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3.1. Introduction

The Hardy–Littlewood method can be adapted to study solubility of equations of the form

(3.1) c1x
k
1 + . . . + csx

k
s = 0,

with fixed non-zero integer coefficients c1, . . . , cs, not all having the same sign. Here the question is
whether there are non-negative integers x1, . . . , xs, not all zero, such that (3.1) holds.

A problem arises when the coefficients c1, . . . , cs are not all in rational ratio. Clearly, the trivial
solution is the only solution, and it is inappropriate to study the equation (3.1) further. However, it
is reasonable to ask whether the form c1xk

1 + . . . + csxk
s takes arbitrarily small values.

In this chapter, we discuss a variation of the Hardy–Littlewood method due to Davenport and
Heilbronn in the 1940’s and prove the following result.

Theorem 3.1. Suppose that k ! 2 is a fixed integer, and the integer s ! 2k + 1. Suppose further
that λ1, . . . , λs are fixed non-zero real numbers, not all in rational ratio and not all having the same
sign. Then for every positive real number η, there exist integers x1, . . . , xs, not all zero, such that
|λ1xk

1 + . . . , λsxk
s | < η.

Analogous to this, and also analogous to the ternary Goldbach problem, is the following result.
The proof is left to the reader.

Theorem 3.2. Suppose that λ1, λ2, λ3 are fixed non-zero real numbers, not all in rational ratio and
not all having the same sign. Then for every positive real number η, there exist primes p1, p2, p3 such
that |λ1p1 + λ2p2 + λ3p3| < η.

Note first of all that it suffices to prove Theorem 3.1 in the special case η = 1, for we can replace
the coefficients λj by λj/η. Also, by relabelling if necessary, we may assume that λ1/λ2 is irrational.
On the other hand, if λ1/λ2 > 0, then there exists j > 2 such that λ1/λj < 0. If λ1/λj is rational,
then λ2/λj is irrational and negative. Hence, by further relabelling if necessary, we may assume that

0 > λ1/λ2 !∈ Q.

We need a function that will pick out all real numbers β such that |β| < 1. Clearly, the identity
∫ ∞

−∞
e(αβ)

sin 2πα

πα
dα =

{
1, if |β| < 1,
0, if |β| > 1,

appears to be ideal for this purpose. Unfortunately, there are difficulties associated with the use of
this identity because the integral does not converge absolutely. Instead, we write

K(α) =
(

sinπα

πα

)2

,

and use the identity

(3.2)
∫ ∞

−∞
e(αβ)K(α) dα = max{1− |β|, 0},
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30 3. DIOPHANTINE INEQUALITIES

which can be established by using the Cauchy integral formula.
Suppose that N is a sufficiently large natural number, to be specified later. For every j = 1, . . . , s,

write

fj(α) =
N∑

x=1

e(αλjx
k),

and consider

R(N) =
∫ ∞

−∞




s∏

j=1

fj(α)



 K(α) dα =
∫ ∞

−∞

N∑

x1=1

. . .
N∑

xs=1

e(α(λ1x
k
1 + . . . + λsx

k
s))K(α) dα

=
N∑

x1=1

. . .
N∑

xs=1

∫ ∞

−∞
e(α(λ1x

k
1 + . . . + λsx

k
s))K(α) dα

=
N∑

x1=1

. . .
N∑

xs=1

max{1− |λ1x
k
1 + . . . + λsx

k
s |, 0},

in view of (3.2).
The size of the product

(3.3)
s∏

j=1

fj(α)

varies greatly as the value of α varies. Roughly speaking, the product (3.3) is relatively large in size
when α is close to the origin. However, the irrationality of λ1/λ2 ensures that one of f1(α) or f2(α)
is relatively small when α is not near the origin. Hence there is only one major arc. On the other
hand, the contribution for large α can be handled in a trivial manner. The idea of Davenport and
Heilbronn is therefore to write

R(N) =
∫

M




s∏

j=1

fj(α)



 K(α) dα +
∫

m




s∏

j=1

fj(α)



 K(α) dα +
∫

t




s∏

j=1

fj(α)



 K(α) dα,

where the three sets M, m and t form a partition of the set R of all real numbers.
Let ν be a sufficiently small positive real number, and write

P = Nν .

We consider the major arc

(3.4) M = {α ∈ R : |α| " PN−k},

two minor arcs

m = {α ∈ R : PN−k < |α| " P},

and the trivial regions

t = {α ∈ R : |α| > P}.

To prove Theorem 3.1, it suffices to show that R(N) > 0 for all some N ∈ N. Our strategy is to
find some sufficiently small positive value of ν such that

∫

M




s∏

j=1

fj(α)



 K(α) dα$ Ns−k

for all sufficiently large N ∈ N, and such that there exist arbitrarily large values of N ∈ N for which

∫

m




s∏

j=1

fj(α)



 K(α) dα = o(Ns−k).
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We also show that
∫

t




s∏

j=1

fj(α)



 K(α) dα = o(Ns−k).

Here, and in all subsequent argument, all implicit constants depend at most on k, s, ε and the
coefficients λ1, . . . , λs.

3.2. The Trivial Regions

In this section, we study the integral

∫

t




s∏

j=1

fj(α)



 K(α) dα.

For every real number X and every j = 1, . . . , s, we have
∫ X+1

X
|fj(α)|2

k

dα% N2k−k+ε

by Hua’s lemma. It follows from Hölder’s inequality that

(3.5)
∫ X+1

X

∣∣∣∣∣∣

2k∏

j=1

fj(α)

∣∣∣∣∣∣
dα "

2k∏

j=1

(∫ X+1

X
|fj(α)|2

k

dα

)2−k

% N2k−k+ε.

Now
∫

t




s∏

j=1

fj(α)



 K(α) dα%
∫ ∞

P

∣∣∣∣∣∣

s∏

j=1

fj(α)

∣∣∣∣∣∣
α−2 dα "

∞∑

h=0

∫ h+1+P

h+P

∣∣∣∣∣∣

s∏

j=1

fj(α)

∣∣∣∣∣∣
α−2 dα

"
∞∑

h=0



 sup
α∈[h+P,h+1+P ]

∣∣∣∣∣∣

s∏

j=2k+1

fj(α)

∣∣∣∣∣∣
α−2




∫ h+1+P

h+P

∣∣∣∣∣∣

2k∏

j=1

fj(α)

∣∣∣∣∣∣
dα

%
∞∑

h=0

Ns−2k

(h + P )−2N2k−k+ε = Ns−k+ε
∞∑

h=0

(h + P )−2

% Ns−k+εP−1 = o(Ns−k).

3.3. The Major Arc

In this section, we study the integral

∫

M




s∏

j=1

fj(α)



 K(α) dα.

It is here that we use the condition that λ1/λ2 < 0.
The first step in our argument here is to find suitable approximations to the generating func-

tions fj(α). Our argument here is considerably simpler than that in Chapter 1, since there is only
one major arc.

Theorem 3.3. Suppose that α ∈M, and that for every j = 1, . . . , s,

vj(α) =
∫ N

0
e(αλjβ

k) dβ.

Then

fj(α)− vj(α) = O(P ).
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Remark. Suppose that the function F has continuous derivative on the interval [0, N ]. Then

∑

m!N

F (m) =
∫ N

0
F (y) dy +

∫ N

0
F ′(y)(y − [y]) dy.

This can be obtained from the formula (1.12) for partial summation with X = N and am = 1 and
integration by parts.

Proof of Theorem 3.3. We take F (y) = e(αλjyk). Then it follows from the Remark above that

fj(α)− vj(α) = 2πiαλj

∫ N

0
kyk−1e(αλjy

k)(y − [y]) dy % |α|
∫ N

0
kyk−1 dy = Nk|α| " P,

in view of (3.4). ©

It now follows from Theorem 3.3 that if α ∈M, then

s∏

j=1

fj(α)−
s∏

j=1

vj(α) =
s∑

j=1

(fj(α)− vj(α))




∏

i<j

fi(α)








∏

i>j

vi(α)



% Ns−1P.

Hence it follows from (3.4) and the observation K(α)% 1 that

(3.6)
∫

M




s∏

j=1

fj(α)−
s∏

j=1

vj(α)



 K(α) dα% Ns−k−1P 2 = o(Ns−k),

if ν is sufficiently small.
We now study the integral

∫

M




s∏

j=1

vj(α)



 K(α) dα.

Our next task is to replace the interval of integration by (−∞,∞), noting that the functions vj(α)
decay rather rapidly away from the origin. More precisely, we have the following estimate.

Theorem 3.4. Suppose that α ∈ R is non-zero. Then for every j = 1, . . . , s,

vj(α)% |α|−1/k.

Proof. Using the substitution γ = αλjβk, we have

vj(α) =
1

(αλj)1/k

∫ αλjNk

0

1
k

γ1/k−1e(γ) dγ.

On the other hand,
∫ X

0

1
k

γ1/k−1e(γ) dγ " 2

for every X ! 0. To see this, suppose first of all that X ∈ [0, 1]. Then
∣∣∣∣∣

∫ X

0

1
k

γ1/k−1e(γ) dγ

∣∣∣∣∣ "
∫ 1

0

1
k

γ1/k−1 dγ = 1.

Suppose now that X > 1. Then
∣∣∣∣∣

∫ X

0

1
k

γ1/k−1e(γ) dγ

∣∣∣∣∣ "
∣∣∣∣
∫ 1

0

1
k

γ1/k−1e(γ) dγ

∣∣∣∣ +

∣∣∣∣∣

∫ X

1

1
k

γ1/k−1e(γ) dγ

∣∣∣∣∣ .

Clearly
∣∣∣∣
∫ 1

0

1
k

γ1/k−1e(γ) dγ

∣∣∣∣ " 1.
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Furthermore, integrating by parts and using the Triangle inequality, we have
∣∣∣∣∣

∫ X

1

1
k

γ1/k−1e(γ) dγ

∣∣∣∣∣ "
∣∣∣∣

1
2πik

(X1/k−1e(X)− 1)
∣∣∣∣ +

∣∣∣∣∣
1

2πik

∫ X

1

(
1
k
− 1

)
γ1/k−2e(γ) dγ

∣∣∣∣∣

" 1
πk

+
1

2πk

∣∣∣∣∣

∫ X

1

(
1
k
− 1

)
γ1/k−2e(γ) dγ

∣∣∣∣∣ " 1.

This completes the proof. ©

It now follows from Theorem 3.4 that

(3.7)
∫

R\M




s∏

j=1

vj(α)



 K(α) dα%
∫ ∞

PN−k

α−s/k dα% Ns−kP 1−s/k = o(Ns−k).

Combining (3.6) and (3.7), we conclude that

∫

M




s∏

j=1

fj(α)



 K(α) dα−
∫ ∞

−∞




s∏

j=1

vj(α)



 K(α) dα = o(Ns−k).

On the other hand,
∫ ∞

−∞




s∏

j=1

vj(α)



 K(α) dα =
∫ ∞

−∞

(∫ N

0
. . .

∫ N

0
e(α(λ1β

k
1 + . . . + λsβ

k
s )) dβ1 . . .dβs

)
K(α) dα.

Since K(α)% min{1, α−2} and the integrand is continuous, we interchange the order of integration.
Then

∫ ∞

−∞




s∏

j=1

vj(α)



 K(α) dα(3.8)

=
∫ N

0
. . .

∫ N

0

(∫ ∞

−∞
e(α(λ1β

k
1 + . . . + λsβ

k
s ))K(α) dα

)
dβ1 . . .dβs

=
∫ N

0
. . .

∫ N

0
max{1− |λ1β

k
1 + . . . + λsβ

k
s |, 0}dβ1 . . .dβs

=
1
ks

∫ Nk

0
. . .

∫ Nk

0
(γ1 . . . γs)1/k−1 max{1− |λ1γ1 + . . . + λsγs|, 0}dγ1 . . .dγs,

using the substitution γj = βk
j for every j = 1, . . . , s.

Now we make use of our assumption that λ1/λ2 < 0. Note that the region

B = {(γ2, . . . , γs) : γ2 ∈ [δNk, 2δNk], γ3, . . . , γs ∈ [δ2Nk, 2δ2Nk]}

is contained in [0, Nk]s−1 whenever 0 " δ " 1/2. Also, if δ is sufficiently small relative to λ1, . . . , λs,
then for every (γ2, . . . , γs) ∈ B, we have

−λ2γ2 + . . . + λsγs

λ1
!

∣∣∣∣
λ2

λ1

∣∣∣∣ δNk − |λ3| + . . . + |λs|
|λ1|

2δ2Nk > 2δ2Nk

and

−λ2γ2 + . . . + λsγs

λ1
"

∣∣∣∣
λ2

λ1

∣∣∣∣ 2δNk +
|λ3| + . . . + |λs|

|λ1|
2δ2Nk <

1
2
Nk.

Note next that the condition

(3.9) |λ1γ1 + . . . + λsγs| " 1
2

is equivalent to the condition

−1
2
− (λ2γ2 + . . . + λsγs) " λ1γ1 " 1

2
− (λ2γ2 + . . . + λsγs);
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in other words,

− 1
2|λ1|

− λ2γ2 + . . . + λsγs

λ1
" γ1 " 1

2|λ1|
− λ2γ2 + . . . + λsγs

λ1
.

It follows that if (γ2, . . . , γs) ∈ B and (3.9) holds, then

− 1
2|λ1|

+ 2δ2Nk < γ1 <
1

2|λ1|
+

1
2
Nk,

and so

δ2Nk < γ1 < Nk,

if N is sufficiently large.
We now note that the intrgrand on the right hand side of (3.8) is non-negative. Hence if we restrict

the integration to those (γ1, . . . , γs) satisfying (γ2, . . . , γs) ∈ B and the condition (3.9), then we have

∫ ∞

−∞




s∏

j=1

vj(α)



 K(α) dα$ (N1−k)s

∫

B

(∫

A(γ2,...,γs)
dγ1

)
dγ2 . . .dγs,

where the inner integral is over the interval

A(γ2, . . . , γs) =
[
− 1

2|λ1|
− λ2γ2 + . . . + λsγs

λ1
,

1
2|λ1|

− λ2γ2 + . . . + λsγs

λ1

]
.

Since the volume of B is $ (Nk)s−1, it follows that
∫ ∞

−∞




s∏

j=1

vj(α)



 K(α) dα$ N (1−k)sNk(s−1) = Ns−k,

if N is sufficiently large.

3.4. The Minor Arcs

In this section, we study the integral
∫

m




s∏

j=1

fj(α)



 K(α) dα.

It is here that we use the condition that λ1/λ2 is irrational. It is also here that the argument requires
a specialization of N .

Theorem 3.5. Suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1 and

(3.10)
∣∣∣∣
λ1

λ2
− a

q

∣∣∣∣ " 1
q2

.

Suppose further that N = q2. Then

sup
α∈m

min{|f1(α)|, |f2(α)|} % N1−δ

for some suitably small δ > 0.

Remark. The existence of arbitrarily large q, and hence N , satisfying (3.10) is guaranteed by
Dirichlet’s theorem. To see this, suppose on the contrary that there are only finitely many rational
numbers a/q, with a ∈ Z and q ∈ N, such that (3.10) holds. Let these be

(3.11)
a1

q1
, . . . ,

a'

q'
.

Since λ1/λ2 is irrational, |λ1/λ2 − a/q| > 0 for every j = 1, . . . , *. It follows that there exists X ! 1
such that ∣∣∣∣

λ1

λ2
− aj

qj

∣∣∣∣ >
1
X

, j = 1, . . . , *.
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By Theorem 1.4, there exist a, q ∈ Z satisfying 1 " q " X and
∣∣∣∣
λ1

λ2
− a

q

∣∣∣∣ " 1
qX

" 1
q2

,

contradicting that (3.11) represents all the solutions of (3.10).

Proof of Theorem 3.5. We assume that N is sufficiently large in relation to λ1, . . . , λs. Suppose
that α ∈ m. Write X = NkP−1/2. Applying Theorem 1.4, we see that for i = 1, 2, there exist
ai, qi ∈ Z satisfying (ai, qi) = 1 and 1 " qi " X such that

(3.12)
∣∣∣∣λiα−

ai

qi

∣∣∣∣ " 1
qiX

.

We first of all establish that at least one of q1, q2 is relatively large. More precisely, we show that

(3.13) max{q1, q2} $ N
1
5 .

Suppose first of all that ai = 0. Then

|α| " 1
qiX|λi|

" 1
X|λi|

=
P

1
2 N−k

|λi|
< PN−k,

if N is sufficiently large in relation to λi, so that α ∈M, a contradiction. Hence ai != 0. On the other
hand, it follows from (3.12) that

λiα =
ai

qi
+

θi

qiX
=

ai

qi

(
1 +

θi

aiX

)

for some θi ∈ R satisfying |θi| " 1. Hence

λ1

λ2
=

λ1α

λ2α
=

a1q2

a2q1

(
1 +

θ1

a1X

) (
1 +

θ2

a2X

)−1

.

Since N is large, it follows that X is large, and so
1
2

∣∣∣∣
λ1

λ2

∣∣∣∣ <

∣∣∣∣
a1q2

a2q1

∣∣∣∣ < 2
∣∣∣∣
λ1

λ2

∣∣∣∣ ,

whence
λ1

λ2
=

a1q2

a2q1
+ O

(∣∣∣∣
a1q2

a2q1

∣∣∣∣ X−1

)
=

a1q2

a2q1
+ O(X−1),

where the implicit constants may depend on λ1 and λ2. Note next that it follows from (3.10) that
λ1

λ2
=

a

q
+

θ

q2

for some θ ∈ R satisfying |θ| " 1. Hence

(3.14)
a

q
− a1q2

a2q1
% X−1 + q−2 % N−1 = q−2.

If the left hand side of (3.14) is non-zero, then

1
|qa2q1|

"
∣∣∣∣
a

q
− a1q2

a2q1

∣∣∣∣% q−2,

so that |a2q1| $ q. If the left hand side of (3.14) is zero, then since (a, q) = 1, it follows that a2q1 must
be an integer multiple of q, and so |a2q1| $ q again. Also, a2 = λ2αq2 − θ2X−1 % q2P . It follows
that q1q2P $ |a2q1| $ q, so that q1q2 $ qP−1 = N1/2P−1, whence max{q1, q2} $ N

1
4 P−

1
2 $ N

1
5

as required, if ν is sufficiently small. Next, by Weyl’s inequality, given in Theorem 1.3, we have

(3.15) fi(α)% N1+ε

(
1
qi

+
1
N

+
qi

Nk

)21−k

% N1+εq−21−k

i + N1−δ

for some suitably small δ > 0. Combining (3.13) and (3.15), we conclude that

min{|f1(α)|, |f2(α)|} % N1−δ

for some suitably small δ > 0. ©
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To complete our discussion of the minor arcs, we assume that N is sufficiently large and chosen
according to the specialization in Theorem 3.5. We also partition the minor arcs m into

m1 = {α ∈ m : |f1(α)| " |f2(α)|} and m2 = m \ m1.

Analogous to (3.5), we can show that for i = 1, 2, we have, for every real number X,

∫ X+1

X

∣∣∣∣∣∣∣∣

2k+1∏

j=1
j &=i

fj(α)

∣∣∣∣∣∣∣∣
dα% N2k−k+ε.

Since K(α)% min{1, α−2}, it follows that

∫

m

∣∣∣∣∣∣∣∣

2k+1∏

j=1
j &=i

fj(α)

∣∣∣∣∣∣∣∣
K(α) dα% N2k−k+ε.

It now follows from Theorem 3.5 that for i = 1, 2,
∫

mi

∣∣∣∣∣∣

2k+1∏

j=1

fj(α)

∣∣∣∣∣∣
K(α) dα% N2k+1−k−δ+ε.

Using the trivial bound fj(α)% N for j = 2k + 2, . . . , s, we conclude that
∫

m

∣∣∣∣∣∣

s∏

j=1

fj(α)

∣∣∣∣∣∣
K(α) dα% Ns−k−δ+ε = o(Ns−k),

as required.


