CHAPTER 5

Further Topics on Groups

© W W L Chen, 1991, 1993, 2013.

This chapter is available free to all individuals,
on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

5.1. Direct Products of Groups

Consider the cartesian product $G_1 \times \ldots \times G_k$, where G_1, \ldots, G_k are groups. For $(g_1, \ldots, g_k), (h_1, \ldots, h_k) \in G_1 \times \ldots \times G_k$, define

$$(5.1) (g_1, \dots, g_k) * (h_1, \dots, h_k) = (g_1 h_1, \dots, g_k h_k).$$

Note that we have used multiplicative notation for G_1, \ldots, G_k .

We leave it as an exercise to check the following three results.

THEOREM 5.1. $G_1 \times \ldots \times G_k$, together with the operation * defined by (5.1), forms a group.

DEFINITION. The group in Theorem 5.1 is called the direct product of the groups G_1, \ldots, G_k .

PROPOSITION 5.2. The direct product $G_1 \times \ldots \times G_k$ is abelian if and only if the groups G_1, \ldots, G_k are all abelian.

PROPOSITION 5.3. Suppose that the groups G_1, \ldots, G_k are all finite. Then

- (i) $|G_1 \times ... \times G_k| = |G_1| ... |G_k|$;
- (ii) the order of $(g_1, \ldots, g_k) \in G_1 \times \ldots \times G_k$ is the least common multiple of the orders of g_1, \ldots, g_k in G_1, \ldots, G_k respectively; and
- (iii) $G_1 \times \ldots \times G_k$ is cyclic if and only if G_1, \ldots, G_k are all cyclic and the orders $|G_1|, \ldots, |G_k|$ are pairwise coprime.

So far we have been "building up" groups from smaller groups. However, the really interesting task is to "factor" a given group into a direct product of smaller groups.

Theorem 5.4. A group G is isomorphic to a direct product $H' \times K'$ if and only if G has two subgroups H and K such that

- (i) $H \cap K = \{e\};$
- (ii) hk = kh for every $h \in H$ and $k \in K$; and
- (iii) $G = \{hk : h \in H, k \in K\}.$

The proof of Theorem 5.4 is rather hard. However, the following result follows easily, and is left as an exercise.

COROLLARY 5.5. Suppose that G is an abelian group of order n. Then G is isomorphic to a direct product $H' \times K'$ if and only if G has two subgroups H and K such that $H \cap K = \{e\}$ and |H||K| = n.

DEFINITION. We say that a group G is indecomposable if the following condition is satisfied: If H and K are groups and G is isomorphic to the direct product $H \times K$, then either $H = \{e\}$ or $K = \{e\}$.

For every $m \in \mathbb{N}$ and $m \ge 2$, we shall denote by \mathbb{Z}_m the group $(\mathbb{Z}_m, +)$.

PROPOSITION 5.6. For every prime p and every $a \in \mathbb{N}$, the group \mathbb{Z}_{p^a} is indecomposable.

PROOF. Suppose that \mathbb{Z}_{p^a} is isomorphic to the direct product $H \times K$, where $H \neq \{e\}$ and $K \neq \{e\}$. Since $|H||K| = |\mathbb{Z}_{p^a}| = p^a$, there exist $b, c \in \mathbb{N}$ such that $|H| = p^b$ and $|K| = p^c$. It follows that |H| and |K| are not coprime, so that $H \times K$ is not cyclic in view of Proposition 5.3(iii). This is a contradiction, since \mathbb{Z}_{p^a} is cyclic. \bigcirc

PROPOSITION 5.7. Suppose that $m = p_1^{a_1} \dots p_k^{a_k}$, where p_1, \dots, p_k are distinct primes and where $a_1, \dots, a_k \in \mathbb{N}$. Then \mathbb{Z}_m is isomorphic to the direct product $\mathbb{Z}_{p_1^{a_1}} \times \dots \times \mathbb{Z}_{p_n^{a_k}}$.

PROOF. Note that the numbers $p_1^{a_1},\ldots,p_k^{a_k}$ are pairwise coprime. It follows from Propositions 5.3(iii) and 5.3(i) that $\mathbb{Z}_{p_1^{a_1}}\times\ldots\times\mathbb{Z}_{p_k^{a_k}}$ is cyclic and of order $p_1^{a_1}\ldots p_k^{a_k}$. Hence $\mathbb{Z}_{p_1^{a_1}}\times\ldots\times\mathbb{Z}_{p_k^{a_k}}$ is isomorphic to \mathbb{Z}_m . \bigcirc

We state without proof the following important result, usually known as the fundamental theorem of finite abelian groups.

THEOREM 5.8. Suppose that G is a finite abelian group of order at least 2. Then there exist primes p_1, \ldots, p_k , not necessarily distinct, and $a_1, \ldots, a_k \in \mathbb{N}$ such that G is isomorphic to the direct product $\mathbb{Z}_{p_n^{a_1}} \times \ldots \times \mathbb{Z}_{p_n^{a_k}}$. Furthermore, the numbers $p_1^{a_1}, \ldots, p_k^{a_k}$ are unique up to their order.

EXAMPLE. Are $\mathbb{Z}_{48} \times \mathbb{Z}_{72}$ and $\mathbb{Z}_{24} \times \mathbb{Z}_{144}$ isomorphic? To answer this question, let us first factorize each of these groups using Theorem 5.8. Consider first of all \mathbb{Z}_{48} . Then since $48 = 2^4 3$, \mathbb{Z}_{48} is isomorphic to precisely one of the following:

$$\mathbb{Z}_3 \times \mathbb{Z}_{16},
\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_8,
\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_4,
\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4,
\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.$$

All except the first of these are non-cyclic in view of Proposition 5.3(iii). It follows that \mathbb{Z}_{48} is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_{16}$. Similarly, \mathbb{Z}_{72} is isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_9$. On the other hand, \mathbb{Z}_{24} is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_8$ and \mathbb{Z}_{144} is isomorphic to $\mathbb{Z}_9 \times \mathbb{Z}_{16}$. It follows that the two groups in question are isomorphic.

5.2. Geometric Interpretation of Matrix Groups

The purpose of this section is to give a geometric interpretation of the multiplicative group $\mathcal{M}_{2,2}^*(\mathbb{R})$ of invertible 2×2 matrices with entries in \mathbb{R} .

Consider the vector space \mathbb{R}^2 . Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. In other words, for all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ and for all scalars $\lambda \in \mathbb{R}$, we have $(\mathbf{x} + \mathbf{y})L = \mathbf{x}L + \mathbf{y}L$ and $(\lambda \mathbf{x})L = \lambda(\mathbf{x}L)$.

Suppose further that the linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ is invertible. Then $L: \mathbb{R}^2 \to \mathbb{R}^2$ can be described in terms of an element of $\mathcal{M}_{2,2}^*(\mathbb{R})$. In fact, an alternative notation for $\mathcal{M}_{2,2}^*(\mathbb{R})$ is $GL(2,\mathbb{R})$; this is known as a general linear group.

Recall the following facts about linear transformations $L: \mathbb{R}^2 \to \mathbb{R}^2$ and 2×2 matrices with entries in \mathbb{R} .

(i) If $L: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, then there is a 2×2 matrix A with entries in \mathbb{R} such that for every $\mathbf{x} \in \mathbb{R}^2$, we have $\mathbf{x}L = \mathbf{x}A$. Furthermore,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

where (a, b) = (1, 0)L and (c, d) = (0, 1)L are the images under L of the basis elements (1, 0) and (0, 1) respectively.

- (ii) Note that the image under $L: \mathbb{R}^2 \to \mathbb{R}^2$ of a square with vertices (0,0), (1,0), (1,1), (0,1) is a parallelogram with vertices (0,0), (a,b), (a+c,b+d), (c,d). The orientation is preserved if $\det A = ad bc > 0$, and reversed if $\det A = ad bc < 0$. It can also be shown that the area of the parallelogram is $|\det A| = |ad bc|$. Furthermore, if $\det A = ad bc = 0$, then the parallelogram has zero area
- (iii) The linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ is invertible if and only if the matrix A is invertible, *i.e.* if and only if det $A \neq 0$, *i.e.* if and only if $A \in GL(2, \mathbb{R})$.

It follows from (ii) that for the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ to preserve area and orientation, the matrix $A \in GL(2,\mathbb{R})$ must satisfy det A = 1. This leads to the set

$$SL(2,\mathbb{R}) = \{ A \in GL(2,\mathbb{R}) : \det A = 1 \}.$$

Theorem 5.9. $SL(2,\mathbb{R})$ is a normal subgroup of $GL(2,\mathbb{R})$.

PROOF. Clearly the identity matrix $I \in SL(2,\mathbb{R})$. On the other hand, if $A, B \in SL(2,\mathbb{R})$, then clearly $\det(AB) = (\det A)(\det B) = 1$, so that $AB \in SL(2,\mathbb{R})$; also, $\det(A^{-1}) = 1/(\det A) = 1$, so that $A^{-1} \in SL(2,\mathbb{R})$. It follows from Theorem 1.4 that $SL(2,\mathbb{R})$ is a subgroup of $GL(2,\mathbb{R})$. On the other hand, for every $C \in GL(2,\mathbb{R})$ and every $A \in SL(2,\mathbb{R})$,

$$\det(C^{-1}AC) = (\det C^{-1})(\det A)(\det C) = (\det C^{-1})(\det C) = 1,$$

so that $C^{-1}AC \in SL(2,\mathbb{R})$. It follows that $SL(2,\mathbb{R})$ is a normal subgroup of $GL(2,\mathbb{R})$. \bigcirc

DEFINITION. The group $SL(2,\mathbb{R})$ is called a special linear group or a unimodular group.

Rotations about the origin in \mathbb{R}^2 can also be described by matrices in $GL(2,\mathbb{R})$. In fact, an anticlockwise rotation by angle θ about the origin can be described by the matrix

$$R_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Let

$$\mathcal{R}(2) = \{ R_{\theta} : 0 \leqslant \theta < 2\pi \}.$$

PROPOSITION 5.10. $\mathcal{R}(2)$ is a subgroup of $SL(2,\mathbb{R})$.

PROOF. Clearly det $R_{\theta} = 1$ for every $\theta \in [0, 2\pi)$, and that $I = R_0$. On the other hand, if $\theta, \phi \in [0, 2\pi)$, then let

$$\psi = \theta + \phi - 2\pi \left[\frac{\theta + \phi}{2\pi} \right].$$

It is clear that $\psi \in [0, 2\pi)$ and $R_{\theta}R_{\phi} = R_{\psi}$. Finally, if $\theta \in (0, 2\pi)$, then $2\pi - \theta \in (0, 2\pi)$. Clearly $R_{\theta}R_{2\pi-\theta} = I$. The result now follows from Theorem 1.4. \bigcirc

The dihedral group D_4 can also be described by matrices in $GL(2,\mathbb{R})$. Suppose that the four vertices of the square are $(\pm 1, \pm 1)$. Then an anti-clockwise rotation of 90° can be described by the matrix $R_{\pi/2}$, while a reflection across the vertical axis can be described by the matrix

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

We can therefore conclude that D_4 is isomorphic to a subgroup of $GL(2,\mathbb{R})$.

Problems for Chapter 5

- 1. For each of the following groups G, find the order of G, determine whether G is abelian and whether G is cyclic, and determine the order of the elements of G:
 - (i) $G = (\mathbb{Z}_4, +) \times (\mathbb{Z}_7, +)$
 - (ii) $G = S_3 \times (\mathbb{Z}_2, +)$
 - (iii) $G = A_3 \times (\mathbb{Z}_7^*, \cdot)$
 - 2. Show that the three groups below are pairwise non-isomorphic:
 - (i) $(\mathbb{Z}_{16}, +)$
 - (ii) $(\mathbb{Z}_4,+)\times(\mathbb{Z}_4,+)$
 - (iii) $(\mathbb{Z}_4,+)\times(\mathbb{Z}_2,+)\times(\mathbb{Z}_2,+)$
 - 3. Show that S_3 is indecomposable.
 - 4. Show that (\mathbb{Z}_7^*,\cdot) is isomorphic to $(\mathbb{Z}_2,+)\times(\mathbb{Z}_3,+)$.
 - 5. Show that every abelian group of order 105 is isomorphic to $(\mathbb{Z}_{105}, +)$.
 - 6. Determine the number of non-isomorphic abelian groups of order 45.
 - 7. Determine the number of non-isomorphic abelian groups of order 144.
- 8. Determine the number of non-isomorphic groups of order 6 by following the steps below, where G denotes a group of order 6:
 - (i) Determine the number of non-isomorphic abelian groups G of order 6.
 - (ii) Suppose that G is non-abelian. Show that the order of the elements of G cannot exceed 3.
 - (iii) Suppose that G is non-abelian. Show that G must have an element of order 3.
 - (iv) Let $x \in G$ be of order 3, and write $G = \{e, x, x^2, y, z, u\}$. Suppose further that $y^2 = e$, to be justified later in (vii). Justify that we may assume that xy = z.
 - (v) Continuing from (iv), show that we cannot have yx = z.
 - (vi) Continuing from (iv) and assuming that yx = u, complete the group table for G and show that G is isomorphic to S_3 .
 - (vii) Show by contradiction that if G is non-abelian, then G must have an element of order 2.
 - (viii) Determine the answer.