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In this section, we study more examples of groups. We first study the e↵ect of multiplication on
integers modulo n, where n 2 N. We then look at permutation groups, a very important class in the
study of group theory. To conclude the section, we shall have a brief look at dihedral groups, which
are motivated by geometric considerations.

3.1. The Groups Z⇤
n

Consider the set Z8 = {0, 1, 2, 3, 4, 5, 6, 7}, together with multiplication modulo 8. Clearly, this
does not form a group. To see this, it is clear that the only candidate for multiplicative identity is 1.
It then follows that the elements 0, 2, 4, 6 have no inverse.

Suppose now that we remove these “troublemakers”, and consider instead the set Z⇤
8 = {1, 3, 5, 7},

again with multiplication modulo 8. It is then not too di�cult to see that we now have a group.

Definition. We write Z⇤
n = {x 2 Zn : x has a multiplicative inverse in Zn} for every n 2 N and

n > 2.

Proposition 3.1. Suppose that n 2 N \ {1}. Then x 2 Z⇤
n if and only if the greatest common

divisor (x, n) = 1.

Proof. It is well known that (x, n) = 1 if and only if there exist y, m 2 Z such that xy + nm = 1
in Z, if and only if there exists y 2 Z such that xy ⌘ 1 (mod n), if and only if x 2 Z⇤

n. �

Examples. (1) Z⇤
12 = {1, 5, 7, 11}.

(2) Suppose that p 2 N is prime. Then Z⇤
p = {1, 2, ..., p � 1}.

Proposition 3.2. Suppose that n 2 N \ {1}, and that · denotes multiplication modulo n. Then
(Z⇤

n, ·) is an abelian group.

Proof. (G4) is obvious from the definition of Z⇤
n. Also, (G1) holds, for if x, y 2 Z⇤

n, then y0 · x0 is
clearly the inverse of x · y, so that x · y 2 Z⇤

n. (G2) follows from the associativity of multiplication
modulo n. (G3) follows, as the element 1 is clearly in Z⇤

n. Finally (GA) follows from the commutativity
of multiplication modulo n. �

3.2. Permutation Groups

Let X be a non-empty set. A permutation � on X is a function � : X ! X which is one-to-one
and onto. Furthermore, if x 2 X, we denote by x� the image of x under the permutation �.

It is not di�cult to see that if � : X ! X and  : X ! X are both permutations on X, then
� : X ! X, defined by x(� ) = (x�) for every x 2 X, i.e. � followed by  , is also a permutation
on X.

Theorem 3.3. Suppose that X is a non-empty set, and ⇡(X) denotes the set of all permutations
on X. Then ⇡(X) forms a group.
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12 3. FURTHER EXAMPLES OF GROUPS

Remark. We have omitted reference to the group operation, which is clearly composition of
functions.

Proof of Theorem 3.3. (G1) holds, for the composition of two one-to-one and onto functions
from X to X is also a one-to-one and onto function from X to X. (G2) follows from the associativity
of composition of functions. (G3) is satisfied, since the function i : X ! X, defined by xi = x for
every x 2 X is clearly a permutation. Finally, (G4) follows, for if � : X ! X is one-to-one and onto,
it is well known that an inverse function exists and that it is one-to-one and onto. �

We are interested in the special case when X is finite. Then we can assume, without loss of
generality, that X = {1, 2, . . . , n}, where n 2 N. We now let Sn denote the set of all permutations on
the set {1, 2, . . . , n}.

Corollary 3.4. For every n 2 N, Sn forms a group.

Definition. For every n 2 N, the group Sn is called the symmetric group on n symbols.

Proposition 3.5. For every n 2 N, |Sn| = n!.

Proof. There are n choices for 1�. For each such choice, there are n � 1 choices for 2�. And so
on. �

To represent particular elements of Sn, there are various notations. For example, we can use the
notation ✓

1 2 . . . n
1� 2� . . . n�

◆

to denote the permutation �.

Example. In S4, ✓
1 2 3 4
2 4 1 3

◆

denotes the permutation �, where 1� = 2, 2� = 4, 3� = 1 and 4� = 3. On the other hand,

(3.1)

✓
1 2 3 4
2 4 1 3

◆ ✓
1 2 3 4
3 2 4 1

◆
=

✓
1 2 3 4
2 1 3 4

◆
.

We may also use the cycle notation. To illustrate this, we continue with the same example.

Examples. In S4, the permutations
✓

1 2 3 4
2 4 1 3

◆
and

✓
1 2 3 4
3 2 4 1

◆

can be represented respectively by the cycles (1 2 4 3) and (1 3 4). Note that in the latter case, since
the image of 2 is 2, it is not necessary to include this in the cycle. Furthermore, the information (3.1)
can be represented in cycle notation by

(1 2 4 3)(1 3 4) = (1 2).

We also say that the cycles (1 2 4 3), (1 3 4) and (1 2) have lengths 4, 3 and 2 respectively.
(2) In S6, the permutation

✓
1 2 3 4 5 6
2 4 1 3 6 5

◆

can be represented in cycle notation as (1 2 4 3)(5 6).
(3) In S4, we have (1 2 4 3) = (1 2)(1 4)(1 3).

The last example motivated the following notion.

Definition. Suppose that n 2 N. A permutation in Sn that interchanges two numbers among the
elements of {1, 2, . . . , n} and leaves all the others unchanged is called a transposition.

Remark. The following are obvious:
(1) A transposition can be represented by a 2-cycle.
(2) A transposition is its own inverse.
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Theorem 3.6. Suppose that n 2 N.

(i) Every permutation in Sn can be written as a product of disjoint cycles. Furthermore, the
order of the permutation is the least common multiple of the lengths of the disjoint cycles.

(ii) For every subset {x1, x2, . . . , xk} of the set {1, 2, . . . , n}, where the elements x1, x2, . . . , xk

are distinct, we have

(x1 x2 . . . xk) = (x1 x2)(x1 x3) . . . (x1 xk);

in other words, every cycle can be written as a product of transpositions.
(iii) Consequently, every permutation in Sn can be written as a product of transpositions.

Proof. (i) Let � 2 Sn. Define a relation R on the set {1, 2, . . . , n} in the following way: For
x, y 2 {1, 2, . . . , n}, we say that xRy if there exists k 2 Z such that y = x�k. It is not di�cult to see
that R is an equivalence relation on the set {1, 2, . . . , n}. It follows that R partitions {1, 2, . . . , n}
into a disjoint union Y1 [ . . . [ Ym. For each j = 1, 2, . . . , m, it is easy to see that x� 2 Yj for every
x 2 Yj . It follows that if we now define the function �j : {1, 2, . . . , n} ! {1, 2, . . . , n} by writing

x�j =

⇢
x�, if x 2 Yj ,
x, if x 62 Yj ,

then the function �, restricted to Yj , is a cycle that involves only the elements of Yj . Furthermore,
� = �1 . . .�m, a product of disjoint cycles. Suppose now that for every j = 1, 2, . . . , m, the order
of �j is dj . Let D = d1 . . . dm. Then clearly �D = i. It follows that the order of � must be a
divisor of D. Furthermore, since the di↵erent permutations �j permute elements in the di↵erent
subsets Yj of {1, 2, . . . , n}, the order of � must also be a multiple of each of d1, . . . , dm. The smallest
natural number that satisfies these requirements is clearly the least common multi ple of the numbers
d1, . . . , dm. Note now that the order of a cycle is its length.

(ii) can be checked easily.
(iii) follows on combining (i) and (ii). �
Remark. The first part of Theorem 3.6(i) can also be proved in the following way. Let

B = {j 2 {1, . . . , n} : j� 6= j}.

If B = ;, then the proof is complete. If B 6= ;, let m be the smallest element in B. We now let
B1 = {m�k : k 2 Z} and B2 = {1, . . . , n} \ B1. Define a permutation �1 : {1, . . . , n} ! {1, . . . , n} by
writing

x�1 =

⇢
x�, if x 2 B1,
x, if x 2 B2.

Also, define a permutation �2 : {1, . . . , n} ! {1, . . . , n} by writing

x�2 =

⇢
x, if x 2 B1,
x�, if x 2 B2.

Then it is not di�cult to see that � = �1�2, that �1 is a cycle that is disjoint from the permutation �2.
We now repeat the argument on B2, and note that since {1, . . . , n} is finite, this process must
terminate after a finite number of repetitions.

Example. In S9, the permutation
✓

1 2 3 4 5 6 7 8 9
3 2 5 1 7 8 4 9 6

◆

can be written in cycle notation as (1 3 5 7 4)(6 8 9). By Theorem 3.6(ii), we have

(1 3 5 7 4) = (1 3)(1 5)(1 7)(1 4) and (6 8 9) = (6 8)(6 9).

Hence the permutation can be represented by (1 3)(1 5)(1 7)(1 4)(6 8)(6 9). Note now that the
inverse of (1 3)(1 5)(1 7)(1 4) is (1 4)(1 7)(1 5)(1 3), and the inverse of (6 8)(6 9) is (6 9)(6 8). It is
not di�cult to see that the inverse of (1 3)(1 5)(1 7)(1 4)(6 8)(6 9) is (6 9)(6 8)(1 4)(1 7)(1 5)(1 3);
in other words, the inverse of (1 3 5 7 4)(6 8 9) is (6 9 8)(1 4 7 5 3) = (9 8 6)(4 7 5 3 1). In view of
Theorem 3.6(i), we also have that the order of the permutation is 15.

Definition. Suppose that n 2 N and n > 2. Then a permutation in Sn is said to be odd (resp.
even) if it is representable as the product of an odd (resp. even) number of transpositions.
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Remarks. (1) It can be shown that no permutation can be simultaneously odd and even.
(2) Note that an odd permutation can have even order. Consider, for example, a transposition.

Definition. Suppose that n 2 N and n > 2. We denote by An the set of all even permutations
in Sn.

Theorem 3.7. Suppose that n 2 N and n > 2. Then

(i) An is a subgroup of Sn; and
(ii) |An| = n!/2.

Proof. (i) Clearly An is non-empty, since the identity permutation i is obviously even. Suppose
now that �, 2 An. Then clearly �0 2 An. It follows that  � �0 = �0 2 An. It now follows from
Theorem 1E that An is a subgroup of Sn.

(ii) If � 2 An, then clearly �(1 2) 2 Sn \ An. Define f : An ! (Sn \ An) by writing f(�) = �(1 2)
for every � 2 An. It is not di�cult to show that f is one-to-one and onto. The result follows. �

Definition. For every n 2 N \ {1}, the group An is called the alternating group on n symbols.

3.3. Dihedral Groups

Suppose that we draw a square on a cardboard, carefully label the four corners (1, 2, 3, 4), cut the
square out, throw it in the air, and then put it back without looking. Then either the square can
end up placed similarly as before, or some or all of its corners end up di↵erently from before. The
following are two examples. The picture on the left shows that the square has been rotated clockwise
by 90�, while the picture on the right shows that the square has been flipped (reflected) about the
vertical axis.

(a) An is a subgroup of Sn; and
(b) |An| = n!/2.

Proof. (a) Clearly An is non–empty, since the identity permutation i is obviously even. Suppose now
that �, 2 An. Then clearly �0 2 An. It follows that  � �0 = �0 2 An. It follows from Theorem 1E
that An is a subgroup of Sn.

(b) If � 2 An, then clearly �(1 2) 2 Sn \ An. Define f : An ! (Sn \ An) by writing f(�) = �(1 2)
for every � 2 An. It is not di�cult to show that f is one–to–one and onto. The result follows. �
Definition. For every n 2 N \ {1}, the group An is called the alternating group on n symbols.

§3.3. Dihedral Groups

Suppose that we draw a square on a cardboard, carefully label the four corners (1, 2, 3, 4), cut the square
out, throw it in the air, and then put it back without looking. Then either the square can end up placed
similarly as before, or some or all of its corners end up di↵erently from before. The following are two
examples. The picture on the left shows that the square has been rotated clockwise by 90�, while the
picture on the right shows that the square has been flipped (reflected) about the vertical axis:

3 2 3 2

2 1 2 3

·

3 4 1 4

4 1 4 1

We can interpret the left–hand picture as representing the permutation (1 2 3 4) of S4 and the right–hand
picture as representing the permutation (1 4)(2 3) of S4. Now write ⇢ = (1 2 3 4) and �1 = (1 4)(2 3).
We can also write �2 = (1 2)(3 4) for the reflection across the other axis. We can then easily check that
the possibilities can be represented by the eight elements below:

(1) i
(2) ⇢ = (1 2 3 4)
(3) ⇢2 = (1 3)(2 4)
(4) ⇢3 = (1 4 3 2)
(5) �1 = (1 4)(2 3)
(6) �1⇢ = (2 4)
(7) �1⇢2 = (1 2)(3 4)
(8) �1⇢3 = (1 3)
Note that we have, for example, �2 = (1 2)(3 4) = �1⇢2. Note also that the permutations like

✓
1 2 3 4
1 3 } }

◆

are impossible (the corner 2 is always next to the corner 1; since the corner 1 ends up at position 1, the
corner 2 can only end up at position 2 or 4, but not 3 which is diagonally opposite to 1).

We can check that the set

D4 = {i, ⇢, ⇢2, ⇢3,�1,�1⇢,�1⇢
2,�1⇢

3}

11

We can interpret the left hand picture as representing the permutation (1 2 3 4) of S4 and the
right hand picture as representing the permutation (1 4)(2 3) of S4. Now write ⇢ = (1 2 3 4) and
�1 = (1 4)(2 3). We can also write �2 = (1 2)(3 4) for the reflection across the other axis. We can
then easily check that the possibilities can be represented by the eight elements below:

(3.2)
i, ⇢ = (1 2 3 4), ⇢2 = (1 3)(2 4), ⇢3 = (1 4 3 2),
�1 = (1 4)(2 3), �1⇢ = (2 4), �1⇢2 = (1 2)(3 4), �1⇢3 = (1 3).

Note that we have, for example, �2 = (1 2)(3 4) = �1⇢2.
Note also that the permutations like

✓
1 2 3 4
1 3 } }

◆

are impossible. The corner 2 is always next to the corner 1. Since the corner 1 ends up at position 1,
the corner 2 can only end up at position 2 or 4, but not 3 which is diagonally opposite to 1.

We can check that the set

D4 = {i, ⇢, ⇢2, ⇢3,�1,�1⇢,�1⇢
2,�1⇢

3}
forms a proper subgroup of S4. The group D4 is called a dihedral group.
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We can describe the dihedral group Dn for every n 2 N with n > 3 in a similar way. We start with
a regular n-gon and label the vertices 1 to n consecutively. We then write ⇢ = (1 2 . . . n) and take
� to denote a fixed reflection. Then it can be proved that for every n > 3,

Dn = {i, ⇢, ⇢2, . . . , ⇢n�1,�,�⇢,�⇢2, . . . ,�⇢n�1}
is a subgroup of Sn. Note also that for every n 2 N with n > 3, |Dn| = 2n and |Sn| = n!. It follows
that D3 = S3 and that for every n > 4, Dn is a proper subgroup of Sn.
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Problems for Chapter 3

1. Construct the group table for Z⇤
30, and calculate the order of each of the elements.

2. For each of the following permutations in S9, express the permutation as a product of disjoint
cycles and calculate the order of the permutation. Furthermore, express each permutation as a
product of transpositions, and state whether the permutation is odd or even.

(i)

✓
1 2 3 4 5 6 7 8 9
2 3 1 7 4 8 5 9 6

◆

(ii)

✓
1 2 3 4 5 6 7 8 9
4 6 5 1 2 8 9 3 7

◆

3. By expressing each of its elements as a product of disjoint cycles, find all the possible orders of
elements of S4.

4. By investigating all the possible cycle structures of its elements when expressed as products of
disjoint cycles, find all the possible orders of elements of S8.

5. Show that A3 is cyclic.

6. Show that A4 is not abelian and not cyclic. How about An for n > 4? Justify your assertion.

7. Suppose that (G, ⇤) is a group, and that a 2 G. Define a function � : G ! G by writing
x� = x ⇤ a for every x 2 G. Prove that � : G ! G is a permutation on G.

8. Describe the group D6 in terms of permutations in S6.


