This completes the proof. (O

PROOF OF THEOREM 1.8. Note that the function zZ~!(n — x)A~! has at most one stationary
point in the interval (0,n). It follows that the interval (0,n) can be divided into two intervals (0, X)
and (X,n), one of which may be empty, such that 2871 (n — 2)4~! is monotonic in each interval.
Hence

Z mB—l(n _ m)A—l — / mB_l(n _ x)A—l dz + O(nA—l + nB-',—A—Z)

nB+A- 1/1y31 YA dy + O(nA~! 4 pBHA-2)
0
DA (B + AnP T4+ onA™),
as required. ()
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REMARK. The gamma function is defined for ¢t > 0 by

L(t) = / e 2t du.
0
Using integration by parts, it is easily shown that
t0(t) = T(1 4 1)
for every t > 0. We now attempt to show that for every A, B > 0, we have
1
(1.27) I'(B)T(A) =T(B + A)/ yP71(1 — )AL dy.
0
Note first of all that
I'(B)I'(A) = / e TgB1 dz/ e Vyd ldy = N}im // e~ (@) By A1 qp dy,
0 0 S0

where S(M) denotes the square [0, M]2. Let T(M) denote the triangle with vertices (0,0), (M,0)
and (0, M). Using the substitution z = v and y = v—u and then writing « = vy in the inner integral,
it is easily seen that

M v
// e @) By Al qp dy = / </ e uP (v —u)A! du> dv
0 0

T(M)

M 1
— / e—1;UB+A—1 do / yB—1<1 _ y)A—l dy
0 0

On the other hand, we clearly have S(M/2) C T(M) C S(M), and so
// e—(w—i—y)mB—lyA—l dzdy < // e—(w-ﬁ-y)mB—lyA—l dady < // e—(w-i—y)mB—lyA—l dz dy.
S(M/2) T(M) S(M)

It follows that
M 1
/ e UoBHAlqy / yBH1 — )4t dy — T(B)T(A)
0 0
as M — oo. On the other hand,
M
/ e UoPTA1dy — T'(B + A)
0
as M — oo. The identity (1.27) follows immediately.

1.5. The Singular Series

In our discussion of the minor arcs, and in our discussion of the major arcs so far, we have made
use only of the size of the natural number n that we are trying to represent as a sum of s k-th powers
of natural numbers. We have had no input about the arithmetic properties of the natural number n.

For an equation

n= ac’f +...+ xf
to hold, it is necessary that the corresponding congruence
n= a:’f +...+ a:f

must hold modulo ¢ for any natural number q. The purpose of this section is to use information on
the solubility of the congruence to gain information on the solubility of the equation.
In particular, we are interested in studying the behaviour of the series

&(n) = °°15<q>:i > (sl (‘a;)'

q= q:l a=1

(a,q)=1
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! am®
a) = el — |-
=2 ()
Our task is to show that &G(n) > 1. This, together with (1.25) and Theorem 1.7, will imply that
R(n) > 0 for all sufficiently large natural numbers n.

For every prime p, let

Here

T(p) = S®")
h=0

Our first task is to reduce the study of the series G(n) to the study of the series T'(p) for only finitely
many primes p.
THEOREM 1.9. Suppose that s > 2% + 1. Then

(i) for every prime p, the series T(p) converges absolutely;
(ii) the infinite product [, T(p) converges absolutely, with

n)=[[7

and
(iii) there is a positive real number C, depending only on k, such that

1 3
5 < 7w <5
p=C

It follows that the study of the series G(n) is reduced to the study of the series T'(p) for the primes
p<C.

PROOF OF THEOREM 1.9. The absolute convergence of T'(p) follows easily from our observation

earlier that S(¢) < q’lfrk. On the other hand, if the function S(g) is multiplicative, so that
S(gr) = S(¢)S(r) whenever (g,r) = 1, then

17 HZS = [+ S@®) +S@° :is
P p h=0 P q=1

is a simple result in the theory of multiplicative functions and follows as a consequence of the absolute
and uniform convergence of G(n). The last part of the theorem is then a simple consequence of the
convergence of the product representation of &(n). It remains to prove that S(gr) = S(q)S(r)
whenever (q,7) = 1. We first of all show that if (a,q) = (b,r) = (¢,7) = 1, then

(1.28) S(gr,ar + bq) = S(q,a)S(r,b).

To see this, recall that since (q,r) = 1, it follows that as ¢ runs through a complete set of residues
modulo ¢ and u runs through a complete set of residues modulo r, tr + ug runs through a complete
set of residues modulo qr. Hence

qr
bq) bq)(t
S )= 31 (Y S5 (ot )

m=1 t=1 u=1
9 T k,.k k,.k kk

ar + bq) (tFrF + uFgP at®r buq
3y () s (e
t=1 u=1 t=1 u=1
q kok\ " k k

at®r bu”q

=5 S(r,b

E () B () st

t=1 u=1

where the last step follows from the observation that since (g,7) = 1, tr runs through a complete set

of residues modulo ¢ as r runs through a complete set of residues modulo ¢, and ug runs through
a complete set of residues modulo r as u runs through a complete set of residues modulo r. Next,
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note that as a and b run through reduced sets of residues modulo g and r respectively, ar + bg runs
through a reduced set of residues modulo ¢r. In view of (1.28), we have

Sy = Y (0 starmye (-

m=1 qr
(m,qr)=1
q T
= > 3 ((ar)'S(gr.ar + bg))e <_(aH'bQ)”)
a=1 b=1 ar
(a,q)=1 (b,r)=1
1 - an bn
=X ) saastoye (- (24 2))
a=1 =1 q r
(a,q)=1 (b,r)=1
1 an s bn
= 3 @ saye (<) 3 stoe (<)
a=1 q b=1 r
(a,9)=1 (b,r)=1

as required. ()

Our next task is to show that there is a close connection between T and the number M, (q) of
solutions of the congruence

m’f—i—...—&—mfznmodq, 1< my,...,ms <q.
Indeed, we use the following result.
THEOREM 1.10. For every prime p, we have

T(p) = Jim p'' =2 M, (p").

In fact, we prove the following more general result. The special case of Theorem 1.10 follows on
letting ¢ = p* and letting £ — oo.

THEOREM 1.11. For every natural number ¢ € N, we have

> S(d) = ¢ " M(q).

dlq

PROOF. It is easy to check that

Using this, it follows that

q q
Ma(@)= D oo D
1=1 ms=1

iy e(um’f) () (m)
qu:1m1:1 mg q q q
() ()
e\~ \ q a)

(1.29) 4 _g

Suppose that




1.5. THE SINGULAR SERIES 13

Then writing a = u/(u,q) and noting that every m = 1,..., ¢ can be written uniquely in the form
dy + x, where y =0,...,q/d — 1 and z = 1,...,d, we have

> ()

m=1

I I
L)

M= 1=
LT
MQ_ P

)
o SHES
R >
o ~_
SE
B I
SN— Q
~
o IM)E
ISHE- =
M-~ L=
Y
o /\@
=) —~
SR
Bl NS
N— QU +
I &
) >
IS8 N~
L
wn
—~
&~
&

Now, for every u = 1,...,q, there exists a unique d | ¢ such that (1.29) holds. For this value of d, the
condition (1.29) is equivalent to the condition (a,d) = 1. It follows that

d
Vo) = 3 3 (e st ye (-7)

dla (a,d)=1
d
=Y Y @S (=) = ¢ Y S(),
dlg ll:1: dlq

as required. ()
To use Theorem 1.10, we need to investigate, for every fixed prime p, congruences of the form
(1.30) my + ... +mf =nmodp’, 1< my,...,m, <ph,

for all sufficiently large natural numbers £.

Naturally, we are seeking good lower bounds for T'(p). We therefore need to estimate from below
the number M, (p*) of solutions of the congruence (1.30). Indeed, we would like to estimate M, (p*)
for larger values of ¢ by using estimates of M, (p*) for smaller values of £. In practice, our strategy is
slightly more complicated. We find a value « so that the congruence (1.30) is soluble for ¢ = v and
with the extra condition that (mq,p?) = 1. This extra condition makes it relatively simple to obtain
good lower bounds for M, (p®) when ¢ > .

Before we embark on this strategy, we need to make a few comments on k-th power residues.

REMARKS. (i) Suppose that p is a prime and ¢ € N. A number a € Z is said to be a k-th power
residue modulo p? if p { @ and the congruence ¥ = a mod p’ is soluble. The number of k-th power
residues modulo p? is the number of integers a € Z such that 1 < a < p and a is a k-th power residue
modulo pt.

(ii) The number v(p®) of k-th power residues modulo p’ satisfies

¢
Lﬁgv ifp>2orf¢=1orkisodd,
V(p)i 2272
(k,202) if p=2and ¢ >2 and k is even.

(iii) Suppose that T € Z satisfies
p" |k and p T {Ek.
It is convenient to define
:{ T+1, ifp>2o0r7=0,
T+2, ifp=2and 7 >0.
Then
1
)= Gy
(iv) The number of solutions of the congruence

z* = a mod p?

when p 1 a is either 0 or p?~7~1(k, ¢(p™1)).
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(v) If @ is a k-th power residue modulo p”, then it is a k-th power residue modulo p for every
natural number ¢ € N.
For every natural number g € N, let M (q) denote the number of solutions of the congruence
mV ... +mf=nmodq, 1<my,...,ms<gq, (m1,q) =1.
THEOREM 1.12. Suppose that M} (p") > 0. Then for every natural number £ > v, we have
Mn(pe) > pl=s=1),

PROOF. Suppose that

¥ =n—ab— .. —2F mod p?,
where 1 < 21,...,2, < p” and p { x1. For every j = 2,...,s, there are precisely p‘~7 integers Yj
satisfying 1 < y; < pt and y; = x; mod p?. It follows that for each of the pl=16=1) choices of
(s — 1)-tuples (ya,-..,¥ys), the number n —y5 — ... — y* is a k-th power residue modulo p?, and so a

k-th power residue modulo p’. Hence there exists y; satisfying 1 < y; < p’ and p{y; such that
y’fzn—y’;—...—yf mod p*.
The result follows immediately. ()
It now follows from Theorems 1.10 and 1.12 that if M (p?) > 0, then
T(p) = Jim p* =M, (p) > p7 7.
— 00
If we now use this inequality for every prime p < C, then it follows from Theorem 1.9 that G(n) > 1.
It therefore remains to prove the following result.

THEOREM 1.13. Suppose that
p .
——(k,p"(p—1 2
p_l(,p (p-1)), ifp>2,

272, ifp=2andk > 2,
D, ifp=2and k= 2.

Then M (p") > 0 for every natural number n € N.

sz

The case p = 2 and k = 2 is very easy. If p =2 and k > 2, then one has s > 27, and the congruence

my .. +mf=nmod 27, 1< my,...,m, <27, 24my,

can be satisfied by taking m; to be 0 or 1. When p is odd, we apply the following result repeatedly.

THEOREM 1.14 (Cauchy—Davenport—Chowla). Suppose that
A={x1,...,2,} and B={y1,...,ys}

denote respectively r and s incongruent residue classes modulo q. Suppose further that 0 € B and that
(yj,q) =1 for every j = 1,...,s satisfying y; # 0 mod q. If A+ B denote the set of residue classes
of the form

T +y;, t=1,...,r, j=1,...,s,
then #(A+ B) > min{q,7 + s — 1}.

PROOF. We may suppose that r+s—1 < ¢, for otherwise we simply remove some elements from 5.
We may also assume that r < ¢ and y; = 0. The proof of the theorem is by induction on s. The case
s = 1 is trivial. Suppose now that s > 1. We claim that there exist z, € A and y, € B such that
z, + 1y & A; otherwise, for every y; € B, x; + y; would run over A as x; ran over A, so that

T I
Z(sz +yj) = le mod ¢,
i=1 i=1
and so ry; = 0 mod ¢ for every j =1,...,s, clearly an impossibility. Rearranging the elements of A
and B if necessary, we may assume that 4 = 1 and that there exists t = 2,..., s such that

€A, ifj=1,...,t—1,
“““’j{ gA ifj=t,...,s.
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Let
A= AU {z1} +{ye,-- - ys}) and By ={y1,...,yi—1}
Then 1 < #B1 < s and #A, + #B1 =r + s. Also,
A+ By = (A+B) U(({za} +{wes - owsh) +{y, - 1))

=(A+B)U(({z1} +{y1, - ve—1)) +{Ye5 -1 Ys})
CA+B.

The result follows. ()

1.6. Weyl’s Inequality and Hua’s Lemma

The proofs of Weyl’s inequality and Hua’s lemma depend on an intermediate result best described
in terms of the forward difference operator.
Suppose that ¢ is a real valued function of a real variable. For any x, h; € R, write

A1 (6(2); h1) = Bz + hy) — 6(2).
We now denote by A; the j-th iterate of the forward difference operator A;. In other words, we write
Aji1(p(@)ihy .o hjpr) = A1 (Aj(d(x);has ooy hy)ihygr)-
REMARK. It can be shown that for any natural numbers j < k, the j-th iterate A; of the forward

difference operator satisfies

k! v
k. E : Lol ¢ )
Aj(],‘ ,hl,...,h]’) = — 0]7,11 R :hl...hjpj(l‘,hh...,hj),
Loloq! .. 4! J
£020,£121,....6;2>1 J
Lo+01+..4+L;=k

where p;(x; h1,...,h;) is a polynomial in & with integer coefficients, of degree k — j and with leading
coefficient k!/(k — j)!.

THEOREM 1.15. Suppose that

Q
) =3 e(6(a)
r=1
where ¢ : N — R is an arithmetic function. Then for any natural numberj € N, we have

IT(e) < 2?70 3 03 N e(A(é(@)i b, hy)),s
|h1|<@Q |hj|<Q z€l;
where the intervals I; = I;(h1, ..., h;) satisfy the conditions
Li(h) C1,Q) and Ij(h1,...,h;) CLi—1(h1,..., hj_1).
ProOOF. We proceed by induction on j. Suppose first of all that j = 1. Then

x

Q Q= Q Q-
|T(¢)|2:Z e(py) —d(@) =D > eld(x+h)—d(x) =) Z z); h1))

r=1y=1 rz=1h;=1-x r=1h;=1-z
Q-1

= > Y eM@@rm)= Y Y edi(d(a)ih),
h1=1-Q x€ly ‘h1|<QT£611

where I1 = [1,Q] N [1 — h1,Q — hy]. Suppose now that the conclusion of the theorem holds for a
particular natural number j € N, so that

IT(0) < @)* 71 3" 03T N e(Aj(@@); b hy)).

|hi|<Q  |hj|<Qz€l;

Then by Cauchy’s inequality, we have

TGP < Q) 7202 -1) 3 3 |3 e(Ai(d(@); b hy))

[h]<Q  |h;]<Q |z€L;
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Note next that

Do ey @)ihn, k)| =YD e(Ag(@y)shny - hy) = Aj(@(@); ha, . hy))

z€l; z€lj yel;

= > > D@+ h)ih, . ) = Aj(¢(x)i b, hy))

[h|<Qz€lj4+1

= > >« é(x);ha, ... hi); b))

[h[<Qaxeljt1

Z Z ]+1 )ah177hj7h))7

[h|<Qz€ljtr
where I;11 = I; N{z :  +h € I;}. This gives the conclusion of the theorem with j replaced by j + 1.
O

The next step concerns an estimate which arises when we use Theorem 1.15 in the deduction of
Weyl’s inequality. It is stated in a more general form than we need here. The generality is necessary
in our discussion of the ternary Goldbach problem in Chapter 2.

THEOREM 1.16. Suppose that X,Y,a € R with X,Y > 1. Suppose further that |a — a/q| < q~2
with (a,q) = 1. Then

in{XYz ! -1 XY — ) log(2X
;(mm{ 7 laz|| T < ( +Y+XY> 0g(2Xq),

where || ]| = ming,ez |8 — n| denotes the distance of 3 to the nearest integer.

PrROOF. Write
S=Y min{XYa !, oz '}
<X

Clearly every natural number z < X can be written in the form ¢j + r, where the integers j and r
satisfy 0 < j < X/q and 1 < r < ¢. Hence

s< Y me{qf Nlaai 40}

0<i<X/qr=1

We can write

. . oar a o + 1o a—qa
a(qg+r):aqj++<a—>r:[“] {qy} +(q 2‘q)
q q q q q
_ le@®jl+ar | {ag’j} | (Pa—qa)r
= + + .
q q q
Suppose first of all that j =0 and r < ¢/2. Then
. ar  (¢*a—qa)r (¢*a — qa)r T 1
algj +7)= — 4+ —5—— and ’ <= < —,
q ¢ ¢ @ " 2q
and so
ar 1 1||ar
> —— 2z
latas +0ll > | | - 5> 5 |
On the other hand, we always have
ag?j 2o — qa)r 1 r 2
{ad’j} | (g 2q) iy <2
q q qa g q
For every j satisfying 0 < j < X/q, as 7 runs over a complete set of residues modulo ¢, [ag?j]+ar also

runs through a complete set of residues modulo g¢. It follows that for any j satisfying 0 < 57 < X/q,
there are at most 7 values of r for which the inequality

[ag?j] + ar
q

. 1
latag + )l >
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fails to hold. Note also that gj +r > q(j + 1) if j # 0 or r > ¢/2. It follows that

-1

—1 q 2 -
XY
o< Z ‘ * Z <1(J'+1)Jr Z = J(]IJH”“‘

r<d 0<j<X =1

Isrsz IsXla oflog?s) +ar

XY 1 X R\

PR +1+(+1> 3 ()

9 oGixd q 1encig M

XY
< e log(2X) + (X + ¢q) logg.

The theorem follows immediately. (O
PROOF OF THEOREM 1.3. We apply Theorem 1.15 with j = k — 1, Q = N and ¢(x) = az® to

obtain
F@f <@ ST 0 3T > e(Armi(eatiha, . b)),

[h1|<N \hk 1|<Nz€l_1

By the Remark preceding Theorem 1.15, we have

, h Ry
Ap_1(oxF; hy, ... hg_1) = Klahy .. hy_q (x+21+...+ ’“2 1),

so that

f@) <@N)EFE S0 Yy e(k!ahl...h._ <x+h;+ +hk2—1>).

|h1|<N |h—1|<N z€l)—1

The terms with hq ... hz_1 = 0 contribute < N*~1 to the sum. Hence

EINF-1
P < 2N | N NS ming N, ah ™)
h=1
kINFL
< NK—k+e Nk—1+ Z min{k‘!Nkh_I,Hah”_I} ’
h=1

where the term N€ is an upper bound on the number of solutions of the equation
Ehy...hg—1=h, 0<]h1],...,|he—1] < N.
We now apply Theorem 1.16 with X = k!N*~! and Y = N to obtain
EINFL
; min{k!N*h~1, ||ah| '} < N* ( + N + Nk) log(N*=1g).

This gives

[f(@)|® < N¥F2(g7" + N7+ gNF)
if ¢ < N*. The proof is now complete on noting that the result is trivial if ¢ > N¥. (O

PROOF OF THEOREM 1.2. We proceed by induction on j. Suppose first of all that j = 1. Then

the integral
1
| 1@ da

is equal to the number of solutions of the equation z*¥ — y* = 0 in natural numbers =,y < N. Clearly
there are precisely N solutions. Suppose now that the inequality (1.6) holds for some natural number
j satisfying 1 < j < k. We apply Theorem 1.15 with Q = N and ¢(z) = az® to obtain

|f(o<)|2J (2N) 27 —j-1 Z Z Z (az®;hy, ... Ry)),

|h1|<N |hj|<N z€l;
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where, by the Remark preceding Theorem 1.15,
Aj(()é.i?k; hl, ey h]) = Oéhl cen hjpj(l‘; hl, ey hj),

where pj(z; hi,...,h;) is a polynomial in x of degree k — j and with integer coefficients. Hence
(1.31) F@P < @2N)* 973 " ereah),
heZ

where, for every h € Z, cp denotes the number of solutions of the equation
hl...hjpj(l‘;hl,...,hj) = h, |h1|,...,|hj‘ <N, z e Ij.
It is well known that ¢y < N7 and ¢, < N€ if h # 0. On the other hand, we can write
j j—1 j—1
(1.32) [F@) = (f@)* (f(=a)* = bre(—ah),
heZ

where, for every h € Z, by, denotes the number of solutions of the equation

k k k k
T4 — Y+ =Yg =h, 1< 21,0, -1, Y1, 0, Y2i-1 SNV

Hence

S b= If(0) = N7,

her
Also, by the induction hypothesis, we have
by = /1 f(@)[? da < N¥ —ite,
It now follows from (1.31), (1.32) and Pr:rseval’s identity that
01 [F@)P da < 2N)7 71N ey,

hez
Note now that

Zchbh <K cobg + N© Z by < NIN? =i+e 4 NeN?
hez h£0
so that

1 . .
/ 1f(@))?" da < N¥ il
0

This completes the proof. (O



