CHAPTER 3

Further Examples of Groups

© W W L Chen, 1991, 1993, 2013.

This chapter is available free to all individuals,

on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.
However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

In this section, we study more examples of groups. We first study the effect of multiplication on
integers modulo n, where n € N. We then look at permutation groups, a very important class in the
study of group theory. To conclude the section, we shall have a brief look at dihedral groups, which
are motivated by geometric considerations.

3.1. The Groups Zj,

Consider the set Zg = {0,1,2,3,4,5,6,7}, together with multiplication modulo 8. Clearly, this
does not form a group. To see this, it is clear that the only candidate for multiplicative identity is 1.
It then follows that the elements 0,2, 4,6 have no inverse.

Suppose now that we remove these “troublemakers”, and consider instead the set Z§ = {1, 3,5, 7},
again with multiplication modulo 8. It is then not too difficult to see that we now have a group.

DEFINITION. We write Z; = {x € Z,, : x has a multiplicative inverse in Z, } for every n € N and
n > 2.

PROPOSITION 3.1. Suppose that n € N\ {1}. Then x € Z} if and only if the greatest common
divisor (z,n) = 1.

Proor. It is well known that (z,n) = 1 if and only if there exist y, m € Z such that xy + nm =1
in Z, if and only if there exists y € Z such that 2y =1 (mod n), if and only if z € Z%. O

ExampLES. (1) Z7, = {1,5,7,11}.
(2) Suppose that p € N is prime. Then Z; = {1,2,...,p — 1}.

PROPOSITION 3.2. Suppose that n € N\ {1}, and that - denotes multiplication modulo n. Then
(Z%,-) is an abelian group.

PRrROOF. (G4) is obvious from the definition of Z7. Also, (G1) holds, for if z,y € Z%, then ¢/ - 2 is
clearly the inverse of x -y, so that x -y € Z%. (G2) follows from the associativity of multiplication
modulo n. (G3) follows, as the element 1 is clearly in Z} . Finally (GA) follows from the commutativity
of multiplication modulo n. (O

3.2. Permutation Groups

Let X be a non-empty set. A permutation ¢ on X is a function ¢ : X — X which is one-to-one
and onto. Furthermore, if z € X, we denote by x¢ the image of x under the permutation ¢.

It is not difficult to see that if ¢ : X — X and v : X — X are both permutations on X, then
¢ : X — X, defined by z(¢)) = (xd)y) for every x € X, i.e. ¢ followed by 1, is also a permutation
on X.

THEOREM 3.3. Suppose that X is a non-empty set, and w(X) denotes the set of all permutations
on X. Then w(X) forms a group.
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REMARK. We have omitted reference to the group operation, which is clearly composition of
functions.

PROOF OF THEOREM 3.3. (G1) holds, for the composition of two one-to-one and onto functions
from X to X is also a one-to-one and onto function from X to X. (G2) follows from the associativity
of composition of functions. (G3) is satisfied, since the function i : X — X, defined by i = = for
every x € X is clearly a permutation. Finally, (G4) follows, for if ¢ : X — X is one-to-one and onto,
it is well known that an inverse function exists and that it is one-to-one and onto. ()

We are interested in the special case when X is finite. Then we can assume, without loss of
generality, that X = {1,2,...,n}, where n € N. We now let S,, denote the set of all permutations on
the set {1,2,...,n}.

COROLLARY 3.4. For every n € N, S,, forms a group.
DEFINITION. For every n € N, the group S, is called the symmetric group on n symbols.
PROPOSITION 3.5. For every n € N, |S,| = nl.

PROOF. There are n choices for 1¢. For each such choice, there are n — 1 choices for 2¢. And so

on. O

To represent particular elements of S,,, there are various notations. For example, we can use the

notation
1 2 ... n
1l 20 ... no
to denote the permutation ¢.

EXAMPLE. In Sy,

QL o~

1 2 3
2 4 1
denotes the permutation ¢, where 1¢p = 2, 2¢p = 4, 3¢ = 1 and 4¢ = 3. On the other hand,
(3.1) 1 2 3 4 12 3 4\ (1 2 3 4
’ 2 4 1 3 324 1) \2 1 3 4/
We may also use the cycle notation. To illustrate this, we continue with the same example.
EXAMPLES. In S4, the permutations
1 2 3 4 d 1 2 3 4
2 4 1 3) ™ 32 41
can be represented respectively by the cycles (1 2 4 3) and (1 3 4). Note that in the latter case, since

the image of 2 is 2, it is not necessary to include this in the cycle. Furthermore, the information (3.1)
can be represented in cycle notation by

(1243)(134)=(12).
We also say that the cycles (1 2 4 3), (1 3 4) and (1 2) have lengths 4, 3 and 2 respectively.

(2) In Sg, the permutation
1 2 3 4 5 6
2 41 3 6 5
6

can be represented in cycle notation as (1 2 4 3)(5 6).
(3) In Sy, we have (1 24 3) = (1 2)(1 4)(1 3).

The last example motivated the following notion.

DEFINITION. Suppose that n € N. A permutation in S,, that interchanges two numbers among the
elements of {1,2,...,n} and leaves all the others unchanged is called a transposition.

REMARK. The following are obvious:
(1) A transposition can be represented by a 2-cycle.
(2) A transposition is its own inverse.
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THEOREM 3.6. Suppose that n € N.
(i) Every permutation in S, can be written as a product of disjoint cycles. Furthermore, the
order of the permutation is the least common multiple of the lengths of the disjoint cycles.
(ii) For every subset {x1,xa,...,2x} of the set {1,2,...,n}, where the elements x1,xa,..., 2k
are distinct, we have

(1 22 ... 2g) = (21 z2)(21 23) ... (21 TL);
in other words, every cycle can be written as a product of transpositions.
(iii) Consequently, every permutation in S, can be written as a product of transpositions.

PrOOF. (i) Let ¢ € S,,. Define a relation R on the set {1,2,...,n} in the following way: For
z,y € {1,2,...,n}, we say that xRy if there exists k € Z such that y = x¢*. It is not difficult to see
that R is an equivalence relation on the set {1,2,...,n}. It follows that R partitions {1,2,...,n}
into a disjoint union Y3 U...UY,,. For each j =1,2,...,m, it is easy to see that x¢ € Y; for every
z €Y. It follows that if we now define the function ¢, : {1,2,...,n} — {1,2,...,n} by writing

| we, ifxey;
xdy{ z, ifzgdy,

then the function ¢, restricted to Y}, is a cycle that involves only the elements of Y;. Furthermore,
¢ = ¢1...0m, a product of disjoint cycles. Suppose now that for every j = 1,2,...,m, the order
of ¢; is dj. Let D = dy...d,,. Then clearly ¢P = i. It follows that the order of ¢ must be a
divisor of D. Furthermore, since the different permutations ¢; permute elements in the different
subsets Y; of {1,2,...,n}, the order of ¢ must also be a multiple of each of dy,...,dy,. The smallest
natural number that satisfies these requirements is clearly the least common multi ple of the numbers
di,...,dn. Note now that the order of a cycle is its length.

(ii) can be checked easily.

(iii) follows on combining (i) and (ii). O

REMARK. The first part of Theorem 3.6(i) can also be proved in the following way. Let
B={je{l,...,n}:jo #j}
If B = (0, then the proof is complete. If B # (0, let m be the smallest element in B. We now let
By = {m¢* : k € Z} and By = {1,...,n} \ By. Define a permutation ¢ : {1,...,n} — {1,...,n} by
writing

| z9, ifzxe B,
md)l_{x, if z € Bs.

Also, define a permutation ¢ : {1,...,n} = {1,...,n} by writing
|z, ifze B,
m¢2—{ z¢, if x € Bs.

Then it is not difficult to see that ¢ = ¢1¢2, that ¢; is a cycle that is disjoint from the permutation ¢s.
We now repeat the argument on Bs, and note that since {1,...,n} is finite, this process must
terminate after a finite number of repetitions.

EXAMPLE. In Sy, the permutation
1 2 3 45 6 7 8 9
325 1 7 8 4 9 6
can be written in cycle notation as (1 35 7 4)(6 8 9). By Theorem 3.6(ii), we have

8
(13574)=(13)(15)(17)(14)
Hence the permutation can be represented by (1 3)(1 5)(1 7)(1 4)(6 8)(6 9). Note now that the
inverse of (1 3)(15)(17)(14)is (1 4)(1 7)(1 5)(1 3), and the inverse of (6 8)(6 9) is (6 9)(6 8). It is
not difficult to see that the inverse of (1 3)(1 5)(1 7)(1 4)(6 8)(6 9) is (6 9)(6 8)(1 4)(1 7)(1 5)(1 3);
in other words, the inverse of (1357 4)(689)is (698)(14753)=(986)(47531). In view of
Theorem 3.6(i), we also have that the order of the permutation is 15.

and (68 9)=(68)(69).

DEFINITION. Suppose that n € N and n > 2. Then a permutation in S, is said to be odd (resp.
even) if it is representable as the product of an odd (resp. even) number of transpositions.
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REMARKS. (1) It can be shown that no permutation can be simultaneously odd and even.
(2) Note that an odd permutation can have even order. Consider, for example, a transposition.

DEFINITION. Suppose that n € N and n > 2. We denote by A,, the set of all even permutations
in S,.

THEOREM 3.7. Suppose that n € N and n > 2. Then

(i) A, is a subgroup of S,; and
(i) |A4,| =n!/2.

Proor. (i) Clearly A,, is non-empty, since the identity permutation i is obviously even. Suppose
now that ¢,¢ € A,. Then clearly ¢’ € A,,. It follows that ¢ o ¢' = ¢'¢p € A,. It now follows from
Theorem 1E that A,, is a subgroup of S,,.

(i) If ¢ € A, then clearly ¢(1 2) € S, \ A,. Define f: A, — (S, \ A,) by writing f(¢) = ¢(1 2)
for every ¢ € A,,. It is not difficult to show that f is one-to-one and onto. The result follows. (O

DEFINITION. For every n € N\ {1}, the group A,, is called the alternating group on n symbols.

3.3. Dihedral Groups

Suppose that we draw a square on a cardboard, carefully label the four corners (1,2,3,4), cut the
square out, throw it in the air, and then put it back without looking. Then either the square can
end up placed similarly as before, or some or all of its corners end up differently from before. The
following are two examples. The picture on the left shows that the square has been rotated clockwise
by 90°, while the picture on the right shows that the square has been flipped (reflected) about the
vertical axis.

3 2 3 5 2

4 1 4 : 1

We can interpret the left hand picture as representing the permutation (1 2 3 4) of Sy and the
right hand picture as representing the permutation (1 4)(2 3) of Sy. Now write p = (1 2 3 4) and
¢1 = (1 4)(2 3). We can also write ¢2 = (1 2)(3 4) for the reflection across the other axis. We can
then easily check that the possibilities can be represented by the eight elements below:

p=(1234), p=(13)24), P =(1432)
b =(1923), d1p=(24), 610> =(12)(34), é1p®=(13).

Note that we have, for example, ¢o = (1 2)(3 4) = ¢1p°.
Note also that the permutations like
1 2 3 4
13 & &

are impossible. The corner 2 is always next to the corner 1. Since the corner 1 ends up at position 1,
the corner 2 can only end up at position 2 or 4, but not 3 which is diagonally opposite to 1.
We can check that the set

(3.2)

D4 - {Za P, p27P37 d)la (blpﬂ ¢1P27 Qslpg}

forms a proper subgroup of S;. The group Dy is called a dihedral group.
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We can describe the dihedral group D,, for every n € N with n > 3 in a similar way. We start with
a regular n-gon and label the vertices 1 to n consecutively. We then write p = (1 2 ... n) and take
¢ to denote a fixed reflection. Then it can be proved that for every n > 3,

Dy ={i,p,p* ... 0" 0. 0p, 007, ... ¢p" '}
is a subgroup of S,,. Note also that for every n € N with n > 3, |D,| = 2n and |S,| = n!. It follows
that D3 = S3 and that for every n > 4, D,, is a proper subgroup of S,,.
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Problems for Chapter 3

1. Construct the group table for Z3,, and calculate the order of each of the elements.

2. For each of the following permutations in Sy, express the permutation as a product of disjoint
cycles and calculate the order of the permutation. Furthermore, express each permutation as a
product of transpositions, and state whether the permutation is odd or even.

(i) 1 23 456 7 89
2317 485 96
(ii) 1 23 456 7 89
4 6 51 2 8 9 37

3. By expressing each of its elements as a product of disjoint cycles, find all the possible orders of

elements of Sy.

4. By investigating all the possible cycle structures of its elements when expressed as products of
disjoint cycles, find all the possible orders of elements of Ss.

5. Show that Az is cyclic.
6. Show that A, is not abelian and not cyclic. How about A,, for n > 4?7 Justify your assertion.

7. Suppose that (G, *) is a group, and that ¢ € G. Define a function ¢ : G — G by writing
x¢ =z * a for every x € G. Prove that ¢ : G — G is a permutation on G.

8. Describe the group Dg in terms of permutations in Sg.



