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3.1. Introduction

The Hardy—Littlewood method can be adapted to study solubility of equations of the form
(3.1) czh +.. F et =0,

with fixed non-zero integer coefficients cy, ..., cs, not all having the same sign. Here the question is
whether there are non-negative integers 1, ..., s, not all zero, such that (3.1) holds.

A problem arises when the coefficients ¢y, ..., cs are not all in rational ratio. Clearly, the trivial
solution is the only solution, and it is inappropriate to study the equation (3.1) further. However, it
is reasonable to ask whether the form c;z% + ... + c,2% takes arbitrarily small values.

In this chapter, we discuss a variation of the Hardy—Littlewood method due to Davenport and

Heilbronn in the 1940’s and prove the following result.

THEOREM 3.1. Suppose that k > 2 is a fized integer, and the integer s > 2F + 1. Suppose further
that A1, ..., s are fized non-zero real numbers, not all in rational ratio and not all having the same
sign. Then for every positive real number n, there exist integers x1,...,zs, not all zero, such that
Arxh + .. A2k <.

Analogous to this, and also analogous to the ternary Goldbach problem, is the following result.

The proof is left to the reader.

THEOREM 3.2. Suppose that A1, A2, A3 are fived non-zero real numbers, not all in rational ratio and
not all having the same sign. Then for every positive real number n, there exist primes p1,p2, p3 such
that [A1p1 + Aap2 + Asp3| <.

Note first of all that it suffices to prove Theorem 3.1 in the special case n = 1, for we can replace
the coefficients A; by A;/n. Also, by relabelling if necessary, we may assume that A /\z is irrational.
On the other hand, if A;/A2 > 0, then there exists j > 2 such that A;/A; < 0. If A\;/); is rational,
then Aa/A; is irrational and negative. Hence, by further relabelling if necessary, we may assume that

0> A/X €Q.

We need a function that will pick out all real numbers § such that |3] < 1. Clearly, the identity

e sin2ra [ 1, if|f] <1,

JARCEE=SEE { 0, if 6] > 1,

— 00

appears to be ideal for this purpose. Unfortunately, there are difficulties associated with the use of
this identity because the integral does not converge absolutely. Instead, we write

K(o) = (sinwa>2
TQ
and use the identity

(3.2) /OO e(aB)K (o) da = max{1 — |3],0},

—0oQ
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30 3. DIOPHANTINE INEQUALITIES
which can be established by using the Cauchy integral formula.

Suppose that N is a sufficiently large natural number, to be specified later. For every j =1,...,s,
write

N
E e(al; ak
x=1

and consider

00 S oo N N
R(N) :/_ Hfj(a) K(a)da :/_ Z Z e(a(Mzh + ...+ X2") K (a) da

I
Mz

Z / aMzh 4 ..+ Aah)) K (o) da

rs=1

8

by
Il
-

I
M2

. Z max{1 — |\zf + ...+ \2¥|, 0},

1 rs=1

1

in view of (3.2).
The size of the product

(3.3 [T 5t

varies greatly as the value of « varies. Roughly speaking, the product (3.3) is relatively large in size
when « is close to the origin. However, the irrationality of A;/A\s ensures that one of fi(«) or fo(a)
is relatively small when « is not near the origin. Hence there is only one major arc. On the other
hand, the contribution for large o can be handled in a trivial manner. The idea of Davenport and
Heilbronn is therefore to write

N):/m f[lfj(a) K(a)da—i—/m f[lfj(a) K(a da—i—/ Hfj K(a)da,

where the three sets 91, m and t form a partition of the set R of all real numbers.
Let v be a sufficiently small positive real number, and write

P =N".
We consider the major arc
(3.4) M={acR:|a| < PNF},
two minor arcs
m={aeR: PN"* <|a| < P},
and the trivial regions
t={aeR:|a| > P}

To prove Theorem 3.1, it suffices to show that R(N) > 0 for all some N € N. Our strategy is to
find some sufficiently small positive value of v such that

/ Hf] a)da > N*7F

for all sufficiently large N € N, and such that there exist arbitrarily large values of N € N for which

/ Hfj @) da = o(N*7F).



3.3. THE MAJOR ARC 31

We also show that
J{ 5@ | K@) da = o).
e\

Here, and in all subsequent argument, all implicit constants depend at most on k, s, ¢ and the
coefficients Aq, ..., As.

3.2. The Trivial Regions

In this section, we study the integral

/ [/ | E(e)da
t\ ;5

For every real number X and every j =1,...,s, we have

X+1 N R
[ 5P da < e
X

by Hua’s lemma. It follows from Holder’s inequality that

35 /XX+1

Now

/t jlifj(a) K(a)da < /POO jlifj(a) a_Qdaég/h

2k "

2k X+1 . 2 .
H fj(a) da < H (/ |fj(0[)|2 ’ dOé) < N2 7k+e.
j=1

j=1 X

h+14+P | S

H fi(a)|a™?da
j=1

+P

0 s ht14P | 2°

< sup fla?) [ ()| da
hZ:O a€[h+P,h+1+P] j_l;.[H ! htP JI;[l !

< ZNS—Qk (h n P)—2N2k—k+e _ Ns—k—i—e Z(h + P)_2

=0 h=0
< Ns7htep=l — o(N*7F).

3.3. The Major Arc

In this section, we study the integral

/Em jglfm) K(a) da.

It is here that we use the condition that A1 /s < 0.

The first step in our argument here is to find suitable approximations to the generating func-
tions fj(c). Our argument here is considerably simpler than that in Chapter 1, since there is only
one major arc.

THEOREM 3.3. Suppose that o € M, and that for every j =1,...,s,

N
vi(a) :/0 e(a);B%)dg.
Then
fila) =v;(a) = O(P).
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REMARK. Suppose that the function F' has continuous derivative on the interval [0, N]. Then
N N

> Fm = [ Fady+ [ P - ).

<N 0 0

This can be obtained from the formula (1.12) for partial summation with X = N and a,, = 1 and
integration by parts.

PROOF OF THEOREM 3.3. We take F(y) = e(a);y*). Then it follows from the Remark above that

N N
£3(0) — vj(a) = 2ria), / kP e(aAy*)( — b)) dy < Jaf / Kyl dy = N¥|a| < P,
0 0
in view of (3.4). O

It now follows from Theorem 3.3 that if o € 9, then

I #@ = JTvi(e =Y (fi(@) —vi(@) | [] fite) | [ [[vi(e) | < N*'P.
j=1 j=1

Jj=1 i<j i>7

Hence it follows from (3.4) and the observation K (a) < 1 that

(36) /9;)1 H f](a) - H 'Uj(Oé) K(a) do < Ns—k—1P2 _ O(Ns_k)7

if v is sufficiently small.
We now study the integral

/m f[vj(a) K () da.

Our next task is to replace the interval of integration by (—o0,00), noting that the functions v;(c)
decay rather rapidly away from the origin. More precisely, we have the following estimate.

THEOREM 3.4. Suppose that o € R is non-zero. Then for every j =1,...,s,

vi(@) < |a "1k,

Proo¥r. Using the substitution v = a/\]ﬂk, we have

1 aX;N* 1 -
vj (@) = W/o %7 e(y)dy.

On the other hand,
/ 2 e(y) dy <2
0
for every X > 0. To see this, suppose first of all that X € [0, 1]. Then
Y1k "1
/ Ev/_e(v)dv </ Ev/‘ dy =1
0 0

Suppose now that X > 1. Then

X1
/ 27 e(y) dy
0

111k1 X11k1
< / kV/_e('Y)d’Y“f‘/ E’Y/_e(’Y)d’7~
0 1

Clearly

1
1
/ -7 e(y) dv‘ <L
0
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Furthermore, integrating by parts and using the Triangle inequality, we have

/Xl l/kfle( )d 1 /X 171 1/k72e( )d
W 7)dy o )\ v ) dy

——(XFle(X) - 1)‘ +

2771k;
1 1 [X/1
<—+— — 1)V 2e(y)dy| < 1.
Tk onk /1 <k >7 e(v) dy
This completes the proof. (O
It now follows from Theorem 3.4 that
(3.7) / H i a)da < / a~*Fda <« N*Tkpl=s/k = o(N*7F),
R\ PN—F

j=1

Combining (3.6) and (3.7), we conclude that

| Hfj e~ [ TLee ) Kl@)au= o=

On the other hand,

33

/_Oo H vila @) da = / </ / (MBY + -+ ABN)) dbr - dﬁ%) K(a)da.

Since K (o) < min{1l, =2} and the integrand is continuous, we interchange the order of integration.

Then

(3.8) / O; H vi(a @) da

A /0 </ a(Mpr + .+Asﬂ§))K(a)da> B ...dB;

/ / max{1 — [\ 7 + ...+ \,B%,0}dB; ... dS,

N¥ NF
_ / l/k 1max{l— [A1y1 4+ Asvs, 0F dyr - doys,

using the substitution v; = ﬂj forevery j=1,...,s
Now we make use of our assumption that A; /Ay < 0. Note that the region

B={(v2,...,7s): 72 € [IN*,26N*], ~3,...,7, € [02N*, 262 N*]}

is contained in [0, N¥]*~! whenever 0 < § < 1/2. Also, if § is sufficiently small relative to Ay, ...

then for every (vy2,...,7s) € B, we have

A R S W A A e | A
ST TN 2‘2 ok - ol gk o g5k
)\1 )\1 |/\1|
and
A R W A A e | A 1
Aoyt A < |22 25Nk+\ sl 4.+ ‘262Nk<7Nk.
A1 A1 [A1] 2
Note next that the condition
1
(3.9) A+ Al < 5

is equivalent to the condition

1 1
*5*(>\2’72+~~-+>\5’Ys) <A < 5*()\272+---+>\s’7s);
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in other words,

. 1 _)\2’)/2+...+)\S’ys<7 1 _)\Q’yg—f—...—f—)\s’ys
2|1 | A SIS A ‘
It follows that if (y2,...,7s) € B and (3.9) holds, then
1 1 1
- +202NF <~ < + N’“,
2] T

and so
(52Nk <7< Nk,
if N is sufficiently large.

We now note that the intrgrand on the right hand side of (3.8) is non-negative. Hence if we restrict
the integration to those (y1,...,7s) satisfying (ve,...,7s) € B and the condition (3.9), then we have

/ HU] a)da > (N'7F)* / (/ d%) dvys ... dvs,
—o0 B A(v2,057s)

where the inner integral is over the interval

A( ): _ 1 7/\272+"'+)‘375 1 7)\272+"'+)‘5'75
727-..,78 2|)\1| )\1 72|)\1‘ )\1 .

Since the volume of B is > (N*)*~1, it follows that

/ H U] dOé > N(l k)st(s 1) stk"

if IV is sufficiently large.

3.4. The Minor Arcs

In this section, we study the integral

/m 1;[ (@) | K(a)da.

It is here that we use the condition that A\ /As is irrational. It is also here that the argument requires
a specialization of N.

THEOREM 3.5. Suppose that a € Z and q € N satisfy (a,q) = 1 and

(3.10) AL_a

Suppose further that N = ¢*. Then
sup min{|f1 ()], | f2(@)]} < N'7°
acm

for some suitably small § > 0.

REMARK. The existence of arbitrarily large ¢, and hence N, satisfying (3.10) is guaranteed by
Dirichlet’s theorem. To see this, suppose on the contrary that there are only finitely many rational
numbers a/q, with a € Z and ¢ € N, such that (3.10) holds. Let these be
(3.11) “uo e

Q1 qe
Since A1/Aq is irrational, A1 /Ay —a/q| > 0 for every j = 1,...,£. It follows that there exists X > 1
such that
1

X’

Al a;

j=1,...,¢
A2 q;
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By Theorem 1.4, there exist a,q € Z satisfying 1 < ¢ < X and
/\1 a < 1 < 1
Xoogql T gX T g¥

contradicting that (3.11) represents all the solutions of (3.10).

PRrROOF OF THEOREM 3.5. We assume that IV is sufficiently large in relation to A1, ..., As. Suppose
that @ € m. Write X = N¥P~1/2_ Applying Theorem 1.4, we see that for i = 1,2, there exist
a;, q; € 7 satistying (a;,¢;) =1 and 1 < ¢; < X such that

a; 1
3.12 Aia——| < .
(3.12) g  @X
We first of all establish that at least one of ¢, qo is relatively large. More precisely, we show that
(3.13) max{q, gz} > N5.
Suppose first of all that a; = 0. Then
1 1 PsN~*
al < < = < PN7F,
S XN S X T

if NV is sufficiently large in relation to \;, so that o € 91, a contradiction. Hence a; # 0. On the other
hand, it follows from (3.12) that

A a; + 91 a; 1+ 92
ia = — = —_—

%  GX G a; X
for some 0; € R satisfying |0;| < 1. Hence

)\1 )\10[ ai1qz 01 02 !
Do o2y ) 1+ =)
)\2 )\20& asqi * CL1X + CLQX

Since N is large, it follows that X is large, and so

M) _jae) oM
21X aq Ag|’
whence
Al_m+o(‘“q2 Xl) =2 oxY,
A2 a2qq azq1 azqq
where the implicit constants may depend on A; and As. Note next that it follows from (3.10) that
)\1 o a 0
Ao 7 ¢
for some 6 € R satisfying |0] < 1. Hence
(3.14) LU X1yt N =g
q a2q1
If the left hand side of (3.14) is non-zero, then
L ¢_mazl -
lgazai| "l axqn ’

so that |aaq1| > ¢. If the left hand side of (3.14) is zero, then since (a, g) = 1, it follows that asq; must
be an integer multiple of ¢, and so |azq1| > ¢q again. Also, az = Aaags — 02X 1 < g P. Tt follows
that q1g2P > |azq1| > ¢, so that ¢1qz > ¢P~1 = NY/2P~! whence max{q,q2} > NiP~2 > N5
as required, if v is sufficiently small. Next, by Weyl’s inequality, given in Theorem 1.3, we have
1 21—k‘

qi 14e —21F 1-6

— N : N
TtE T Nk) < N'eg?
for some suitably small 6 > 0. Combining (3.13) and (3.15), we conclude that
min{| f1(@)], | f2()|} < N1 70

(3.15) fi(a) < N1Fe (1 +

for some suitably small § > 0. O
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To complete our discussion of the minor arcs, we assume that IV is sufficiently large and chosen
according to the specialization in Theorem 3.5. We also partition the minor arcs m into
m ={aem:|fi(a) <|f2(a)]} and mo =m\my.

Analogous to (3.5), we can show that for i = 1,2, we have, for every real number X

X1 |2F41 .
/ H fila)|da < N2 ~kte,
X iy
J#i
Since K(a) < min{1, a2}, it follows that

2k 41
/ [T 7i(@)| K(a)da < N?"~F+e,
J#i
It now follows from Theorem 3.5 that for i = 1, 2,

2k 11 k
/ H fi(@)| K(a)da < N* H1mk=ote,
Using the trivial bound f;(a) < N for j = 2% +2,... 5, we conclude that

/ H fi(@)| K(a)da < N*7F0% = o(N*7H),

as required.



