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Consider the groups (Z4, +) and (Z⇤
10, ·). They have the group tables below.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 1 7 9 3
1 1 7 9 3
7 7 9 3 1
9 9 3 1 7
3 3 1 7 9

Note that for the group table on the right, we have deliberately permuted the elements of Z⇤
10 in

order to highlight the similarity between the two groups. Indeed, if we match the elements 0, 1, 2, 3 of
Z4 respectively with the elements 1, 7, 9, 3 of Z⇤

10, then although the two groups look di↵erent, they
are “essentially the same”.

4.1. Formal Definition

Definition. Suppose that (G, ⇤) and (H, �) are groups. A function � : G ! H is said to be a
group homomorphism if the following condition is satisfied:

(HOM) For every x, y 2 G, (x ⇤ y)� = x� � y�.

Definition. Suppose that (G, ⇤) and (H, �) are groups. A function � : G ! H is said to be a
group isomorphism if the following conditions are satisfied:

(IS1) � : G ! H is a group homomorphism.
(IS2) � : G ! H is one-to-one.
(IS3) � : G ! H is onto.

Definition. We say that two groups G and H are isomorphic if there exists a group isomorphism
� : G ! H.

Examples. (1) (Z4, +) and (Z⇤
10, ·) are isomorphic. To see this, define � : Z4 ! Z⇤

10 by taking
0� = 1, 1� = 7, 2� = 9 and 3� = 3.

(2) (Z2, +) and ({±1}, ·) are isomorphic. To see this, define � : Z2 ! {±1} by taking 0� = 1 and
1� = �1.

(3) It is not di�cult to show that (R, +) and (R+, ·) are groups. Here R+ denotes the set of positive
real numbers. These two groups are isomorphic. To see this, define � : R ! R+ by writing x� = ex

for every x 2 R. Then � is a group homomorphism, as ex+y = exey for every x, y 2 R. On the other
hand, it is well known that the exponential function is a one-to-one and onto function from R to R+.

(4) The set

G =

⇢✓
1 0
0 1

◆
,

✓
0 1

�1 0

◆
,

✓
�1 0

0 �1

◆
,

✓
0 �1
1 0

◆�
,

together with matrix multiplication, forms a group. This group is isomorphic to (Z4, +). To see this,
define � : G ! Z4 to send the four matrices above to 0, 1, 2, 3 respectively.
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(5) The set

G =

⇢✓
1 0
0 1

◆
,

✓
1 0
0 �1

◆
,

✓
�1 0

0 1

◆
,

✓
�1 0

0 �1

◆�
,

together with matrix multiplication, forms a group. This group is isomorphic to (Z⇤
8, ·). To see this,

define � : G ! Z⇤
8 to send the four matrices above to 1, 3, 5, 7 respectively.

(6) Suppose that G is an abelian group, and let n 2 Z. Define � : G ! G by writing x� = xn

for every x 2 G. Then � is clearly a group homomorphism from G to itself. For every x, y 2 G, we
clearly have (xy)� = (xy)n = xnyn = (x�)(y�).

(7) Consider the multiplicative group M⇤
2,2(R) of invertible 2 ⇥ 2 matrices with entries in R.

Consider also the set R \ {0}; this forms a group under multiplication. Now define a function
� : M⇤

2,2(R) ! R\{0} by writing A� = det(A), the determinant of A, for every matrix A 2 M⇤
2,2(R).

This is clearly a group homomorphism, since det(AB) = det(A) det(B) for every A, B 2 M⇤
2,2(R).

(8) This is an example we almost take for granted. Consider the groups (Z, +) and (Z4, +). We
define a function � : Z ! Z4 as follows. For every n 2 Z, we can clearly write n = 4q + r, where
q, r 2 Z and 0 6 r < 4. It is well known that for given n, the integers q and r are uniquely determined.
Now let n� = r. So, for example, 4� = 0, 707� = 3 and (�22)� = 2. It can easily be shown that
� : Z ! Z4 is a group homomorphism. This is called reduction modulo 4.

(9) Similarly, for every n 2 N \ {1}, reduction modulo n is a group homomorphism from Z to Zn.

4.2. Some Properties of Homomorphisms

Proposition 4.1. Suppose that (G, ⇤) and (H, �) are groups, with identity elements eG and eH

respectively. Suppose further that � : G ! H is a group homomorphism. Then eG� = eH .

Proof. Simply note that eG� = (eG ⇤ eG)� = eG� � eG�. �

Theorem 4.2. Suppose that (G, ⇤) and (H, �) are groups, and that � : G ! H is a group homo-
morphism. Then the set

G� = {x� : x 2 G}
is a subgroup of H.

Definition. Suppose that (G, ⇤) and (H, �) are groups, and that � : G ! H is group homomor-
phism. Then the set G� is called the image of the group homomorphism.

Proof of Theorem 4.2. Clearly G� is non-empty. Let x�, y� 2 G�. In view of Theorem 1.5, it
su�ces to show that x� � (y�)0 2 G�. Clearly y0� 2 G�. Since � is a homomorphism, we must have
y� � y0� = (y ⇤ y0)� = eG� = eH by Proposition 4.1. Similarly y0� � y� = (y0 ⇤ y)� = eG� = eH . It
follows that (y�)0 = y0�, so that x� � (y�)0 = x� � y0� = (x ⇤ y0)� 2 G�, as required. �

Example. Suppose that we do not know that

(4.1)

⇢✓
1 0
0 1

◆
,

✓
0 1

�1 0

◆
,

✓
�1 0

0 �1

◆
,

✓
0 �1
1 0

◆�

forms a group under matrix multiplication. We can remedy this in the following way if we know that
(Z4, +) is a group. We define a function � : Z4 ! M⇤

2,2(R) by writing

0� =

✓
1 0
0 1

◆
, 1� =

✓
0 1

�1 0

◆
, 2� =

✓
�1 0

0 �1

◆
, 3� =

✓
0 �1
1 0

◆
;

note Example (4) above. We then show that � is a homomorphism from the group (Z4, +) to the
group M⇤

2,2(R), and deduce our desired result by using Theorem 4.2 to conclude that (4.1) is a
subgroup of M⇤

2,2(R).

This simple example suggests the following improvement of our idea. To be precise, we do not need
the knowledge that H, given by M⇤

2,2(R) in this special example, is a group.

Proposition 4.3. Suppose that (G, ⇤) is a group, and that � is a binary operation on a set S.
Suppose further that the function � : G ! S satisfies the condition that (x ⇤ y)� = x� � y� for every
x, y 2 G. Then the set G� = {x� : x 2 G}, together with the binary operation �, forms a group.
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Sketch of Proof. All we need to do is to show that (G�, �) forms a group. However, we already
know that (G, ⇤) is a group. We can therefore use the property, that (x ⇤ y)� = x� � y� for every
x, y 2 G, to “bring the group structure over” from G to G�. �

Definition. Suppose that (G, ⇤) and (H, �) are groups, and that � : G ! H is group homomor-
phism. Suppose further that eH is the identity element in H. Then the set

ker� = {x 2 G : x� = eH}
is called the kernel of the group homomorphism.

Examples. (1) As in Example (8) above, consider the groups (Z, +) and (Z4, +), and the group
homomorphism reduction modulo 4. The kernel of this group homomorphism is clearly the set
{4x : x 2 Z}.

(2) Consider the group (Z⇤
10, ·). Define � : (Z⇤

10, ·) ! (Z⇤
10, ·) by writing x� = x2 for every x 2 Z⇤

10.
It can easily be shown that this is a group homomorphism. Furthermore, ker� = {1, 9}.

(3) Suppose that G is a finite group of order n. Show that the function � : G ! G, defined by
x� = xn for every x 2 G, is a group homomorphism and that ker� = G.

Theorem 4.4. Suppose that (G, ⇤) and (H, �) are groups, and that � : G ! H is a group homo-
morphism. Then ker� is a subgroup of G.

Proof. Clearly e 2 ker�. Let x, y 2 ker�. In view of Theorem 1.5, it clearly su�ces to show that
x ⇤ y0 2 ker�. Since � is a homomorphism, we must have

y0� = eH � y0� = y� � y0� = (y ⇤ y0)� = eG� = eH

by Proposition 4.1. It follows that (x ⇤ y0)� = x� � y0� = eH � eH = eH , as required. �

Using an argument similar to the proof of Lagrange’s theorem, we can prove the following result.

Proposition 4.5. Suppose that (G, ⇤) and (H, �) are groups, and that � : G ! H is a group
homomorphism. Suppose further that G is finite. Then |G�| divides |G|.

Proof. Define a relation R on G in the following way. For every x, y 2 G, xRy if x� = y�. It
is not di�cult to check that R is an equivalence relation, and that ker� is one of the equivalence
classes. Furthermore, the number of equivalence classes is |G�|. Suppose now that K is one of the
equivalence classes. Let a 2 K. For every x 2 ker�, we have (a ⇤ x)� = a� � x� = a� � eH = a�, so
that (a ⇤ x)Ra, whence a ⇤ x 2 K. We now define f : ker� ! K by writing f(x) = a ⇤ x for every
x 2 ker�. Then clearly f is one-to-one, in view of left cancellation. To show that f is onto, note that
for any y 2 K, (a0 ⇤ y)� = a0� � y� = a0� � a� = eH , so that a0 ⇤ y 2 ker�. Clearly f(a0 ⇤ y) = y. It
now follows that K and ker� have the same number of elements. Hence all the equivalence classes
have the same number of elements, so that |G| = |G�|| ker�|. �

4.3. Normal Subgroups

For the rest of this chapter, we shall use multiplicative notation throughout. Note, however, that
some of these results will be quoted in additive notation in Chapter 7.

Definition. Suppose that G is a group. Then a subgroup N of G is said to be normal if the
following condition is satisfied:

(N) For every n 2 N and every x 2 G, x0nx 2 N .

Examples. (1) Check that A3 is a normal subgroup of S3.
(2) Both {e} and G are normal subgroups of G.
(3) If G is abelian, then every subgroup of G is normal in G.

Proposition 4.6. Suppose that G and H are groups, and that � : G ! H is a group homomor-
phism. Then ker� is a normal subgroup of G.

Proof. For every n 2 ker� and every x 2 G, we have

(x0nx)� = x0�n�x� = x0�x� = (x0x)� = eH ,

so that x0nx 2 ker�. �
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Definition. Suppose that G is a group, and that N is a subgroup of G. Suppose further that
x 2 G.

(i) The set xN = {xn : n 2 N} is called a left coset of N .
(ii) The set Nx = {nx : n 2 N} is called a right coset of N .
(iii) The set x0Nx = {x0nx : n 2 N} is called a conjugate set of N .

Theorem 4.7. Suppose that G is a group, and that N is a subgroup of G. Then the following
statements are equivalent:

(i) N is a normal subgroup of G.
(ii) For every x 2 G, xN = Nx.
(iii) For every x 2 G, x0Nx = N .

Proof. ((i))(ii)) Suppose that y 2 xN . Then y = xn for some n 2 N , so that y = (xnx0)x 2 Nx,
since xnx0 2 N . It follows that xN ✓ Nx. Suppose now that y 2 Nx. Then y = nx for some n 2 N ,
so that y = x(x0nx) 2 xN , since x0nx 2 N . It follows that Nx ✓ xN .

((ii))(iii)) Note that x0Nx = x0xN = N .
((iii))(i)) For every n 2 N and x 2 G, x0nx 2 x0Nx = N . �

Proposition 4.8. Suppose that G is a group, and that N is a normal subgroup of G. Then for
every subgroup K of G, the set NK = {nk : n 2 N and k 2 K} is a subgroup of G.

Proof. Clearly NK is non-empty. Suppose that n1k1, n2k2 2 NK. In view of Theorem 1.5, it
su�ces to show that n1k1(n2k2)0 2 NK. Now

n1k1(n2k2)
0 = n1k1k

0
2n

0
2 = n1(k1k

0
2)n

0
2(k1k

0
2)

0(k1k
0
2).

Note that (k1k0
2)n

0
2(k1k0

2)
0 2 N , so that n1(k1k0

2)n
0
2(k1k0

2)
0 2 N . Also k1k0

2 2 K. It therefore follows
that n1k1(n2k2)0 2 NK, as required. �

In Theorem 4.2 and Proposition 4.5, we have used a homomorphism � : G ! H to deduce properties
about the group H or its subgroups. Sometimes, information on G can be obtained through the
homomorphism from properties of subgroups of H. To do this, we need the idea of a pre-image.

Suppose that � : G ! H is a function from a set G to a set H. Then for every set S ✓ H, the
pre-image of S under � is the set

S��1 = {x 2 G : x� 2 S}.

Note that ��1 may not represent the inverse function, as the function � : G ! H may not be
one-to-one or onto.

Proposition 4.9. Suppose that G and H are groups, and that � : G ! H is a group homomor-
phism. Then for every subgroup S of H, the pre-image S��1 is a subgroup of G. Furthermore, if S
is normal in H, then S��1 is normal in G.

Proof. Obviously S��1 is non-empty. Suppose that x, y 2 S��1. Since S is a subgroup of H, it
follows that (xy0)� = x� y0� = x�(y�)0 2 S. Then xy0 2 S��1, so that S��1 is a subgroup of G by
Theorem 1.5. Suppose now that x 2 G and n 2 S��1. Then (x0nx)� = x0�n�x� = (x�)0n�x� 2 S
since S is normal in H. Hence x0nx 2 S��1, so that S��1 is normal in G. �

4.4. Cosets and Factor Groups

We now return to the study of cosets. The following result has been used implicitly in the proof of
Lagrange’s theorem as well as in the proof of Proposition 4.5.

Proposition 4.10. Suppose that G is a group, and that N is a subgroup of G. Suppose further
that x, y 2 G. Then xN = yN if and only if x0y 2 N . In particular, xN = N if and only if x 2 N .

Proof. Suppose first of all that xN = yN . Since e 2 N , we must have y = ye 2 yN = xN , so
that y = xn for some n 2 N . Clearly n = x0y, so that x0y 2 N . Suppose now that x0y 2 N . Write
x0y = n0, where n0 2 N . Then y = xn0. Let z 2 yN . Then z = yn = xn0n, where n 2 N . Clearly
n0n 2 N , so that z 2 xN . Hence yN ✓ xN . On the other hand, since x0y 2 N , we must also have
y0x = (x0y)0 2 N . A similar argument gives xN ✓ yN . It follows that xN = yN . �
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Our aim is to define a binary operation on the collection of cosets arising from a subgroup N of G.
This is in general an impossible task. However, normal subgroups are rather special.

Theorem 4.11. Suppose that G is a group, and that N is a normal subgroup of G. Then the
multiplication of cosets xN · yN = (xy)N is well defined. In other words, if x1, x2, y1, y2 2 G and
x1N = x2N and y1N = y2N , then (x1y1)N = (x2y2)N .

Proof. By Proposition 4.10, (x1y1)N = (x2y2)N if and only if (x1y1)0(x2y2) 2 N . Now

(x1y1)
0(x2y2) = y0

1x
0
1x2y2 = y0

1(x
0
1x2)y1(y

0
1y2),

so it su�ces to show that y0
1(x

0
1x2)y1 2 N and y0

1y2 2 N . As y1N = y2N , it follows from Proposi-
tion 4.10 that y0

1y2 2 N . On the other hand, since x1N = x2N , it again follows from Proposition 4.10
that x0

1x2 2 N . Since N is normal in G, it now follows that y0
1(x

0
1x2)y1 2 N , as required. �

Remark. An alternative proof of Theorem 4.11 is as follows. We have

x1y1N = x1Ny1 = x2Ny1 = x2y1N = x2y2N.

Having obtained a binary operation, we now show that there is a group structure.

Theorem 4.12. Suppose that G is a group, and that N is a normal subgroup of G. Then the set

G/N = {xN : x 2 G}
of all left cosets of N , together with multiplication defined by xN · yN = (xy)N for every x, y 2 G,
forms a group.

Definition. The group G/N in Theorem 4.12 is called the factor group G modulo N .

Proof of Theorem 4.12. (G1) is obvious. Also, it follows from the associativity of G that
(xy)z = x(yz). (G2) follows. To check (G3), note that N = eN satisfies the requirements for the
identity element. To check (G4), note that x0N satisfies the requirements for the inverse element
of xN . bigcirc

Remark. A similar result holds for right cosets.

We now exhibit a nice relationship between a group and its factor group by a normal subgroup.

Proposition 4.13. Suppose that G is a group, and that N is a normal subgroup of G. Then
the function � : G ! G/N , defined by x� = xN for every x 2 G, is a group homomorphism.
Furthermore, the function � : G ! G/N is onto, and ker � = N .

Definition. The homomorphism � : G ! G/N in Proposition 4.13 is called the natural homo-
morphism of G onto G/N .

Proof of Proposition 4.13. For every x, y 2 G, (xy)� = (xy)N = xN · yN = x� y� in view
of Theorems 4.11 and 4.12. It follows that � : G ! G/N is a group homomorphism. It is clear that
� : G ! G/N is onto. The assertion ker � = N follows from the second part of Proposition 4.10.

To illustrate the importance of this “apparently simple” result, we shall deduce the following result.

Proposition 4.14. Suppose that G is a finite group, and that N is a normal subgroup of G. Then
|G/N | = |G|/|N |.
Proof. Recall the proof of Proposition 4.5. For any group homomorphism � : G ! H, where G

is finite, we have |G| = |G�|| ker�|. Note that in this particular case, ker � = N and G� = G/N . �

4.5. The Fundamental Theorem of Group Homomorphisms

Note that our proof of Proposition 4.14 on factor groups depends on the natural homomorphism
� onto the factor group in question. This suggests an intimate connection between homomorphisms
and factor groups.

Suppose that G and H are groups, and that � : G ! H is a group homomorphism. The question is
whether there is some normal subgroup N of G such that there is some nice correspondence between
the factor group G/N and the subgroup G� of H.

We answer this question in the a�rmative by proving the following fundamental result.
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Theorem 4.15 (Fundamental theorem of group homomorphisms). Suppose that G and H are
groups, and that � : G ! H is a group homomorphism. Then G/ ker� is isomorphic to G�.

Proof. For simplicity, write ker� = N . Then N is a normal subgroup of G. Define a function
 : G/N ! G� in the following way. For every element xN 2 G/N , let (xN) = x�. Then clearly

(xN · yN) = (xyN) = (xy)� = x� y�

for every xN, yN 2 G/N , so that  is a homomorphism. Now,  is onto, for every element in G�
can be written in the form x� for some x 2 G. Take xN 2 G/N . Then (xN) = x�. On the
other hand,  is one-to-one, for if x, y 2 G such that (xN) = (yN) , then x� = y�, so that
(x0y)� = eH . It follows that x0y 2 ker� = N , so that xN = yN by Proposition 4.10. It is now clear
that  : G/N ! G� is an isomorphism. �
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Problems for Chapter 4

1. For each of the following pairs, state whether the groups are isomorphic, and justify your asser-
tion:

(i) (Z⇤
14, ·) and (Z6, +)

(ii) (Z⇤
8, ·) and (Z4, +)

2. Suppose that � : G ! H is a group homomorphism, and that x 2 G is of finite order. Show
that the order of x� in H divides the order of x in G. Comment on the case when � : G ! H is a
group isomorphism.

3. Prove each of the following:

(i) Any infinite cyclic group is isomorphic to (Z, +).
(ii) Any cyclic group of order n > 2 is isomorphic to (Zn, +).
(iii) Suppose that � : G ! H is a group homomorphism, and that G is cyclic. Then G� is cyclic.

4. Show that isomorphism of groups is an equivalence relation.

5. Consider the groups S6 and ({±1}, ·), and consider the function � : S6 ! {±1}, defined by

x� =

⇢
�1, if x is odd,
1, if x is even.

Show that � is a group homomorphism. What is ker�?

6. Show that each of the following functions � : G ! H is a homomorphism, and determine the
image and the kernel:

(i) G = H = (Z⇤
16, ·) and x� = x4

(ii) G = (Z, +), H = (R \ {0}, ·) and x� = 3x

7. Show that there is only one group homomorphism from S3 to (Z21, +).
[Hint : Note Question 2.]

8. Find all the subgroups of S3 and determine which of these are normal in S3.

9. Show that {i, (1 2 3), (1 3 2)} is a subgroup of S4 but not a normal subgroup of S4.

10. Give an example of a group G and subgroups N and K of G such that NK is not a subgroup
of G.

11. Suppose that N and K are both normal subgroups of G. Prove that NK is a normal subgroup
of G.

12. Suppose that � : G ! H is a group homomorphism, and that N is a normal subgroup of G.
Prove that N� = {n� : n 2 N} is a normal subgroup of G�.

13. For each of the following factor groups, determine whether the given cosets are equal:

(i) Z⇤
20/h3i; cosets 7h3i and 11h3i

(ii) Z20/h3i; cosets 7h3i and 11h3i
14. Suppose that G is a finite group, and that N is a normal subgroup of G. Let x 2 G. Show that

the order of xN in G/N is given by n, where n is the smallest natural number satisfying xn 2 N .

15. Suppose that G is a cyclic group. Show that for every subgroup N of G, the factor group G/N
exists and is cyclic.

16. Suppose that N is a normal subgroup of a group G, and that the factor group G/N is cyclic.
Suppose further that gn = ng for every n 2 N and every g 2 G. Show that G is abelian.

17. Prove that every group G of order p2, where p is a prime, is abelian by following the steps
below:

(i) Prove that the centre Z(G) is a normal subgroup of G.
(ii) Determine the possible orders of Z(G).
(iii) Assuming without proof that |Z(G)| 6= 1, prove that |Z(G)| = p2.

[Hint : Study the factor group G/Z(G), and use Question 16.]

18. Show that for every n 2 N \ {1}, the factor group Sn/An is isomorphic to (Z2, +).


