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7.1. Ring Homomorphisms

DEFINITION. Suppose that R and S are rings. A function ¢ : R — S is said to be a ring homo-
morphism if the following conditions are satisfied:

(RH1) For every z,y € R, (z +y)¢ = xd + yo.

(RH2) For every z,y € R, (zy)d = xdyd.

DEFINITION. Suppose that R and S are rings, and that ¢ : R — S is a ring homomorphism. Then
the image R¢ and the kernel ker ¢ of ¢ : R — S are defined by

Rp={zx¢p:x€ R} and ker¢p={xe€ R:xp =0}

REMARK. Condition (RH1) implies that ¢ : R — S is a group homomorphism from (R,+) to
(S, +).

DEFINITION. Suppose that R and S are rings. A function ¢ : R — S is said to be a ring isomorphism
if the following conditions are satisfied:

(RI1) ¢: R — S is a ring homomorphism.

(RI2) ¢: R — S is one-to-one.

(RI3) ¢: R — S is onto.

DEFINITION. A ring isomorphism from a ring R to itself is called an automorphism of the ring R.

DEFINITION. We say that two rings R and S are isomorphic if there exists a ring isomorphism
¢:R—S.

EXAMPLES. (1) The complex conjugation function ¢ : C — C, defined by z¢ = z for every z € C,
is an automorphism on C.

(2) Let Q(v/3) = {a+bv/3 : a,b € Q}. The conjugation function ¢ : Q(v/3) — Q(v/3), defined by
(a+bV3)¢p = a — b\/3 for every a,b € Q, is an automorphism on Q(v/3).

Various basic results concerning ring homomorphisms correspond to basic results concerning group
homomorphisms.
Our first two results below correspond to Theorem 4.2 and Proposition 4.3 respectively.

THEOREM 7.1. Suppose that R and S are rings, and that ¢ : R — S is a ring homomorphism.
Then R¢ is a subring of S.

PROOF. By Theorem 4.2, (S,4) is a subgroup of (R,+), so it remains to check that (SR) holds.
Clearly if z¢, y¢ € R, then since zy € R, we must have xoy¢ = (zy)p € Rp. O

PROPOSITION 7.2. Suppose that R is a ring, and that + and - are binary operations on a set X.
Suppose further that the function ¢ : R — X salisfies the conditions that (x + y)¢ = xd + yo and
(xy)p = xpyd for every xz,y € R. Then the set Rp = {x¢ : x € R}, together with the binary
operations + and - on X, forms a ring.
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The proof is left as an exercise.

PROPOSITION 7.3. Suppose that R and S are rings, and that ¢ : R — S is a ring homomorphism.

(i) If R is commutative, then R¢ is commutative.

(ii) If R has unity 1 and 1¢ # 0, then R¢ has unity 1¢.
(iii) If R has unity 1 and 1¢ = 0, then R¢ = {0}.
(iv) If R is a field and 1¢ # 0, then R¢ is a field.

PROOF. (i) Since R is commutative, z¢yd = (xy)d = (yx)¢ = yox¢ for every x,y € R.

(i) If 1¢ # 0, then 1¢zd = (1a)¢ = x¢ and z¢pld = (x1)¢ = x¢ for every x € R.

(iii) If 1¢ = 0, then z¢ = (z1)¢ = 2l = x¢ - 0 = 0 for every = € R.

(iv) By (i) and (ii), R¢ is commutative and has unity 1¢. Now suppose that x¢ # 0 in R¢. Since
0¢ = 0, it follows that z # 0; since R is a field, it follows that z7! € R. Now 2~ Y¢z¢ = (27 12)¢ = 1¢
and 2oz 1p = (zx o =16. O

REMARK. It is almost trivial to check that ¢ : Z — Z4, defined by reduction modulo 4, is a ring
homomorphism. Note that Z is an integral domain, but Z,4 is not. It follows that Proposition 7.3
cannot have a statement concerning integral domains.

7.2. Ideals
In our study of group homomorphisms, normal subgroups play an important role. The correspond-
ing role in ring theory is played by ideals.

DEFINITION. Suppose that R is a ring. A non-empty subset I of R is said to be an ideal in R if
the following conditions are satisfied:
(I1) (I,+) is a subgroup of (R, +).
(I2) For every x € I and every a € R, the elements za,ax € I.

REMARK. Note that (I,+) is a normal subgroup of (R, +). Why?

Corresponding to Proposition 4.6, we have the following result.

PROPOSITION 7.4. Suppose that R and S are rings, and that ¢ : R — S is a ring homomorphism.
Then ker ¢ is an ideal in R.

PROOF. Note that (I1) is satisfied in view of Proposition 4.6. On the other hand, if « € ker ¢ and
a € R, then (za)p = zdap =0-a¢p =0 and (ax)¢ = agxd = ag - 0 = 0, so that za,ax € kerp. O
The proof of the following result is very simple, and is left as an exercise.
PROPOSITION 7.5. Suppose that R is a commutative ring, and that © € R. Then the set
(z) ={az :a € R}
is an ideal in R.
DEFINITION. The ideal (x) in Proposition 7.5 is called the principal ideal generated by x.

An important result concerning ideals is on the non-existence of proper ideals under certain con-
ditions.

PROPOSITION 7.6.

(i) Suppose that R is a field. Then the only ideals in R are {0} and R.
(ii) Suppose that R is a commutative ring with unity, and having {0} and R as the only ideals.
Then R is a field.

PRrROOF. (i) Clearly {0} is an ideal. Suppose now that I is a non-zero ideal in R. Let x € I be
non-zero. Since R is a field, z7! € R. It follows that for every element a € R, axz~! € R and so
a=ax 'z €. Hence I = R.

(ii) Let « € R be non-zero. Then (x) is an ideal in R by Proposition 7.5. Clearly (z) # {0}, so we
must have (x) = R. In particular, 1 € (x). It follows that 1 = ax for some a € R. Clearly a is the
multiplicative inverse of x. Hence R is a field. O

We are now in a position to prove the following useful result.
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PROPOSITION 7.7. Suppose that R is a field and S is a ring, and that ¢ : R — S is a ring
homomorphism. Then precisely one of the following two statements holds:

(i) R = {0}.

(ii) ¢ : R — S is one-to-one.
PROOF. By Proposition 7.4, ker ¢ is an ideal in R. By Proposition 7.6(i), either ker¢ = R or
ker ¢ = {0}. These correspond to cases (i) and (ii) respectively. O

Our last result in this section concerns pre-images, and corresponds to Proposition 4.9.

PROPOSITION 7.8. Suppose that R and S are rings, and that ¢ : R — S is a ring homomorphism.
(i) If I is an ideal in S, then I¢p~1 is an ideal in R.
(ii) If T is a subring of S, then T¢~" is a subring of R.

PROOF. (i) It follows from Proposition 4.9 that (I¢~!,+) is a subgroup of (R,+). On the other
hand, if + € I¢~! and a € R, then z¢ € I and (ax)¢ = agxg € I, so that ax € I¢p~1. Similarly
za € Ip~1.

(ii) is simpler. O

7.3. Quotient Rings

Suppose that R is a ring, and that (I, +) is a subgroup of the group (R, +). We can consider cosets
of the type z 4+ I, where x € R. Since (R,+) is abelian, every subgroup is normal, and so we can
define addition of cosets as in Chapter 4; for every x,y € R, we have

(7.1) (+D)+(y+1)=(x+y) +1

We now turn to the question of multiplication of cosets. Corresponding to Theorem 4.11, we have
the following result.

THEOREM 7.9. Suppose that R is a ring, and that I is an ideal in R. Then the multiplication of
cosets

(7.2) (z+Dy+I1)=ay+1

is well defined. In other words, if x1,x2,y1,y2 € R and x1 +1 =22+ 1 and y1 + 1 = yo + I, then
ziy1 +1 =z0y2 + 1.

PRrROOF. By Proposition 4.10, x1y; + I = z2ys + I if and only if

(7.3) (—(z1y1)) + 2232 € L.
Now
(7.4) (—=(@1y1)) + T2y2 = T2y1 + (—(z191)) + T2y2 + (—(22y1))

= (z2 + (—21))y1 + 22(y2 + (—y1))-

Since x1+1 = xzo+TI and y1+1 = yo+1, it follows from Proposition 4.10 that zo+(—x1),y2+(—y1) € 1.
Since I is an ideal, (7.3) clearly follows from (7.4). O

Having obtained two binary operations, we now show that there is a ring structure. Corresponding
to Theorem 4.12, we have the following important result.

THEOREM 7.10. Suppose that R is a ring, and that I is an ideal in R. Then the set
R/I={x+1:2¢€R}
of all cosets of I, together with addition and multiplication defined by (7.1) and (7.2) respectively,
forms a ring.

DEFINITION. The ring R/I in Theorem 7.10 is called the quotient ring R modulo I.

PROOF OF THEOREM 7.10. By Theorem 4.12, (R/I,+) forms an abelian group. (R6) is obvious
from (7.2), on noting that xy € R for every x,y € R. Finally, (R7), (R8) and (R9) follow respectively
from (R7), (R8) and (R9) for the ring R. O

EXAMPLE. The ring Z4 is isomorphic to the quotient ring Z/(4). It can be checked that the
function ¢ : Zy — Z/{4), defined by ¢ = x + (4) for z = 0,1, 2,3, is an isomorphism.
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The proof of the following result is left as a simple exercise.

PRrROPOSITION 7.11. Suppose that R is a ring, and that I is an ideal in R.

(i) If R is commutative, then R/I is commutative.
(ii) If R has unity 1 and I # R, then R/I has unity 1+ I.

7.4. Fundamental Theorem of Ring Homomorphisms
Corresponding to Theorem 4.15, we prove the following fundamental result.

THEOREM 7.12 (Fundamental theorem of ring homomorphisms). Suppose that R and S are rings,
and that ¢ : R — S is a ring homomorphism. Then R/ ker ¢ is isomorphic to R¢.

PRrOOF. For simplicity, write ker ¢ = I. Then I is an ideal in R. Define a function ¢ : R/I — R¢
in the following way. For every element x + I € R/I, let (z 4+ I) = x¢. Note now that (I,+) is
a normal subgroup of (R,+), and so it follows from the proof of Theorem 4.15 that the function
¥ : R/I — R¢ is a group isomorphism from (R/I,+) to (R$,+). To show that ¢ : R/I — R¢ is a
ring isomorphism, it remains to verify (RH2). Clearly, for every z,y € R, we have

(@+Dy+ D) = (zy+ DY = (2y)¢ = 2dyd = (x + D)(y + )¢,
as required. ()

7.5. Prime and Maximal Ideals

DEFINITION. Suppose that R is a commutative ring. An ideal I in R is said to be prime if the
following conditions are satisfied:

(i) I # R.
(ii) For every x,y € R such that zy € I, either x € T or y € I.

THEOREM 7.13. Suppose that R is a commutative ring with unity, and that I is a prime ideal in R.
Then R/I is an integral domain.

ProOOF. Clearly R/I is a commutative ring with unity. Suppose that z,y € R, and that (x +
I(y+1I)=1. Then zy+ I =1, so that xy € I. It follows that z € I or y € I, so that x + I =TI or
y+ I =1. Hence R/I has no zero divisors. (O

DEFINITION. Suppose that R is a commutative ring. An ideal I in R is said to be maximal if the
following conditions are satisfied:

(i) I #R.
(ii) For every ideal J in R such that I C J C R, either J =1 or J = R.

THEOREM 7.14. Suppose that R is a commutative ring with unity, and that I is a mazimal ideal
in R. Then R/I is a field.

PROOF. Let U be a non-zero ideal of R/I. Consider U¢~—t, where ¢ : R — R/I is the natural
homomorphism. By Proposition 7.8(i), U¢~! is an ideal. Since U is a non-zero ideal, it contains a
coset z + I where z ¢ I. Hence z € U¢™!, so that I G U¢p~'. It follows that Up~! = R, whence
U= (Up"1)¢p = Rp = R/I. This means that the only ideals in R/I are the two trivial ideals. The
result follows from Proposition 7.6(ii). O
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Problems for Chapter 7

1. For each of the following functions, determine whether the function is a ring homomorphism;

and if so, determine also the image and kernel:
(i) ¢ : Z¢ — Zg, where ¢ = 3z
(ii) ¢ : Zy — Z4, where x¢ = 2z

2. Suppose that n € N\ {1}. Determine which values a € {0,1,2,...,n — 1} satisfy the following

condition: The function ¢ : Z,, — Z,, defined by x¢ = ax for every = € Z,, is a ring homomorphism.
[Hint: Examine Question 1 closely.]

3. Suppose that R is a ring, and that R contains a non-zero element. Show that there are at least
two homomorphisms from R to R.

4. Suppose that R is a ring, and that S is the set of all ring automorphisms of R. Prove that S
forms a group under composition of functions.

5. Suppose that I is an ideal in Z. Show that there exists m € Z such that I = (m).

[Hint: Note that if I is an ideal of a ring R, then (I, +) is a subgroup of (R, +).]

6. Suppose that R is a ring, and that I and J are ideals in R. Prove that

I+J={x+y:ze€lnyel}
is an ideal in R.

7. Suppose that R and S are rings, and that ¢ : R — S is a ring homomorphism. Suppose further
that [ is an ideal in R. Prove that I¢ is an ideal in R¢. Give an example to show that I¢ may not
be an ideal in S.

8. Prove Theorem 7.10 by using Proposition 7.2.



