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4.1. Introduction

A famous theorem of van der Waerden states that given any natural numbers ! and r, there exists
N0(!, r) such that for every natural number n > N0(!, r), every partition of the set {1, 2, . . . , n} into
r subsets will yield a subset which contains ! terms in arithmetic progression.

This result leads naturally to the following question. Suppose that A is a set of natural numbers.
For every natural number n ∈ N, let

A(n) = A(n,A) =
∑

a∈A
a!n

1

and

D(n) = D(n,A) =
A(n)

n
;

in other words, A(n) and D(n) denote respectively the number and proportion of elements of the set
{1, 2, . . . , n} that are also in A. Define the upper asymptotic density of the set A by

d = d(A) = lim sup
n→∞

D(n).

Erdős and Turán conjectured that every set A of natural numbers with positive upper asymptotic
density contains arbitrarily long arithmetic progrssions. This is equivalent to the statement that if
there is a natural number ! such that the set A contains no arithmetic progression of ! terms, then
d(A) = 0.

The Hardy–Littlewood method can be adapted to establish the case ! = 3 of this conjecture,
as demonstrated by Roth in the 1950’s. The novelty of this approach is that the Hardy–Littlewood
method is applied to study a sequence that is not explicitly given, such as k-powers of natural numbers
or primes.

For every n ∈ N, let

M(n) = max{|S| : S ⊆ {1, 2, . . . , n}, S does not contain 3 terms in arithmetic progression},

where |S| denotes the number of elements of the set S. In other words, M(n) denotes the largest
number of elements which can be taken from the set {1, 2, . . . , n} with no 3 of them in arithmetic
progression. Also, for every n ∈ N, let

δ(n) =
M(n)

n
.

Theorem 4.1. Suppose that n ∈ N and n ! 3. Then δ(n)# (log log n)−1.

The Erdős–Turán conjecture is now known to be true for every positive integer !, and is now
universally known as Szemerédi’s theorem. Szemerédi’s proof is a tour de force in combinatorics, and
does not use the Hardy–Littlewood technique.
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38 4. ROTH’S THEOREM ON ARITHMETIC PROGRESSIONS

Roth’s technique involves working with a set M⊆{ 1, 2, . . . , n} that satisfies |M| = M(n) and does
not contain 3 terms in arithmetic progression. We keep this set M fixed throughout our discussion,
and apply the Hardy–Littlewood technique on this set. More precisely, consider the generating
function

(4.1) f(α) =
∑

x∈M
e(αx).

Then
∫ 1

0
f2(α)f(−2α) dα =

∫ 1

0

∑

x1∈M

∑

x2∈M

∑

x3∈M
e(α(x1 + x2 − 2x3)) dα(4.2)

=
∑

x1∈M

∑

x2∈M

∑

x3∈M

∫ 1

0
e(α(x1 + x2 − 2x3)) dα

=
∑

x1∈M

∑

x2∈M

∑

x3∈M
x1+x2=2x3

1 = M(n),

since the only possible solutions of the equation

x1 + x2 = 2x3, x1, x2, x3 ∈M,

are the trivial solutions x1 = x2 = x3.
The main idea of the proof of Theorem 4.1 is that if M(n) were close to n, then the integral

∫ 1

0
f2(α)f(−2α) dα

would be close to M2(n), thus contradicting (4.2).

4.2. A Major Arc Type Argument

The first step of the argument is to approximate the generating function (4.1). This can be achieved
with a relatively small error if we make use of the disorderly arithmetical structure of the set M.
Sums of the form

n∑

x=1
x∈A

e(αx)

tend to have large modulus near rational points a/q if the elements of A are well distributed in residue
classes modulo q.

More precisely, suppose that the natural number m < n. Write

(4.3) v(α) = δ(m)
n∑

x=1

e(αx) and E(α) = v(α)− f(α).

If we let χM denote the characteristic function of the set M, then

f(α) =
∑

x

χM(x)e(αx).

Hence

E(α) =
n∑

x=1

c(x)e(αx),

where

c(x) = δ(m)− χM(x).

Theorem 4.2. Suppose that

(4.4) g(α) =
m−1∑

z=0

e(αz).
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Suppose further that the natural number q < n/m. Then

(4.5) g(αq)E(α) =
n−mq∑

h=1

σ(h)e(α(h + mq − q)) + R(α),

where, for every h = 1, . . . , n−mq,

σ(h) =
m−1∑

x=0

c(h + xq) ! 0,

and where

(4.6) |R(α)| < 2m2q.

Proof. It is easy to see that

g(αq)E(α) =
m−1∑

z=0

n∑

x=1

c(x)e(α(x + qz)).

Note that x + qz ∈ [1, n + mq − q]. Writing x + qz = h + mq − q, we have

g(αq)E(α) =
n∑

h=1+q−mq

e(α(h + mq − q))
m−1∑

z=0
1!h+mq−q−qz!n

c(h + mq − q − qz)(4.7)

=
n−mq∑

h=1

e(α(h + mq − q))
m−1∑

z=0
1!h+q(m−1−z)!n

c(h + q(m− 1− z)) + R(α),

where

R(α) =
0∑

h=1+q−mq

e(α(h + mq − q))
m−1∑

z=0
1!h+q(m−1−z)!n

c(h + q(m− 1− z))(4.8)

+
n∑

h=n−mq+1

e(α(h + mq − q))
m−1∑

z=0
1!h+q(m−1−z)!n

c(h + q(m− 1− z)).

Now the inner sums in (4.8) clearly do not exceed m in absolute value, so

(4.9) |R(α)| " m(mq − q + mq) < 2m2q.

On the other hand, if 1 " h " n − mq, then for every integer z in the range 0 " z " m − 1, the
inequality 1 " h + q(m− 1− z) " n is always satisfied. It follows from (4.7) that

(4.10) g(αq)E(α) =
n−mq∑

h=1

(
m−1∑

z=0

c(h + q(m− 1− z))

)
e(α(h + mq − q)) + R(α),

where

(4.11)
m−1∑

z=0

c(h + q(m− 1− z)) =
m−1∑

x=0

c(h + xq) = σ(h).

The inequalities (4.5) and (4.6) now follow from (4.9)–(4.11). Note next that

(4.12) σ(h) =
m−1∑

x=0

(δ(m)− χM(h + xq)) = M(m)−
m−1∑

x=0

χM(h + xq).

The sum

r =
m−1∑

x=0

χM(h + xq)

is the number of elements of M in the arithmetic progression

h, h + q, . . . , h + (m− 1)q.
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Let these elements be h + x1q, . . . , h + xrq. Now no three of these are in arithmetic progression.
Hence no three of x1, . . . , xr are in arithmetic progression, whence no three of 1 + x1, . . . , 1 + xr are
in arithmetic progression. Also 1 + xj " m for every j = 1, . . . , r. It follows that we must have
r " M(m), whence σ(h) ! 0, in view of (4.12). ©

Theorem 4.3. Suppose that 2m2 < n. Then for every real number α, we have

|E(α)| < 2n(δ(m)− δ(n)) + 16m2.

Proof. By Dirichlet’s theorem, there exist integers a and q satisfying (a, q) = 1 and 1 " q " 2m
such that

∣∣∣∣α−
a

q

∣∣∣∣ " 1
2mq

.

Then

(4.13) g(αq) = g(αq − a) = g(β),

where

|β| = |αq − a| " 1
2m

.

It follows from (4.4) and (4.13) that

|g(αq)| = |g(β)| =
∣∣∣∣
sin πmβ

sinπβ

∣∣∣∣ ! 2m

π
.

Note next that q " 2m < n/m. In view of Theorem 4.2, we have

m

2
|E(α)| " 2m

π
|E(α)| " |g(αq)E(α)| <

n−mq∑

h=1

σ(h) + 2m2q(4.14)

= g(0)E(0)−R(0) + 2m2q < mE(0) + 4m2q " mE(0) + 8m3.

On the other hand,

(4.15) E(0) =
n∑

x=1

(δ(m)− χM(x)) = nδ(m)−M(n) = n(δ(m)− δ(n)).

The result follows on combining (4.14) and (4.15). ©

4.3. Completion of the Proof

Write

(4.16) I =
∫ 1

0
f2(α)v(−2α) dα.

In view of (4.1) and (4.3), we have

I =
∫ 1

0

∑

x1∈M

∑

x2∈M

n∑

y=1

δ(m)e(α(x1 + x2 − 2y)) dα

=
∑

x1∈M

∑

x2∈M

n∑

y=1

δ(m)
∫ 1

0
e(α(x1 + x2 − 2y)) dα

=
∑

x1∈M

∑

x2∈M

n∑

y=1
x1+x2=2y

δ(m) =
∑

x1∈M

∑

x2∈M
x1+x2 even

δ(m).

Let M1 and M2, where M1 + M2 = M(n), denote respectively the number of odd and even elements
of M. Then

(4.17) I = δ(m)(M2
1 + M2

2 ) ! 1
2
δ(m)(M1 + M2)2 =

1
2
δ(m)M2(n).
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On the other hand, it follows from (4.2), (4.3) and (4.16) that

|M(n)− I| =
∣∣∣∣
∫ 1

0
f2(α)(f(−2α)− v(−2α)) dα

∣∣∣∣ "
(
max

α
|E(α)|

) ∫ 1

0
|f(α)|2 dα.

Clearly
∫ 1

0
|f(α)|2 dα =

∫ 1

0
f(α)f(−α)dα = M(n).

It follows from Theorem 4.3 that if 2m2 < n, then

(4.18) |M(n)− I| " (2n(δ(m)− δ(n)) + 16m2)M(n).

Combining (4.17) and (4.18), we have
1
2
nM(n)δ(m)δ(n) =

1
2
δ(m)M2(n) " I " M(n) + (2n(δ(m)− δ(n)) + 16m2)M(n),

so that

(4.19) δ(m)δ(n) " 2n−1 + 4(δ(m)− δ(n)) + 32m2n−1 " 4(δ(m)− δ(n)) + 34m2n−1,

so long as 2m2 < n.

Theorem 4.4. The limit

(4.20) τ = lim
n→∞

δ(n)

exists. Furthermore, δ(n2) " 2δ(n1) for all natural numbers n1 " n2.

Proof. It is trivial that M(m + n) " M(m) + M(n). Hence for n2 ! n1,

(4.21) M(n2) = M

(
n1

[
n2

n1

]
+

(
n2 − n1

[
n2

n1

]))
"

[
n2

n1

]
M(n1) + M

(
n2 − n1

[
n2

n1

])
.

Clearly

M(n2) " n2

n1
M(n1) + n1,

so that

δ(n2) " δ(n1) +
n1

n2
.

Hence

lim sup
n2→∞

δ(n2) " δ(n1) and lim sup
n2→∞

δ(n2) " lim inf
n1→∞

δ(n1),

so the limit (4.20) exists. Also, it follows from (4.21) that

M(n2) " n2

n1
M(n1) + M(n1) " 2

n2

n1
M(n1).

The second assertion follows immediately. ©

Remark. Letting n→∞, the inequality (4.19) becomes

δ(m)τ " 4(δ(m)− τ).

Letting m→∞, we conclude that τ2 " 0, so that τ = 0. This is a weaker form of Theorem 4.1.

To complete the proof of Theorem 4.1, we write

λ(x) = δ(23x

).

In view of Theorem 4.4, it suffices to prove that λ(x)# x−1. By (4.19), we have

λ(y)λ(y + 1) " 4(λ(y)− λ(y + 1)) + 34 · 2−3y

,

so that

1 " 4(λ(y)− λ(y + 1))
λ(y)λ(y + 1)

+
34 · 2−3y

λ(y)λ(y + 1)
.
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Summing this over y = x, x + 1, . . . , 2x− 1, we have

x "
2x−1∑

y=x

4(λ(y)− λ(y + 1))
λ(y)λ(y + 1)

+
2x−1∑

y=x

34 · 2−3y

λ(y)λ(y + 1)

= 4
2x−1∑

y=x

(
1

λ(y + 1)
− 1

λ(y)

)
+

2x−1∑

y=x

34 · 2−3y

λ(y)λ(y + 1)

" 4
λ(2x)

+
200x2−3x

λ2(2x)
,

in view of Theorem 4.4. When λ(2x) > 1/x, then

200x2−3x

λ2(2x)
<

x

2
for all sufficiently large x, so that λ(2x) < 8/x.


