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Consider the groups (Z4,+) and (Z3,,-). They have the group tables below.

+10(1]2]3 1171913
00123 11171913
1111230 71719131
2121301 9193|117
31310112 3131179

Note that for the group table on the right, we have deliberately permuted the elements of Zj, in
order to highlight the similarity between the two groups. Indeed, if we match the elements 0,1,2, 3 of
Z,4 respectively with the elements 1,7,9,3 of Zj,, then although the two groups look different, they
are “essentially the same”.

4.1. Formal Definition

DEFINITION. Suppose that (G, *) and (H,o) are groups. A function ¢ : G — H is said to be a
group homomorphism if the following condition is satisfied:

(HOM) For every z,y € G, (z *xy)¢ = x¢d o yo.

DEFINITION. Suppose that (G, x) and (H,o) are groups. A function ¢ : G — H is said to be a
group isomorphism if the following conditions are satisfied:
(IS1) ¢ : G — H is a group homomorphism.
(IS2) ¢ : G — H is one-to-one.
(IS3) ¢ : G — H is onto.

DEFINITION. We say that two groups G and H are isomorphic if there exists a group isomorphism
¢:G— H.

EXAMPLES. (1) (Z4,4) and (Z3,,-) are isomorphic. To see this, define ¢ : Zy — Z7, by taking
0p=1,1p=7,2¢=29 and 3¢ = 3.

(2) (Z2,+) and ({£1},-) are isomorphic. To see this, define ¢ : Zo — {£1} by taking 0¢ = 1 and
19 = —1.

(3) It is not difficult to show that (R, +) and (RT,-) are groups. Here Rt denotes the set of positive
real numbers. These two groups are isomorphic. To see this, define ¢ : R — RT by writing ¢ = ®
for every x € R. Then ¢ is a group homomorphism, as e**¥ = e%e¥ for every z,y € R. On the other
hand, it is well known that the exponential function is a one-to-one and onto function from R to R*.

(4) The set
o= {(5 )28 (0 )

together with matrix multiplication, forms a group. This group is isomorphic to (Z4,+). To see this,
define ¢ : G — Z4 to send the four matrices above to 0, 1, 2, 3 respectively.
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together with matrix multiplication, forms a group. This group is isomorphic to (Z3,-). To see this,
define ¢ : G — Z§ to send the four matrices above to 1, 3,5, 7 respectively.

(6) Suppose that G is an abelian group, and let n € Z. Define ¢ : G — G by writing ¢ = z™
for every x € G. Then ¢ is clearly a group homomorphism from G to itself. For every z,y € G, we
clearly have (zy)¢ = (zy)" = z"y" = (2¢)(y9).

(7) Consider the multiplicative group M3 5(R) of invertible 2 x 2 matrices with entries in R.
Consider also the set R\ {0}; this forms a group under multiplication. Now define a function
¢ : M3 5(R) — R\ {0} by writing A¢ = det(A), the determinant of A, for every matrix A € M3 ,(R).
This is clearly a group homomorphism, since det(AB) = det(A) det(B) for every A, B € M’Q‘z(R)

(8) This is an example we almost take for granted. Consider the groups (Z,+) and (Z4,+). We
define a function ¢ : Z — Z, as follows. For every n € Z, we can clearly write n = 4q + r, where
q,7 € Zand 0 < r < 4. It is well known that for given n, the integers ¢ and r are uniquely determined.
Now let n¢ = r. So, for example, 4¢ = 0, 707¢ = 3 and (—22)¢ = 2. It can easily be shown that
¢ : Z — Z4 is a group homomorphism. This is called reduction modulo 4.

(9) Similarly, for every n € N\ {1}, reduction modulo n is a group homomorphism from Z to Z,.

(5) The set

4.2. Some Properties of Homomorphisms

PROPOSITION 4.1. Suppose that (G, ) and (H,o) are groups, with identity elements e and ey
respectively. Suppose further that ¢ : G — H is a group homomorphism. Then eqg¢ = ey .

PROOF. Simply note that eqp = (eg *x eq)d = egpoegop. O

THEOREM 4.2. Suppose that (G,*) and (H,o) are groups, and that ¢ : G — H is a group homo-
morphism. Then the set

Gop={zx¢:x € G}
is a subgroup of H.

DEFINITION. Suppose that (G,*) and (H,o) are groups, and that ¢ : G — H is group homomor-
phism. Then the set G¢ is called the image of the group homomorphism.

PrOOF OF THEOREM 4.2. Clearly G¢ is non-empty. Let z¢,yp € Go. In view of Theorem 1.5, it
suffices to show that z¢ o (y¢)' € G¢. Clearly y'¢ € G¢. Since ¢ is a homomorphism, we must have
ypoy'd = (yxy')d =eqd = ey by Proposition 4.1. Similarly y'¢poyd = (¢ *y)¢p = egdp = eg. It
follows that (y@) = y'®, so that z¢ o (y@) = xpoy'd = (v *y')d € G, as required. O

EXAMPLE. Suppose that we do not know that

= o 1) (e ) (o )0 )

forms a group under matrix multiplication. We can remedy this in the following way if we know that
(Z4,+) is a group. We define a function ¢ : Zy — M3 5(R) by writing

0¢=<(1) ?) 1¢=(? (1)) 2¢>=<‘é (1)) 3¢=<(1) ‘(1));

note Example (4) above. We then show that ¢ is a homomorphism from the group (Z4,+) to the
group M3 ,(R), and deduce our desired result by using Theorem 4.2 to conclude that (4.1) is a
subgroup of M3 5(R).

This simple example suggests the following improvement of our idea. To be precise, we do not need

the knowledge that H, given by M3 ,(R) in this special example, is a group.

PROPOSITION 4.3. Suppose that (G,*) is a group, and that o is a binary operation on a set S.
Suppose further that the function ¢ : G — S satisfies the condition that (x * y)¢ = x¢ o yo for every
x,y € G. Then the set Gp = {x¢ : © € G}, together with the binary operation o, forms a group.
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SKETCH OF PROOF. All we need to do is to show that (G¢, o) forms a group. However, we already
know that (G, ) is a group. We can therefore use the property, that (z x y)¢ = x¢ o y¢ for every
z,y € G, to “bring the group structure over” from G to G¢. (O

DEFINITION. Suppose that (G,*) and (H,o) are groups, and that ¢ : G — H is group homomor-
phism. Suppose further that ey is the identity element in H. Then the set

kerg ={x € G:2p=epn}
is called the kernel of the group homomorphism.

ExaMPLES. (1) As in Example (8) above, consider the groups (Z,+) and (Z4,+), and the group
homomorphism reduction modulo 4. The kernel of this group homomorphism is clearly the set
{4z 1z € Z}.

(2) Consider the group (Z3,, ). Define ¢ : (Z3,,) — (Z3,, ) by writing z¢ = 22 for every x € Z7,.
It can easily be shown that this is a group homomorphism. Furthermore, ker ¢ = {1, 9}.

(3) Suppose that G is a finite group of order n. Show that the function ¢ : G — G, defined by
x¢ = z" for every x € G, is a group homomorphism and that ker ¢ = G.

THEOREM 4.4. Suppose that (G,*) and (H,o) are groups, and that ¢ : G — H is a group homo-
morphism. Then ker ¢ is a subgroup of G.

PRrROOF. Clearly e € ker ¢. Let =,y € ker ¢. In view of Theorem 1.5, it clearly suffices to show that
x*y € ker ¢. Since ¢ is a homomorphism, we must have

yYo=enoyo=ypoy'd=(y*xy)p=cchd=en
by Proposition 4.1. It follows that (z *xy')¢p = xdoy'd = ey oey = epy, as required. O
Using an argument similar to the proof of Lagrange’s theorem, we can prove the following result.

PROPOSITION 4.5. Suppose that (G,*) and (H,o) are groups, and that ¢ : G — H is a group
homomorphism. Suppose further that G is finite. Then |G¢| divides |G)|.

PROOF. Define a relation R on G in the following way. For every z,y € G, 2Ry if z¢ = yo. It
is not difficult to check that R is an equivalence relation, and that ker ¢ is one of the equivalence
classes. Furthermore, the number of equivalence classes is |G¢|. Suppose now that K is one of the
equivalence classes. Let a € K. For every x € ker ¢, we have (a *x x)¢p = apox¢p = apoey = ag, so
that (a * x)Ra, whence a x x € K. We now define f : ker ¢ — K by writing f(z) = a * x for every
x € ker ¢. Then clearly f is one-to-one, in view of left cancellation. To show that f is onto, note that
for any y € K, (0’ xy)p = d'doyp = ad'¢poap = ey, so that a’ xy € ker ¢. Clearly f(a' xy) =y. It
now follows that K and ker ¢ have the same number of elements. Hence all the equivalence classes
have the same number of elements, so that |G| = |G| ker ¢|. O

4.3. Normal Subgroups

For the rest of this chapter, we shall use multiplicative notation throughout. Note, however, that
some of these results will be quoted in additive notation in Chapter 7.

DEFINITION. Suppose that G is a group. Then a subgroup N of G is said to be normal if the
following condition is satisfied:
(N) For every n € N and every « € G, 2'nx € N.
EXAMPLES. (1) Check that Aj is a normal subgroup of Ss.

(2) Both {e} and G are normal subgroups of G.
(3) If G is abelian, then every subgroup of G is normal in G.

PROPOSITION 4.6. Suppose that G and H are groups, and that ¢ : G — H is a group homomor-
phism. Then ker ¢ is a normal subgroup of G.

PROOF. For every n € ker ¢ and every = € GG, we have
(@'nx)¢p =2’ dpndprd = 2'pxp = (2'2)¢ = em,
so that #’'nz € kerp. O
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DEFINITION. Suppose that G is a group, and that N is a subgroup of G. Suppose further that
z e G.

(i) The set N = {an :n € N} is called a left coset of N.
(ii) The set Nz = {nz : n € N} is called a right coset of N.
(iii) The set 2’Nz = {a'nx : n € N} is called a conjugate set of N.

THEOREM 4.7. Suppose that G is a group, and that N is a subgroup of G. Then the following
statements are equivalent:

(i) N is a normal subgroup of G.
(ii) For every x € G, N = Nz.
(ii) For every x € G, '’ Nx = N.

PRrROOF. ((i)=(ii)) Suppose that y € zN. Then y = zn for some n € N, so that y = (xnz’)x € Nz,
since znx’ € N. It follows that zN C Nx. Suppose now that y € Nz. Then y = nx for some n € N,
so that y = z(2'nx) € N, since 'nx € N. It follows that Nz C xN.

((ii)=-(iii)) Note that 2’ Nz = 2’cN = N.

((iii)=(i)) For every n € N and z € G, 2'nz € 2’ Nx =N. O

PROPOSITION 4.8. Suppose that G is a group, and that N is a normal subgroup of G. Then for
every subgroup K of G, the set NK = {nk:n € N and k € K} is a subgroup of G.

PRrROOF. Clearly NK is non-empty. Suppose that niki,noks € NK. In view of Theorem 1.5, it
suffices to show that nikq(nqks) € NK. Now

nlkl(ngkg)/ = nlklkéné = nl(klkg)né(klké)’(klké)

Note that (k1k5)nb(k1ks) € N, so that ny(k1k5)nh(k1ky) € N. Also kik) € K. It therefore follows
that niky(n2ks) € NK, as required. O

In Theorem 4.2 and Proposition 4.5, we have used a homomorphism ¢ : G — H to deduce properties
about the group H or its subgroups. Sometimes, information on G can be obtained through the
homomorphism from properties of subgroups of H. To do this, we need the idea of a pre-image.

Suppose that ¢ : G — H is a function from a set G to a set H. Then for every set S C H, the
pre-image of S under ¢ is the set

Sp'={reG:2pe S}

Note that ¢~! may not represent the inverse function, as the function ¢ : G — H may not be
one-to-one or onto.

PRrROPOSITION 4.9. Suppose that G and H are groups, and that ¢ : G — H is a group homomor-
phism. Then for every subgroup S of H, the pre-image S¢~" is a subgroup of G. Furthermore, if S
is normal in H, then S¢o~—' is normal in G.

PRrROOF. Obviously S¢~! is non-empty. Suppose that x,y € S¢~'. Since S is a subgroup of H, it
follows that (zy')¢ = 2dy'¢d = xp(yd)’ € S. Then xy’ € S¢p~ 1, so that S¢p~! is a subgroup of G by
Theorem 1.5. Suppose now that x € G and n € S¢~1. Then (2'nx)¢ = 2’'¢pnpxp = (v¢)ndpxd € S
since S is normal in H. Hence z'nz € S¢~!, so that S¢~! is normal in G. O

4.4. Cosets and Factor Groups

We now return to the study of cosets. The following result has been used implicitly in the proof of
Lagrange’s theorem as well as in the proof of Proposition 4.5.

PROPOSITION 4.10. Suppose that G is a group, and that N is a subgroup of G. Suppose further
that x,y € G. Then xN = yN if and only if 'y € N. In particular, tN = N if and only if z € N.

PROOF. Suppose first of all that xN = yN. Since e € N, we must have y = ye € yN = zN, so
that y = zn for some n € N. Clearly n = z'y, so that 2’y € N. Suppose now that 2’y € N. Write
2’y = ng, where ng € N. Then y = xzng. Let z € yN. Then z = yn = wngn, where n € N. Clearly
ngn € N, so that 2 € zN. Hence yN C zN. On the other hand, since 2’y € N, we must also have
y'x = (2'y) € N. A similar argument gives N C yN. It follows that aN = yN. O
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Our aim is to define a binary operation on the collection of cosets arising from a subgroup N of G.
This is in general an impossible task. However, normal subgroups are rather special.

THEOREM 4.11. Suppose that G is a group, and that N is a normal subgroup of G. Then the
multiplication of cosets N - yN = (zy)N is well defined. In other words, if x1,22,y1,y2 € G and
21N = xoN and y1 N = ya2 N, then (z1y1)N = (z2y2)N.

ProOF. By Proposition 4.10, (z1y1)N = (x2y2)N if and only if (z1y1)'(z2y2) € N. Now
(z191)' (w292) = Y4 712202 = Y1 (@h22)11 (Y192),
so it suffices to show that y}(zjz2)y1 € N and yjy2 € N. As y3 N = yoN, it follows from Proposi-

tion 4.10 that yjy2 € N. On the other hand, since 1 N = 25N, it again follows from Proposition 4.10
that zjze € N. Since N is normal in G, it now follows that ¢} (z]z2)y1 € N, as required. O

REMARK. An alternative proof of Theorem 4.11 is as follows. We have
Ty N = 21 Ny1 = 22 Nyy = zoy1 N = 2292 N.
Having obtained a binary operation, we now show that there is a group structure.

THEOREM 4.12. Suppose that G is a group, and that N is a normal subgroup of G. Then the set
G/N ={zN :z € G}

of all left cosets of N, together with multiplication defined by xN - yN = (xy)N for every z,y € G,
forms a group.

DEFINITION. The group G/N in Theorem 4.12 is called the factor group G modulo N.

PrROOF OF THEOREM 4.12. (G1) is obvious. Also, it follows from the associativity of G that
(zy)z = z(yz). (G2) follows. To check (G3), note that N = eN satisfies the requirements for the
identity element. To check (G4), note that 2’ N satisfies the requirements for the inverse element
of xN. bigcirc

REMARK. A similar result holds for right cosets.
We now exhibit a nice relationship between a group and its factor group by a normal subgroup.

PROPOSITION 4.13. Suppose that G is a group, and that N is a normal subgroup of G. Then
the function ® : G — G/N, defined by x® = xN for every x € G, is a group homomorphism.
Furthermore, the function ® : G — G/N is onto, and ker ® = N.

DEFINITION. The homomorphism ® : G — G/N in Proposition 4.13 is called the natural homo-
morphism of G onto G/N.

PROOF OF PROPOSITION 4.13. For every z,y € G, (zy)® = (zy)N = 2N - yN = 2P y® in view
of Theorems 4.11 and 4.12. Tt follows that ® : G — G//N is a group homomorphism. It is clear that
® : G — G/N is onto. The assertion ker ® = N follows from the second part of Proposition 4.10.

To illustrate the importance of this “apparently simple” result, we shall deduce the following result.

PROPOSITION 4.14. Suppose that G is a finite group, and that N is a normal subgroup of G. Then
|G/N| = |G|/IN|.

PROOF. Recall the proof of Proposition 4.5. For any group homomorphism ¢ : G — H, where G
is finite, we have |G| = |G¢|| ker ¢|. Note that in this particular case, ker ® = N and G® = G/N. O

4.5. The Fundamental Theorem of Group Homomorphisms

Note that our proof of Proposition 4.14 on factor groups depends on the natural homomorphism
® onto the factor group in question. This suggests an intimate connection between homomorphisms
and factor groups.

Suppose that G and H are groups, and that ¢ : G — H is a group homomorphism. The question is
whether there is some normal subgroup N of G such that there is some nice correspondence between
the factor group G/N and the subgroup G¢ of H.

We answer this question in the affirmative by proving the following fundamental result.
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THEOREM 4.15 (Fundamental theorem of group homomorphisms). Suppose that G and H are
groups, and that ¢ : G — H is a group homomorphism. Then G/ker ¢ is isomorphic to G¢.

PrOOF. For simplicity, write ker¢ = N. Then N is a normal subgroup of G. Define a function
1Y : G/N — G¢ in the following way. For every element N € G/N, let (zN )i = x¢. Then clearly

(N -yN)Y = (zyN)y = (zy)¢ = 2dy¢
for every zN,yN € G/N, so that ¢ is a homomorphism. Now, v is onto, for every element in G¢
can be written in the form z¢ for some z € G. Take N € G/N. Then (xN)y = z¢. On the
other hand, v is one-to-one, for if z,y € G such that (zN)yY = (yN)¢, then ¢ = y¢, so that
(2'y)p = ep. Tt follows that 2’y € ker ¢ = N, so that N = yN by Proposition 4.10. It is now clear
that ¢ : G/N — G¢ is an isomorphism. (O
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Problems for Chapter 4

1. For each of the following pairs, state whether the groups are isomorphic, and justify your asser-
tion:

() (Zi,,) and (Zo, +)
(i) (22, ) and (Za, +)

2. Suppose that ¢ : G — H is a group homomorphism, and that z € G is of finite order. Show
that the order of z¢ in H divides the order of xz in G. Comment on the case when ¢ : G — H is a
group isomorphism.

3. Prove each of the following:

(i) Any infinite cyclic group is isomorphic to (Z, +).
(ii) Any cyclic group of order n > 2 is isomorphic to (Z,, +).
(iii) Suppose that ¢ : G — H is a group homomorphism, and that G is cyclic. Then G¢ is cyclic.

4. Show that isomorphism of groups is an equivalence relation.

5. Consider the groups Sg and ({£1},-), and consider the function ¢ : S¢ — {£1}, defined by

x¢:{ —1, %fx%sodd,
1, if x is even.
Show that ¢ is a group homomorphism. What is ker ¢7
6. Show that each of the following functions ¢ : G — H is a homomorphism, and determine the
image and the kernel:
(i) G=H = (Z3s,") and z¢p = 24
(i) G=(Z,+), H= (R\ {0},) and z¢ = 3*
7. Show that there is only one group homomorphism from Sz to (Za1,+).
[Hint: Note Question 2.]

8. Find all the subgroups of S3 and determine which of these are normal in Ss.

9. Show that {4, (1 2 3), (1 3 2)} is a subgroup of S4 but not a normal subgroup of Sj.

10. Give an example of a group G and subgroups N and K of G such that NK is not a subgroup
of G.

11. Suppose that N and K are both normal subgroups of G. Prove that N K is a normal subgroup
of G.

12. Suppose that ¢ : G — H is a group homomorphism, and that N is a normal subgroup of G.
Prove that N¢ = {n¢ : n € N} is a normal subgroup of G¢.

13. For each of the following factor groups, determine whether the given cosets are equal:

(i) Z3,/(3); cosets 7(3) and 11(3)
(ii) Zao/(3); cosets 7(3) and 11(3)

14. Suppose that G is a finite group, and that IV is a normal subgroup of G. Let = € G. Show that
the order of zN in G/N is given by n, where n is the smallest natural number satisfying 2™ € N.

15. Suppose that G is a cyclic group. Show that for every subgroup N of G, the factor group G/N
exists and is cyclic.

16. Suppose that N is a normal subgroup of a group G, and that the factor group G/N is cyclic.
Suppose further that gn = ng for every n € N and every g € G. Show that G is abelian.

17. Prove that every group G of order p?, where p is a prime, is abelian by following the steps
below:

(i) Prove that the centre Z(G) is a normal subgroup of G.
(ii) Determine the possible orders of Z(G).
(iii) Assuming without proof that |Z(G)| # 1, prove that |Z(G)| = p*.
[Hint: Study the factor group G/Z(G), and use Question 16.]
18. Show that for every n € N\ {1}, the factor group S, /A, is isomorphic to (Zz, +).



