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5.1. Direct Products of Groups

Consider the cartesian product G; X ... X G, where G, ..., G} are groups.
For (¢91,...,9%), (h1,...,hx) € G1 X ... X G, define

(5.1) (915 96) * (Ras oo b)) = (gahas o gihe).

Note that we have used multiplicative notation for Gy, ..., Gg.

We leave it as an exercise to check the following three results.
THEOREM 5.1. G1 X ... x Gk, together with the operation x defined by (5.1), forms a group.
DEFINITION. The group in Theorem 5.1 is called the direct product of the groups G4, ..., Gg.

PROPOSITION 5.2. The direct product G1 X ... x Gy, is abelian if and only if the groups G1,...,Gg
are all abelian.

PROPOSITION 5.3. Suppose that the groups G, ...,Gy are all finite. Then
(i) |G1 X ... x Gg| =|G1] ... |Gkl;
(ii) the order of (g1,...,9x) € G1 X ... X Gy, is the least common multiple of the orders of
gis---, 9k n Gy, ...,Gyg respectively; and
(iii) G1 X ... %X Gy is cyclic if and only if G, ...,Gy are all cyclic and the orders |G1|,. .., |Gkl
are parrwise coprime.

So far we have been “building up” groups from smaller groups. However, the really interesting task
is to “factor” a given group into a direct product of smaller groups.

THEOREM 5.4. A group G is isomorphic to a direct product H' x K' if and only if G has two
subgroups H and K such that
(i) HN K = {e};
(ii) hk = kh for every h € H and k € K; and
(i) G={hk:he€ H, k€ K}.

The proof of Theorem 5.4 is rather hard. However, the following result follows easily, and is left as
an exercise.

COROLLARY 5.5. Suppose that G is an abelian group of order n. Then G is isomorphic to a direct
product H' x K' if and only if G has two subgroups H and K such that HNK = {e} and |H||K| = n.

DEFINITION. We say that a group G is indecomposable if the following condition is satisfied: If H
and K are groups and G is isomorphic to the direct product H x K, then either H = {e} or K = {e}.

For every m € N and m > 2, we shall denote by Z,, the group (Z,,+).

PROPOSITION 5.6. For every prime p and every a € N, the group Z,. is indecomposable.
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PROOF. Suppose that Zpa is isomorphic to the direct product H x K, where H # {e} and K # {e}.
Since |H||K| = |Zp«| = p?, there exist b,c € N such that |H| = p® and |K| = p¢. It follows that
|H| and |K| are not coprime, so that H x K is not cyclic in view of Proposition 5.3(iii). This is a
contradiction, since Zp. is cyclic. O

PROPOSITION 5.7. Suppose that m = pi*...p*, where py,...,py are distinct primes and where
ai,...,ar € N. Then Z,, is isomorphic to the direct product szlzl X ... X Zka.
PRrROOF. Note that the numbers pi*,...,p.* are pairwise coprime. It follows from Propositions

5.3(iii) and 5.3(i) that Z,e x ... x Zyyer: 1s cyclic and of order pit...pe". Hence Lipor X X Lo 18
isomorphic to Z,,. O

We state without proof the following important result, usually known as the fundamental theorem
of finite abelian groups.

THEOREM 5.8. Suppose that G is a finite abelian group of order at least 2. Then there exist primes
D1, - - -, Pk, not necessarily distinct, and aq, . ..,ar € N such that G is isomorphic to the direct product
chln X ... X Zka. Furthermore, the numbers p{*, ... ,pp* are unique up to their order.

EXAMPLE. Are Z4g X Z7o and Zoy X Zq44 isomorphic? To answer this question, let us first factorize
each of these groups using Theorem 5.8. Consider first of all Zsg. Then since 48 = 243, Z,g is
isomorphic to precisely one of the following:

Z3 x L6,

L3 X Lo X Zg,

L3 X Ly X Ly,

Tz X g X Ty X Ly,

Lz X Ly X Ly X Ty X Zg.

All except the first of these are non-cyclic in view of Proposition 5.3(iii). It follows that Zgg is
isomorphic to Zs x Zyg. Similarly, Z7o is isomorphic to Zg X Zg. On the other hand, Zs4 is isomorphic
to Zs x Zg and Zy44 is isomorphic to Zg X Zi¢. It follows that the two groups in question are
isomorphic.

5.2. Geometric Interpretation of Matrix Groups

The purpose of this section is to give a geometric interpretation of the multiplicative group M3 5(R)
of invertible 2 x 2 matrices with entries in R.

Consider the vector space R?. Let L : R? — R? be a linear transformation. In other words, for all
vectors x,y € R? and for all scalars A € R, we have (x +y)L = xL + yL and (Ax)L = A\(xL).

Suppose further that the linear transformation L : R? — R? is invertible. Then L : R? — R2
can be described in terms of an element of M3 ,(RR). In fact, an alternative notation for M3 5(R) is
GL(2,R); this is known as a general linear group.

Recall the following facts about linear transformations L : R? — R2 and 2 x 2 matrices with entries
in R.

(i) If L : R? — R? is a linear transformation, then there is a 2 x 2 matrix A with entries in R such
that for every x € R?, we have xL = xA. Furthermore,

a b
=)
where (a,b) = (1,0)L and (¢,d) = (0,1)L are the images under L of the basis elements (1,0) and
(0,1) respectively.

(ii) Note that the image under L : R? — R? of a square with vertices (0,0), (1,0), (1,1),(0,1)
is a parallelogram with vertices (0,0), (a,b), (a + ¢,b + d), (¢,d). The orientation is preserved if
det A = ad — bc > 0, and reversed if det A = ad — bc < 0. It can also be shown that the area of the
parallelogram is | det A| = |ad — bc|. Furthermore, if det A = ad — be = 0, then the parallelogram has
Z€ro area.

(iii) The linear transformation L : R? — R? is invertible if and only if the matrix A is invertible,
i.e. if and only if det A # 0, i.e. if and only if A € GL(2,R).
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It follows from (ii) that for the linear transformation L : R? — R? to preserve area and orientation,
the matrix A € GL(2,R) must satisfy det A = 1. This leads to the set

SL(2,R) = {A € GL(2,R) : det A = 1}.
THEOREM 5.9. SL(2,R) is a normal subgroup of GL(2,R).

ProOOF. Clearly the identity matrix I € SL(2,R). On the other hand, if A, B € SL(2,R), then
clearly det(AB) = (det A)(det B) = 1, so that AB € SL(2,R); also, det(A~!) = 1/(det A) = 1, so
that A=! € SL(2,R). It follows from Theorem 1.4 that SL(2,R) is a subgroup of GL(2,R). On the
other hand, for every C' € GL(2,R) and every A € SL(2,R),

det(C71AC) = (det C71)(det A)(det C) = (det C~ 1) (det C) = 1,
so that C"1AC € SL(2,R). It follows that SL(2,R) is a normal subgroup of GL(2,R). O
DEFINITION. The group SL(2,R) is called a special linear group or a unimodular group.

Rotations about the origin in R? can also be described by matrices in GL(2,R). In fact, an anti-
clockwise rotation by angle € about the origin can be described by the matrix

R(;:( cosf sinf )

—sinf cosf
Let
R(2)={Rp:0< 0 <2r}.
PROPOSITION 5.10. R(2) is a subgroup of SL(2,R).

PROOF. Clearly det Ry = 1 for every 6 € [0,27), and that I = Rg. On the other hand, if
0,¢ € [0,27), then let

0
1/J:9+(]5—27T[ +¢].
2w
It is clear that ¢ € [0,27) and RyRgy = Ry. Finally, if 6 € (0,27), then 27 — 6 € (0,27). Clearly
RyRo,_g = I. The result now follows from Theorem 1.4. ()

The dihedral group D4 can also be described by matrices in GL(2,R). Suppose that the four
vertices of the square are (+1,+1). Then an anti-clockwise rotation of 90° can be described by the
matrix R /o, while a reflection across the vertical axis can be described by the matrix

(1)

We can therefore conclude that Dy is isomorphic to a subgroup of GL(2,R).
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Problems for Chapter 5

1. For each of the following groups G, find the order of GG, determine whether G is abelian and
whether G is cyclic, and determine the order of the elements of G:
(i) G = (Z4,+) x (Z7,+)
(11) G = Sg X (Z2,+)
(i) G = Az x (Z%,")
2. Show that the three groups below are pairwise non-isomorphic:
(i) (Zie, +)
(i) (Za,+) % (Za, +)
(i) (Za,+) x (Z2, +) X (Za, +)
3. Show that S5 is indecomposable.
4. Show that (Z%,-) is isomorphic to (Za,+) x (Z3,+).
5. Show that every abelian group of order 105 is isomorphic to (Zjos, +).
6. Determine the number of non-isomorphic abelian groups of order 45.
7. Determine the number of non-isomorphic abelian groups of order 144.

8. Determine the number of non-isomorphic groups of order 6 by following the steps below, where
G denotes a group of order 6:
(i) Determine the number of non-isomorphic abelian groups G of order 6.
(ii) Suppose that G is non-abelian. Show that the order of the elements of G cannot exceed 3.
(iii) Suppose that G is non-abelian. Show that G must have an element of order 3.
(iv) Let x € G be of order 3, and write G = {e,z, 2%y, z,u}. Suppose further that y> = e, to
be justified later in (vii). Justify that we may assume that xy = z.
(v) Continuing from (iv), show that we cannot have yx = z.
(vi) Continuing from (iv) and assuming that yz = u, complete the group table for G and show
that G is isomorphic to Ss.
(vii) Show by contradiction that if G is non-abelian, then G must have an element of order 2.
(viii) Determine the answer.



