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Consider the set Z of integers and the operation addition. We take the following for granted:
(i) For every x, y ∈ Z, x + y ∈ Z.
(ii) For every x, y, z ∈ Z, (x + y) + z = x + (y + z).
(iii) For every x ∈ Z, x + 0 = 0 + x = x.
(iv) For every x ∈ Z, x + (−x) = (−x) + x = 0.

Consider now the set R \ {0} of non-zero real numbers and the operation multiplication. Again we
take the following for granted:

(i) For every x, y ∈ R \ {0}, xy ∈ R \ {0}.
(ii) For every x, y, z ∈ R \ {0}, (xy)z = x(yz).
(iii) For every x ∈ R \ {0}, x1 = 1x = x.
(iv) For every x ∈ R \ {0}, xx−1 = x−1x = 1.

There are many more examples of sets and operations where properties analogous to (i)–(iv) above
hold. The sets do not even have to be very large. Consider the set {0} together with the operation
addition, or the set {±1} together with the operation multiplication.

This apparent similarity leads us to consider an abstract object which will incorporate all these
individual cases as examples. We say that these examples all have a group structure.

1.1. Formal Definition

Definition. A set G, together with a binary operation ∗, is said to form a group, denoted by
(G, ∗), if the following properties are satisfied:

(G1) (Closure) For every x, y ∈ G, x ∗ y ∈ G.
(G2) (Associativity) For every x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).
(G3) (Identity) There exists e ∈ G such that x ∗ e = e ∗ x = x for every x ∈ G.
(G4) (Inverse) For every x ∈ G, there exists an element x′ ∈ G such that x ∗ x′ = x′ ∗ x = e.

Remark. Sometimes we omit reference to the operation ∗ and simply refer to a group G.

Examples. (1) (Z,+), (R \ {0}, ·), ({0},+) and ({±1}, ·) are all groups.
(2) The set R, together with multiplication, does not form a group. The element 0 has no inverse.
(3) Consider the set Z5 = {0, 1, 2, 3, 4} of integers modulo 5. This has the group table for addition

modulo 5 below:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
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(4) For every n ∈ N, the set Zn = {0, 1, 2, ..., n − 1} of integers modulo n forms a group under
addition modulo n.

(5) The set M2,2(R) of 2 × 2 matrices with entries in R, together with matrix addition, forms a

group with identity
(

0 0
0 0

)
.

(6) The set M∗
2,2(R) of invertible 2× 2 matrices with entries in R, together with matrix multipli-

cation, forms a group with identity
(

1 0
0 1

)
.

(7) Consider the set S3 of all one-to-one functions from {1, 2, 3} to {1, 2, 3}. Then S3, together with
composition of functions, forms a group. To see that, note that the composition of two one-to-one
functions from {1, 2, 3} to {1, 2, 3} is another one-to-one function from {1, 2, 3} to {1, 2, 3}, so that
(G1) is satisfied. (G2) is satisfied in view of the associativity of composition of functions. On the
other hand, the function i : {1, 2, 3} →{ 1, 2, 3}, given by i(x) = x for every x ∈ {1, 2, 3}, satisfies the
requirements of the identity, so that (G3) is satisfied. Finally, any one-to-one function from {1, 2, 3}
to {1, 2, 3} is also onto. It follows that the inverse function exists, so that (G4) is satisfied.

Note that matrix multiplication is not commutative. In particular, if A, B ∈ M∗
2,2(R), then it is

not guaranteed that AB = BA. On the other hand, composition of functions is also not commutative.
In particular, if f, g ∈ S3, then it is not guaranteed that g ◦f = f ◦ g. Note now that in our definition
of a group, we have not included the rule that x ∗ y = y ∗ x for every x, y ∈ G.

Definition. We say that the group (G, ∗) is abelian if the following extra property is satisfied:
(GA) (Commutativity) For every x, y ∈ G, x ∗ y = y ∗ x.

Examples. Note that all the groups in Examples (1) and (3)–(5) above are abelian, while the
groups in Examples (6) and (7) above are not.

1.2. Elementary Properties

There are a few simple consequences which can be easily deduced from the definition of a group.

Proposition 1.1. Suppose that (G, ∗) is a group, and that a, x, y ∈ G. Then
(i) (Left cancellation) if a ∗ x = a ∗ y, then x = y; and
(ii) (Right cancellation) if x ∗ a = y ∗ a, then x = y.

Proof. (i) If a ∗ x = a ∗ y, then a′ ∈ G by (G4) and

(1.1) a′ ∗ (a ∗ x) = a′ ∗ (a ∗ y).

On the other hand, by (G2), (G4) and (G3),

(1.2) a′ ∗ (a ∗ x) = (a′ ∗ a) ∗ x = e ∗ x = x.

Similarly

(1.3) a′ ∗ (a ∗ y) = y.

The result now follows on combining (1.1)–(1.3).
(ii) can be proved in a similar way. ©

Proposition 1.2. Suppose that (G, ∗) is a group. Then the identity element e is unique.

Proof. Note that if e1 and e2 both satisfy the requirements for being the identity element, then
e1 = e1 ∗ e2 = e2. ©

Proposition 1.3. Suppose that (G, ∗) is a group, and that x ∈ G. Then the inverse element x′ is
unique. On the other hand, for every x, y ∈ G, we have (x ∗ y)′ = y′ ∗ x′.

Proof. Note that if x1 and x2 both satisfy the requirements for being the inverse element of x,
then x ∗ x1 = e = x ∗ x2, so that x1 = x2 in view of left cancellation. On the other hand,

(y′ ∗ x′) ∗ (x ∗ y) = . . . = e and (x ∗ y) ∗ (y′ ∗ x′) = . . . = e,

so that y′ ∗ x′ satisfies the requirements for being the inverse of x ∗ y. It follows that (x ∗ y)′ = y′ ∗ x′

by the uniqueness of inverse. ©
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1.3. Subgroups

Recall that (Z,+) forms a group, and so does ({0},+). Another example is that (R \ {0}, ·) forms
a group, and so does ({±1}, ·). Clearly {0} ⊂ Z and {±1} ⊂ R \ {0}. We can therefore say that
({0},+) “is smaller than” (Z,+), and that ({±1}, ·) “is smaller than” (R \ {0}, ·).

Definition. Suppose that (G, ∗) is a group, and that H ⊆ G. Then we say that H is a subgroup
of G if H, under the same binary operation ∗, forms a group.

Examples. (1) ({0},+) is a subgroup of (Z,+).
(2) ({±1}, ·) is a subgroup of (R \ {0}, ·).
(3) Consider the group (Z8,+), where + denotes addition modulo 8. If H = {0, 2, 4, 6}, then

(H,+), where + again denotes addition modulo 8, is a subgroup of (Z8,+).
(4) (Z8,+) forms a group. (Z4,+) also forms a group. On the other hand,

Z4 = {0, 1, 2, 3} ⊂{ 0, 1, 2, 3, 4, 5, 6, 7} = Z8.

So (Z4,+) is a subgroup of (Z8,+). What is wrong with this argument? Find two mistakes.
(5) Any group is a subgroup of itself. On the other hand, the set {e}, together with the group

operation, forms a subgroup. These are usually called the trivial subgroups.

Definition. Suppose that (G, ∗) is a group, and that H is a subgroup of G. Suppose further that
H *= {e} and H *= G. Then we say that H is a proper subgroup of G.

Theorem 1.4. Suppose that the group (G, ∗) has identity element e, and that H ⊆ G. Then H is
a subgroup of G if the following conditions are satisfied:

(S1) e ∈ H.
(S2) For every x, y ∈ H, x ∗ y ∈ H.
(S3) For every x ∈ H, x′ ∈ H.

Proof. (G1) for H follows from (S2). (G2) for H is weaker than (G2) for G. (G3) for H follows
from (G3) for G and (S1). Finally (G4) for H follows from (G4) for G and (S3). ©

Theorem 1.5. Suppose that (G, ∗) is a group, and that H is a non-empty subset of G. Then H is
a subgroup of G if the following condition is satisfied:

(SG) For every x, y ∈ H, x ∗ y′ ∈ H.

Proof. Take any x ∈ H. Then by (SG), e = x ∗ x′ ∈ H, so that (S1) follows. For every x ∈ H, it
follows from (S1) and (SG) that x′ = e ∗ x′ ∈ H, so that (S3) follows. Finally, for every x, y ∈ H, it
follows from (S3) that y′ ∈ H; in view of (SG), x ∗ y = x ∗ (y′)′ ∈ H, so that (S2) follows. The result
now follows from Theorem 1.4. ©

Examples. (1) Let H = {3n : n ∈ Z}. Then (H,+) is a subgroup of (Z,+).
(2) Let H = {2n : n ∈ Z}. Then (H, ·) is a subgroup of (R \ {0}, ·).

In many instances, it is convenient to use multiplicative notation to describe the binary operation ∗,
i.e. we write xy instead of x ∗ y. If x is an element of a group G, we can then define x0 = e and
x1 = x; for every n ∈ N, we define xn+1 = xnx and x−n = (x′)n. Then it is not difficult to prove
that for every m, n ∈ Z, we have xmxn = xm+n and (xm)n = xmn.

Remark. Suppose that x and y are elements of a group. It is not always true that (xy)n = xnyn.
Try to find a counterexample in the multiplicative group M∗

2,2(R). On the other hand, try to convince
yourself that equality always holds for abelian groups.

1.4. Special Subgroups

Our first type of subgroups are obtained by building from a particular element of the group.

Theorem 1.6. Suppose that (G, ∗) is a group, and that a ∈ G. Suppose further that

〈a〉 = {an : n ∈ Z}.

Then 〈a〉 is a subgroup of G.
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Proof. Clearly 〈a〉 is non-empty. Suppose that x, y ∈ 〈a〉. Then there exist m, n ∈ Z such that
x = am and y = an. Then x ∗ y′ = ama−n = am−n ∈ 〈a〉, since m − n ∈ Z. The result now follows
from Theorem 1.5. ©

Definition. We say that the group 〈a〉 in Theorem 1.6 is the cyclic subgroup of G generated by
the element a.

Proposition 1.7. Suppose that (G, ∗) is a group, and that a ∈ G. Suppose further that H is a
subgroup of G, and that a ∈ H. Then 〈a〉 ⊆ H. In other words, 〈a〉 is the smallest subgroup of G
containing a.

Proof. Clearly a0 ∈ H, since a0 = e and H is a group. Suppose that n ∈ N and n ! 2. Then
since H is a group and a2 = aa, . . . , an = an−1a, it can be shown by induction that an ∈ H for every
n ∈ N. Suppose now that −n ∈ N. Then a−n ∈ H, and since an is the inverse of a−n, we must have
an ∈ H. It follows that an ∈ H for every n ∈ Z. ©

Example. Consider the subgroup 〈4〉 of (Z,+). Note carefully that we have 42 = 4 + 4 and
4−3 = (−4) + (−4) + (−4). It is not difficult to see that 〈4〉 = {4n : n ∈ Z}.

Theorem 1.8. Suppose that (G, ∗) is a group with identity element e, and that a ∈ G. Then
precisely one of the following is true:

(i) For every n ∈ N, an *= e. Also, for every m, n ∈ Z, am *= an. The set 〈a〉 is infinite.
(ii) There exists a smallest m ∈ N such that 〈a〉 = {a, a2, . . . , am}.

Proof. Either (i) for every n ∈ N, an *= e; or (ii) there exists n ∈ N such that an = e; but not
both.

(i) Suppose on the contrary that there exist m, n ∈ Z such that m *= n and am = an. Without
loss of generality, assume that m > n. Then clearly am−n = ama−n = am(an)′ = am(am)′ = e, a
contradiction.

(ii) Consider the set S = {n ∈ N : an = e}. Since S is a non-empty set of natural numbers,
it has a smallest element, m say. Then am = e. Now every n ∈ Z can be written in the form
n = mq + r, where q, r ∈ Z and 0 " r < m. Then an = amqar = (am)qar = eqar = ar, so clearly
〈a〉 ⊆ {e, a, a2, . . . , am−1}. Obviously {e, a, a2, . . . , am−1} ⊆〈 a〉. So

〈a〉 = {e, a, a2, . . . , am−1} = {a, a2, . . . , am}.
Suppose on the contrary that the elements a, a2, . . . , am are not distinct. Then there exist r, s ∈ N
such that 1 " s < r " m such that as = ar. Then it is not difficult to show that ar−s = e. But
r − s < m, and this contradicts the minimality of m. ©

Examples. (1) Consider the group (Z8,+). Then 〈6〉 = {6, 4, 2, 0}.
(2) Consider the multiplicative group M∗

2,2(R) of invertible matrices with real entries. Then
〈(

0 1
−1 0

)〉
=

{(
0 1

−1 0

)
,

(
−1 0

0 −1

)
,

(
0 −1
1 0

)
,

(
1 0
0 1

)}
.

(3) Consider the subgroup 〈3〉 of (R\{0}, ·). Then it is clear that 3 < 32 < 33 < . . ., so that 3n *= 1
for any n ∈ N. It follows that 〈3〉 is an infinite subgroup of (R \ {0}, ·).

Subgroups can also sometimes be obtained by imposing extra conditions.

Proposition 1.9. Suppose that (G, ∗) is a group, and that a ∈ G. Suppose further that

H = {x ∈ G : a ∗ x = x ∗ a}.
Then H is a subgroup of G.

Proof. Clearly H is non-empty. Suppose that x, y ∈ H. Then a ∗ x = x ∗ a and a ∗ y = y ∗ a. It
follows that (y′ ∗ a) ∗ y = y′ ∗ (a ∗ y) = y′ ∗ (y ∗ a) = (y′ ∗ y) ∗ a = a. It is not difficult to deduce that
y′ ∗ a = a ∗ y′. Then a ∗ (x ∗ y′) = (a ∗ x) ∗ y′ = (x ∗ a) ∗ y′ = x ∗ (a ∗ y′) = x ∗ (y′ ∗ a) = (x ∗ y′) ∗ a, so
that x ∗ y′ ∈ H. The result now follows from Theorem 1.5. ©

Proposition 1.10. Suppose that (G, ∗) is a group. Then

Z(G) = {x ∈ G : a ∗ x = x ∗ a for every a ∈ G}
is a subgroup of G.
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Proof. Clearly H is non-empty, since e ∈ H. Suppose that x, y ∈ H. Then a ∗ x = x ∗ a and
a ∗ y = y ∗ a for every a ∈ G. It follows that (y′ ∗ a) ∗ y = y′ ∗ (a ∗ y) = y′ ∗ (y ∗ a) = (y′ ∗ y) ∗ a = a
for every a ∈ G. It is not difficult to deduce that y′ ∗ a = a ∗ y′ for every a ∈ G. Then

a ∗ (x ∗ y′) = (a ∗ x) ∗ y′ = (x ∗ a) ∗ y′ = x ∗ (a ∗ y′) = x ∗ (y′ ∗ a) = (x ∗ y′) ∗ a

for every a ∈ G, so that x ∗ y′ ∈ H. The result now follows from Theorem 1.5. ©

Definition. The group Z(G) is called the centre of the group G.

Remark. Note that Z(G) contains precisely those elements of G which commute with all elements
of G.
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Problems for Chapter 1

1. Consider the set R of all real numbers. Define an operation ∗ on R as follows. For every x, y ∈ R,
let x ∗ y = x + y + 1. Show that (R, ∗) forms an abelian group.

2. Let G = {(x, y) : x, y ∈ R \ {0}}. Define an operation ∗ on R as follows. For (x, y), (u, v) ∈ G,
let (x, y) ∗ (u, v) = (xu, yv). Show that (R, ∗) forms an abelian group.

3. Describe the following subgroups:
(i) 〈1〉 in (R,+)
(ii) 〈1〉 in (R \ {0}, ·)

(iii)
〈(

1 0
1 1

)〉
in the multiplicative group M∗

2,2(R)

4. Let H denote the set of all positive real numbers. Is H a subgroup of (R \ {0}, ·)? Justify your
assertion.

5. Suppose that (G, ∗) is a group, and that G contains precisely 3 elements. Prove that G is abelian.
6. Suppose that (G, ∗) is a group, and that G contains precisely 4 elements. Prove that G is abelian.

[Hint : Construct the group tables.]
7. Suppose that (G, ∗) is an abelian group, and that H and K are subgroups of G. Prove that

H ∗K = {h ∗ k : h ∈ H ∧ k ∈ K}
is a subgroup of G.

8. Suppose that (G, ∗) is a group, and that H = {x ∈ G : x ∗ x = e}.
(i) Suppose further that (G, ∗) is abelian. Prove that H is a subgroup of G.
(ii) Does the same result hold if (G, ∗) is not abelian? Justify your assertion.

9. Suppose that H and K are subgroups of a group G.
(i) Prove that H ∩K is a subgroup of G.
(ii) Is H ∪K a subgroup of G? Justify your assertion.


