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2.1. Order

Definition. Suppose that a group G has a finite number of elements. Then we say that G is a
finite group, and the number of elements G, denoted by |G|, is called the order of the group G. Also,
we say that G is an infinite group if the number of elements of G is infinite.

Examples. (1) If G = Z8, with addition modulo 8, then |G| = 8.
(2) The group (Z,+) is infinite.

Definition. Suppose that G is a group, and that a ∈ G. Suppose further that 〈a〉 is finite. Then
we say that the order of a is |〈a〉|. On the other hand, if 〈a〉 is infinite, then we say that a is of infinite
order.

Remark. If 〈a〉 is finite, then it can be shown that the order of a is the smallest natural number
n ∈ N such that an = e.

Examples. (1) In (Z8,+), the elements 1, 3, 5 and 7 are all of order 8, the elements 2 and 6 have
order 4, the element 4 has order 2 and the element 0 has order 1.

(2) Is there an element of finite order in (Z,+)?

Note that in Example (1) above, the order of each element of (Z8,+) is a divisor of the order of
(Z8,+). This turns out to be true whenever the group in question is finite.

2.2. Lagrange’s Theorem

Theorem 2.1 (Lagrange). Suppose that G is a finite group, and that H is a subgroup of G. Then
|H| divides |G|.

Proof. The proof is a little lengthy, but can essentially be divided into three parts. We shall (i)
use the subgroup H to construct an equivalence relation on the group G; (ii) show that H is one of
the equivalence classes; and finally (iii) show that all the equivalence classes have the same number
of elements.

(i) Define a relation R on G in the following way: For every x, y ∈ G, we say that xRy if x′ ∗y ∈ H.
Clearly, for every x ∈ G, we have xRx, for x′ ∗ x = e ∈ H. Hence R is reflexive. On the other hand,
if x, y ∈ G and xRy, then x′ ∗ y ∈ H, so that y′ ∗ x = (x′ ∗ y)′ ∈ H, whence yRx. Hence R is
symmetric. Furthermore, if x, y, z ∈ G and xRy and yRz, then x′ ∗ y ∈ H and y′ ∗ z ∈ H, so that
x′ ∗ z = (x′ ∗ y) ∗ (y′ ∗ z) ∈ H, whence xRz. Hence R is transitive. It follows that R is an equivalence
relation on G.

(ii) It now follows that R partitions G into a finite disjoint union of equivalence classes. Note now
that the equivalence class of G containing the identity element e is

{y ∈ G : eRy} = {y ∈ G : e′ ∗ y ∈ H} = H.

(iii) Suppose now that K is one of the equivalence classes. Let a ∈ K. Then for every x ∈ H,
a′ ∗ (a ∗ x) = x ∈ H, so that aR(a ∗ x), whence a ∗ x ∈ K. We now define φ : H → K by writing
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φ(x) = a ∗ x ∈ K for every x ∈ H. It is easy to see that φ is one-to-one, for if x, y ∈ H and
φ(x) = φ(y), then x = y in view of left cancellation. On the other hand, φ is onto, for if u ∈ K, then
aRu, so that a′ ∗ u ∈ H. Let x ∈ H such that a′ ∗ u = x. Then clearly u = a ∗ x, so that u = φ(x).

It now follows that |H| divides |G|. ©

Corollary 2.2. Suppose that G is a finite group, and that a ∈ G. Then the order of a divides |G|.

Proof. Simply note that the order of a is the order of 〈a〉. On the other hand, 〈a〉 is a subgroup
of G by Theorem 1.6. The result now follows from Theorem 2.1. ©

2.3. Cyclic Groups

Definition. A group G is said to be cyclic if there exists a ∈ G such that G = 〈a〉.

Examples. (1) (Z8,+) = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉.
(2) ({±1}, ·) = 〈−1〉.
(3) (Z,+) = 〈1〉.
(4) (R \ {0}, ·) is not cyclic. To show this, take any a ∈ R \ {0}. Then clearly |a|1/2 ∈ R \ {0} but

|a|1/2 (∈ 〈a〉. It follows that (R \ {0}, ·) (= 〈a〉 for any a ∈ R.

Proposition 2.3. Suppose that G is a group of order p, where p is a prime. Then G is cyclic.

Proof. Let a ∈ G such that a (= e. Then 〈a〉 (= {e}, so that |〈a〉| (= 1. On the other hand, 〈a〉 is
a subgroup of G by Theorem 1.6, and so |〈a〉| divides p by Theorem 2.1. It follows that 〈a〉 = G. ©

Proposition 2.4. A finite group G is cyclic if and only if G contains an element of order |G|.

Proof. Let a ∈ G be of order |G| = n. Then a, a2, . . . , an ∈ G are distinct, so that

G = {a, a2, . . . , an} ⊆〈 a〉.
It follows that G = 〈a〉. On the other hand, if G does not contain any element of order |G|, then for
every x ∈ G, 〈x〉 = {x, x2, . . . , xm} for some m ∈ N where m is a proper divisor of |G| by Corollary 2.2,
so that m < |G|. It follows that 〈x〉 (= G. Hence G is not cyclic. ©

Proposition 2.5. Suppose that G is a cyclic group. Then G is abelian.

Proof. Let a ∈ G such that G = 〈a〉. Then for every x, y ∈ G, there exist m, n ∈ Z such that
x = am and y = an. It follows that x ∗ y = aman = am+n = anam = y ∗ x. Hence G is abelian. ©

Proposition 2.6. Suppose that G is a cyclic group, and that H is a subgroup of G. Then H is
cyclic.

Proof. Let G = 〈a〉, where a ∈ G. If H = {e}, then clearly H is cyclic. Suppose now that
H (= {e}. Then there exists n ∈ Z \ {0} such that an, a−n ∈ H. Let m = min{n ∈ N : an ∈ H}.
We shall show that H = 〈am〉. Since am ∈ H and H is a group, we must have 〈am〉 ⊆ H. It
therefore suffices to show that H ⊆ 〈am〉. Suppose on the contrary that x ∈ H and x (∈ 〈am〉. Since
x ∈ G = 〈a〉, there exists n ∈ Z such that x = an. Let q, r ∈ Z such that n = mq + r and 0 ! r < m.
Since x (∈ 〈am〉, we must have r (= 0. Note now that ar = an−mq = an(a−m)q ∈ H. But r < m,
contradicting the minimality of m. ©
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Problems for Chapter 2

1. Suppose that (G, ∗) is an abelian group, and that x, y, z ∈ G. Suppose further that the orders
of x, y, z are 3, 4, 6 respectively. What are the orders of the elements x ∗x, y ∗ y, z ∗ z, x ∗ y, x ∗ z and
y ∗ z? Justify your assertions.

2. Suppose that G is a finite group of order n and with identity element e. Determine which
elements x ∈ G satisfy xn = e, and justify your assertion.

3. Suppose that G is an abelian group.
(i) Suppose further that H = {x ∈ G : x is of finite order}. Prove that H is a subgroup of G.
(ii) Let n ∈ N be fixed. Is K = {x ∈ G : x is of order n} a subgroup of G? Justify your

assertion.
4. Suppose that (G, ∗) is a group with identity element e. Suppose further that x ∗ x = e for every

x ∈ G. Prove that G is abelian.
5. Prove that (Q,+) is a group, and that it is not cyclic.


