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5.1. Direct Products of Groups

Consider the cartesian product G1 × . . .×Gk, where G1, . . . , Gk are groups.
For (g1, . . . , gk), (h1, . . . , hk) ∈ G1 × . . .×Gk, define

(5.1) (g1, . . . , gk) ∗ (h1, . . . , hk) = (g1h1, . . . , gkhk).

Note that we have used multiplicative notation for G1, . . . , Gk.
We leave it as an exercise to check the following three results.

Theorem 5.1. G1 × . . .×Gk, together with the operation ∗ defined by (5.1), forms a group.

Definition. The group in Theorem 5.1 is called the direct product of the groups G1, . . . , Gk.

Proposition 5.2. The direct product G1× . . .×Gk is abelian if and only if the groups G1, . . . , Gk

are all abelian.

Proposition 5.3. Suppose that the groups G1, . . . , Gk are all finite. Then
(i) |G1 × . . .×Gk| = |G1| . . . |Gk|;
(ii) the order of (g1, . . . , gk) ∈ G1 × . . . × Gk is the least common multiple of the orders of

g1, . . . , gk in G1, . . . , Gk respectively; and
(iii) G1 × . . .×Gk is cyclic if and only if G1, . . . , Gk are all cyclic and the orders |G1|, . . . , |Gk|

are pairwise coprime.

So far we have been “building up” groups from smaller groups. However, the really interesting task
is to “factor” a given group into a direct product of smaller groups.

Theorem 5.4. A group G is isomorphic to a direct product H ′ × K ′ if and only if G has two
subgroups H and K such that

(i) H ∩K = {e};
(ii) hk = kh for every h ∈ H and k ∈ K; and
(iii) G = {hk : h ∈ H, k ∈ K}.

The proof of Theorem 5.4 is rather hard. However, the following result follows easily, and is left as
an exercise.

Corollary 5.5. Suppose that G is an abelian group of order n. Then G is isomorphic to a direct
product H ′×K ′ if and only if G has two subgroups H and K such that H ∩K = {e} and |H||K| = n.

Definition. We say that a group G is indecomposable if the following condition is satisfied: If H
and K are groups and G is isomorphic to the direct product H×K, then either H = {e} or K = {e}.

For every m ∈ N and m ! 2, we shall denote by Zm the group (Zm,+).

Proposition 5.6. For every prime p and every a ∈ N, the group Zpa is indecomposable.
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Proof. Suppose that Zpa is isomorphic to the direct product H×K, where H %= {e} and K %= {e}.
Since |H||K| = |Zpa | = pa, there exist b, c ∈ N such that |H| = pb and |K| = pc. It follows that
|H| and |K| are not coprime, so that H ×K is not cyclic in view of Proposition 5.3(iii). This is a
contradiction, since Zpa is cyclic. ©

Proposition 5.7. Suppose that m = pa1
1 . . . pak

k , where p1, . . . , pk are distinct primes and where
a1, . . . , ak ∈ N. Then Zm is isomorphic to the direct product Zp

a1
1
× . . .× Zp

ak
k

.

Proof. Note that the numbers pa1
1 , . . . , pak

k are pairwise coprime. It follows from Propositions
5.3(iii) and 5.3(i) that Zp

a1
1
× . . .× Zp

ak
k

is cyclic and of order pa1
1 . . . pak

k . Hence Zp
a1
1
× . . .× Zp

ak
k

is
isomorphic to Zm. ©

We state without proof the following important result, usually known as the fundamental theorem
of finite abelian groups.

Theorem 5.8. Suppose that G is a finite abelian group of order at least 2. Then there exist primes
p1, . . . , pk, not necessarily distinct, and a1, . . . , ak ∈ N such that G is isomorphic to the direct product
Zp

a1
1
× . . .× Zp

ak
k

. Furthermore, the numbers pa1
1 , . . . , pak

k are unique up to their order.

Example. Are Z48×Z72 and Z24×Z144 isomorphic? To answer this question, let us first factorize
each of these groups using Theorem 5.8. Consider first of all Z48. Then since 48 = 243, Z48 is
isomorphic to precisely one of the following:

Z3 × Z16,

Z3 × Z2 × Z8,

Z3 × Z4 × Z4,

Z3 × Z2 × Z2 × Z4,

Z3 × Z2 × Z2 × Z2 × Z2.

All except the first of these are non-cyclic in view of Proposition 5.3(iii). It follows that Z48 is
isomorphic to Z3×Z16. Similarly, Z72 is isomorphic to Z8×Z9. On the other hand, Z24 is isomorphic
to Z3 × Z8 and Z144 is isomorphic to Z9 × Z16. It follows that the two groups in question are
isomorphic.

5.2. Geometric Interpretation of Matrix Groups

The purpose of this section is to give a geometric interpretation of the multiplicative group M∗
2,2(R)

of invertible 2× 2 matrices with entries in R.
Consider the vector space R2. Let L : R2 → R2 be a linear transformation. In other words, for all

vectors x,y ∈ R2 and for all scalars λ ∈ R, we have (x + y)L = xL + yL and (λx)L = λ(xL).
Suppose further that the linear transformation L : R2 → R2 is invertible. Then L : R2 → R2

can be described in terms of an element of M∗
2,2(R). In fact, an alternative notation for M∗

2,2(R) is
GL(2, R); this is known as a general linear group.

Recall the following facts about linear transformations L : R2 → R2 and 2×2 matrices with entries
in R.

(i) If L : R2 → R2 is a linear transformation, then there is a 2× 2 matrix A with entries in R such
that for every x ∈ R2, we have xL = xA. Furthermore,

A =
(

a b
c d

)
,

where (a, b) = (1, 0)L and (c, d) = (0, 1)L are the images under L of the basis elements (1, 0) and
(0, 1) respectively.

(ii) Note that the image under L : R2 → R2 of a square with vertices (0, 0), (1, 0), (1, 1), (0, 1)
is a parallelogram with vertices (0, 0), (a, b), (a + c, b + d), (c, d). The orientation is preserved if
det A = ad − bc > 0, and reversed if detA = ad − bc < 0. It can also be shown that the area of the
parallelogram is |det A| = |ad− bc|. Furthermore, if detA = ad− bc = 0, then the parallelogram has
zero area.

(iii) The linear transformation L : R2 → R2 is invertible if and only if the matrix A is invertible,
i.e. if and only if detA %= 0, i.e. if and only if A ∈ GL(2, R).
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It follows from (ii) that for the linear transformation L : R2 → R2 to preserve area and orientation,
the matrix A ∈ GL(2, R) must satisfy detA = 1. This leads to the set

SL(2, R) = {A ∈ GL(2, R) : detA = 1}.

Theorem 5.9. SL(2, R) is a normal subgroup of GL(2, R).

Proof. Clearly the identity matrix I ∈ SL(2, R). On the other hand, if A, B ∈ SL(2, R), then
clearly det(AB) = (detA)(detB) = 1, so that AB ∈ SL(2, R); also, det(A−1) = 1/(detA) = 1, so
that A−1 ∈ SL(2, R). It follows from Theorem 1.4 that SL(2, R) is a subgroup of GL(2, R). On the
other hand, for every C ∈ GL(2, R) and every A ∈ SL(2, R),

det(C−1AC) = (detC−1)(detA)(detC) = (detC−1)(detC) = 1,

so that C−1AC ∈ SL(2, R). It follows that SL(2, R) is a normal subgroup of GL(2, R). ©

Definition. The group SL(2, R) is called a special linear group or a unimodular group.

Rotations about the origin in R2 can also be described by matrices in GL(2, R). In fact, an anti-
clockwise rotation by angle θ about the origin can be described by the matrix

Rθ =
(

cos θ sin θ
− sin θ cos θ

)
.

Let

R(2) = {Rθ : 0 " θ < 2π}.

Proposition 5.10. R(2) is a subgroup of SL(2, R).

Proof. Clearly detRθ = 1 for every θ ∈ [0, 2π), and that I = R0. On the other hand, if
θ, φ ∈ [0, 2π), then let

ψ = θ + φ− 2π

[
θ + φ

2π

]
.

It is clear that ψ ∈ [0, 2π) and RθRφ = Rψ. Finally, if θ ∈ (0, 2π), then 2π − θ ∈ (0, 2π). Clearly
RθR2π−θ = I. The result now follows from Theorem 1.4. ©

The dihedral group D4 can also be described by matrices in GL(2, R). Suppose that the four
vertices of the square are (±1,±1). Then an anti-clockwise rotation of 90◦ can be described by the
matrix Rπ/2, while a reflection across the vertical axis can be described by the matrix

(
−1 0

0 1

)
.

We can therefore conclude that D4 is isomorphic to a subgroup of GL(2, R).
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Problems for Chapter 5

1. For each of the following groups G, find the order of G, determine whether G is abelian and
whether G is cyclic, and determine the order of the elements of G:

(i) G = (Z4,+)× (Z7,+)
(ii) G = S3 × (Z2,+)
(iii) G = A3 × (Z∗7, ·)

2. Show that the three groups below are pairwise non-isomorphic:
(i) (Z16,+)
(ii) (Z4,+)× (Z4,+)
(iii) (Z4,+)× (Z2,+)× (Z2,+)

3. Show that S3 is indecomposable.
4. Show that (Z∗7, ·) is isomorphic to (Z2,+)× (Z3,+).
5. Show that every abelian group of order 105 is isomorphic to (Z105,+).
6. Determine the number of non-isomorphic abelian groups of order 45.
7. Determine the number of non-isomorphic abelian groups of order 144.
8. Determine the number of non-isomorphic groups of order 6 by following the steps below, where

G denotes a group of order 6:
(i) Determine the number of non-isomorphic abelian groups G of order 6.
(ii) Suppose that G is non-abelian. Show that the order of the elements of G cannot exceed 3.
(iii) Suppose that G is non-abelian. Show that G must have an element of order 3.
(iv) Let x ∈ G be of order 3, and write G = {e, x, x2, y, z, u}. Suppose further that y2 = e, to

be justified later in (vii). Justify that we may assume that xy = z.
(v) Continuing from (iv), show that we cannot have yx = z.
(vi) Continuing from (iv) and assuming that yx = u, complete the group table for G and show

that G is isomorphic to S3.
(vii) Show by contradiction that if G is non-abelian, then G must have an element of order 2.
(viii) Determine the answer.


