#### CHAPTER 8

# Polynomial Rings

© W W L Chen, 1991, 1993, 2013.

This chapter is available free to all individuals,
on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

### 8.1. Introduction and Elementary Properties

Suppose that R is a ring, not necessarily commutative. We write

$$R[X] = \{a_0 + a_1X + a_2X^2 + \dots + a_nX^n : n \ge 0, \ a_0, a_1, \dots, a_n \in R\};$$

in other words, R[X] denotes the set of all polynomials with coefficients in the ring R. Furthermore, for any two polynomials  $a(X), b(X) \in R[X]$ , where

$$a(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$
 and  $b(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_m X^m$ ,

we define addition and multiplication as follows: Adding zero coefficients if necessary, we may write

$$a(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_p X^p$$
 and  $b(X) = b_0 + b_1 X + b_2 X^2 + \ldots + b_p X^p$ ,

where  $p = \max\{n, m\}$ . Then we let

$$a(X) + b(X) = (a_0 + b_0) + (a_1 + b_1)X + (a_2 + b_2)X^2 + \dots + (a_p + b_p)X^p.$$

On the other hand, we let

$$a(X)b(X) = c_0 + c_1 X + c_2 X^2 + \dots + c_{n+m} X^{n+m}.$$

where for every  $j = 0, 1, 2, \ldots, n + m$ ,

(8.2) 
$$c_j = a_0 b_j + a_1 b_{j-1} + a_2 b_{j-2} + \ldots + a_j b_0.$$

It is not difficult to prove the following result.

Theorem 8.1. Suppose that R is a ring. Then R[X] is also a ring.

The proofs of the next two results are almost trivial.

PROPOSITION 8.2. Suppose that R is a commutative ring. Then R[X] is also a commutative ring.

Proposition 8.3. Suppose that the ring R has unity 1. Then R[X] has unity 1.

PROPOSITION 8.4. Suppose that R is an integral domain. Then R[X] is also an integral domain.

PROOF. In view of Propositions 8.2 and 8.3, it remains to show that R[X] has no zero divisors. Suppose that  $a(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n$  and  $b(X) = b_0 + b_1 X + b_2 X^2 + \ldots + b_m X^m$ , where  $a_n \neq 0$  and  $b_m \neq 0$ . Then a(X)b(X) satisfies (8.1) with  $c_{n+m} = a_n b_m$ . Since R is an integral domain, it follows that  $a_n b_m \neq 0$ , so that  $a(X)b(X) \neq 0$ . Hence R[X] is an integral domain.  $\bigcirc$ 

REMARK. Note that we have proved a result on the degree of the polynomial a(X)b(X).

PROPOSITION 8.5. For every ring R, the ring R[X] is not a field.

PROOF. If R has no unity, then R[X] has no unity, and is therefore not a field. We may therefore assume that R has unity 1, so that R[X] has unity 1. Then the polynomial X has no multiplicative inverse. To see this, note that for every  $a(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n \in R[X]$ , where  $a_n \neq 0$ , we have

$$Xa(X) = a_0X + a_1X^2 + a_2X^3 + \dots + a_nX^{n+1}$$

Since  $a_n \neq 0$ , the polynomial on the right hand side is non-constant, and so  $Xa(X) \neq 1$ .

EXAMPLES. (1) The rings  $\mathbb{Q}[X]$  and  $\mathbb{R}[X]$  are familiar.

- (2) In  $\mathbb{Z}_3[X]$ , we have  $(1+2X^2+X^5)(X+X^4)=X+2X^3+X^4+X^9$ .
- (3) In  $\mathbb{Z}_6[X]$ , we have  $(2X^3 + 4X + 2)(3X^2 + 3) = 0$ .

## 8.2. Factorization Properties

DEFINITION. Suppose that R is a field, and that  $a(X) \in R[X]$  is a non-constant polynomial. Then a(X) is said to be irreducible over R if the following condition holds: If  $b(X), c(X) \in R[X]$  satisfy a(X) = b(X)c(X), then b(X) or c(X) is constant.

Example. The polynomial  $X^2-3$  is irreducible over  $\mathbb{Q}[X]$  but  $X^2-3=(X+\sqrt{3})(X-\sqrt{3})$  in  $\mathbb{R}[X]$ .

As in this example, we shall, for the remainder of this chapter, abuse notation by using a(X) - b(X) to denote a(X) + (-b(X)).

As in factorization of integers, the first result is naturally the Division algorithm.

PROPOSITION 8.6. Suppose that R is a field. Suppose further that  $a(X), b(X) \in R[X]$ , and that  $a(X) \neq 0$ . Then there exist unique polynomials  $q(X), r(X) \in R[X]$  such that

- (i) b(X) = a(X)q(X) + r(X); and
- (ii) either r(X) = 0 or  $\deg r(X) < \deg a(X)$ .

PROOF. Consider all polynomials of the form b(X) - a(X)Q(X), where  $Q(X) \in R[X]$ . If there exists  $q(X) \in R[X]$  such that b(X) - a(X)q(X) = 0, then our proof is complete. Suppose now that  $b(X) - a(X)Q(X) \neq 0$  for any  $Q(X) \in R[X]$ . Then

$$m = \min\{\deg(b(X) - a(X)Q(X)) : Q(X) \in R[X]\}$$

exists. Let  $q(X) \in R[X]$  satisfy  $\deg(b(X) - a(X)q(X)) = m$ , and let r(X) = b(X) - a(X)q(X). Then  $\deg r(X) < \deg a(X)$ , for otherwise, writing

$$a(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$
 and  $r(X) = r_0 + r_1 X + r_2 X^2 + \dots + r_m X^m$ ,

where  $m \ge n$ , we have

$$r(X) - (r_m a_n^{-1} X^{m-n}) a(X) = b(X) - a(X) (q(X) + r_m a_n^{-1} X^{m-n}) \in R[X].$$

Clearly  $\deg(r(X) - (r_m a_n^{-1} X^{m-n}) a(X)) < \deg r(X)$ , contradicting the minimality of m. On the other hand, suppose that  $q_1(X), q_2(X) \in R[X]$  satisfy

$$\deg(b(X) - a(X)q_1(X)) = m$$
 and  $\deg(b(X) - a(X)q_2(X)) = m$ .

Let 
$$r_1(X) = b(X) - a(X)q_1(X)$$
 and  $r_2(X) = b(X) - a(X)q_2(X)$ . Then

$$r_1(X) - r_2(X) = a(X)(q_2(X) - q_1(X)).$$

If  $q_1(X) \neq q_2(X)$ , then  $\deg(a(X)(q_2(X) - q_1(X))) \geqslant \deg a(X)$ , while  $\deg(r_1(X) - r_2(X)) < \deg a(X)$ , a contradiction. It follows that q(X), and hence r(X), is unique.  $\bigcirc$ 

Recall the Fundamental theorem of algebra, that for any polynomial  $b(X) \in \mathbb{C}[X]$ , a number  $x \in \mathbb{C}$  is a root of b(X) if and only if X - x is a factor of b(X). Our task here is to prove the analogue for a commutative polynomial ring with unity. We need some intermediate results. The proof of the first of these is simple.

LEMMA 8.7. Suppose that R is a ring, and that p(X) = a(X) + b(X) in R[X]. Then for every  $x \in R$ , p(x) = a(x) + b(x).

Note that we do not require the ring R to be commutative in Lemma 8.7. However, for our next intermediate result, we have to make this assumption.

LEMMA 8.8. Suppose that R is a commutative ring, and that p(X) = a(X)b(X) in R[X]. Then for every  $x \in R$ , p(x) = a(x)b(x).

PROOF. Note that if  $a(X) = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$  and  $b(X) = b_0 + b_1 X + b_2 X^2 + ... + b_m X^m$ , then p(X) = a(X)b(X) satisfies (8.1) and (8.2), so that

(8.3) 
$$p(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n+m} x^{n+m} = \sum_{j=0}^{n+m} c_j x^j.$$

On the other hand, since R is a commutative ring,

$$(8.4) a(x)b(x) = (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_mx^m)$$

$$= \sum_{j=0}^{n+m} \sum_{i=0}^{j} a_ix^ib_{j-i}x^{j-i} = \sum_{j=0}^{n+m} \sum_{i=0}^{j} a_ib_{j-i}x^ix^{j-i}$$

$$= \sum_{j=0}^{n+m} \left(\sum_{i=0}^{j} a_ib_{j-i}\right)x^j = \sum_{j=0}^{n+m} c_jx^j.$$

It follows on combining (8.3) and (8.4) that p(x) = a(x)b(x).  $\bigcirc$ 

Our next result is a generalization of the Division algorithm to monic divisors over a commutative ring.

LEMMA 8.9. Suppose that R is a commutative ring. Suppose further that  $b(X) \in R[X]$ , and that  $x \in R$ . Then there exist unique polynomials  $q(X), r(X) \in R[X]$  such that b(X) = (X - x)q(X) + r(X) and r(X) is a constant polynomial.

PROOF. This is similar to Proposition 8.6 with a(X) = X - x. However, R is only a commutative ring, so we need to make modifications. Note that in the terminology of the proof of Proposition 8.6, we have n=1 and  $a_n=a_1=1$ . It follows that the polynomial r(X) in the proof of Proposition 8.6 has degree less than  $\deg(X-x)=1$ , so that r(X) is a constant. We need to prove that q(X), and hence r(X), is uniquely determined. Suppose that  $q_1(X), q_2(X) \in R[X]$  are such that both  $b(X)-(X-x)q_1(X)$  and  $b(X)-(X-x)q_2(X)$  are constant but different. Then  $(X-x)(q_1(X)-q_2(X))$  is a non-zero constant. On the other hand, writing  $q_1(X)-q_2(X)=s_0+s_1X+s_2X^2+\ldots+s_kX^k$ , where  $s_k \neq 0$ , we conclude that  $(X-x)(q_1(X)-q_2(X))=-xs_0+\ldots+s_kX^{k+1}$  is non-constant, a contradiction.  $\bigcirc$ 

THEOREM 8.10. Suppose that R is a commutative ring with unity, and that  $b(X) \in R[X]$  is non-constant. Then  $x \in R$  is a root of b(X) if and only if X - x is a factor of b(X).

PROOF.  $(\Rightarrow)$  By Lemma 8.9, there exist a unique polynomial  $q(X) \in R[X]$  and a unique element  $r \in R$  such that b(X) = (X - x)q(X) + r. It now follows from Lemmas 8.7 and 8.8 that

$$0 = b(x) = (x - x)q(x) + r = r.$$

Hence r = 0, so that b(X) = (X - x)q(X), whence (X - x) is a factor of b(X).

 $(\Leftarrow)$  Suppose that (X-x) is a factor of b(X), so that b(X)=(X-x)q(X) for some  $q(X)\in R[X]$ . It follows from Lemmas 8.7 and 8.8 that b(x)=(x-x)q(x)=0, so that x is a root of b(X).  $\bigcirc$ 

We conclude this chapter by proving the following important result.

THEOREM 8.11. Suppose that R is an integral domain, and that the polynomial  $b(X) \in R[X]$  is non-zero and has degree  $n \ge 0$ . Then b(X) has at most n roots in R.

PROOF. We shall prove the following by induction on n:

P(n): Any polynomial  $b(X) \in R[X]$  of degree n has at most n roots in R. If these roots are  $x_1, x_2, \ldots, x_m$ , where  $m \leq n$ , then  $b(X) = (X - x_1)(X - x_2) \ldots (X - x_m)s(X)$ , where  $s(X) \in R[X]$  has no roots in R.

Clearly P(0) is true. Suppose now that P(k) is true. Let  $b(X) \in R[X]$  have degree k+1. If b(X) has no roots in R, the proof is complete. Otherwise, let  $x_0 \in X$  be a root of b(X). Then by Theorem 8.10,  $b(X) = (X - x_0)q(X)$ , where  $q(X) \in R[X]$  has degree k, and therefore has at most k roots in R. Let the roots of q(X) be  $x_1, x_2, \ldots, x_m$ , where  $m \leq k$ . Then q(X) has factorization

$$q(X) = (X - x_1)(X - x_2) \dots (X - x_m)s(X)$$
, where  $s(X) \in R[X]$  has no roots in  $R$ . It follows that  $b(X) = (X - x_0)(X - x_1)(X - x_2) \dots (X - x_m)s(X)$ . Now let  $x \in R \setminus \{x_0, x_1, x_2, \dots, x_m\}$ . Then  $b(x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_m)s(x)$ .

Note that the terms on the right hand side are all non-zero. Since R is an integral domain, it follows that  $b(x) \neq 0$ . Hence b(X) has  $m+1 \leq k+1$  roots.  $\bigcirc$ 

However, if the ring R is not an integral domain, then we may have more roots than the degree of the polynomial. See Problems 2 and 3.

## Problems for Chapter 8

- 1. For each of the following polynomials, factorize the polynomial within the given polynomial ring:

  - (i)  $X^2 + X + 3$  in  $\mathbb{Z}_5[X]$ (ii)  $X^3 + 2X^2 + 6X + 1$  in  $\mathbb{Z}_{11}[X]$ (iii)  $X^4 + X^3 + 2X + 2$  in  $\mathbb{Z}_3[X]$
- 2. For each of the following polynomials within the given polynomial rings, find all the roots:

  - (i)  $X^2 + X + 8$  in  $\mathbb{Z}_{10}[X]$ (ii)  $X^2 + 4X + 4$  in  $\mathbb{Z}_8[X]$ (iii)  $X^3 + 7X$  in  $\mathbb{Z}_8[X]$
- 3. Consider the polynomial  $X^3 + 5X^2 + 6X$  in  $\mathbb{Z}_{10}[X]$ .
  - (i) Find all the roots  $x \in \mathbb{Z}_{10}$  of the polynomial.
  - (ii) Find three different factorizations of the polynomial in  $\mathbb{Z}_{10}[X]$ .
  - (iii) Comment on the results.
- 4. Consider the collection of all cubic polynomials in  $\mathbb{Z}_2[X]$ .
  - (i) Determine which of these are irreducible in  $\mathbb{Z}_2[X]$ .
  - (ii) Find a proper factorization of each of the remaining cases.
- 5. Give an example of a polynomial  $a(X) \in \mathbb{Z}[X]$  which satisfies all the following conditions:
  - (i) a(X) has degree 3.
  - (ii) There exist three polynomials  $b_1(X), b_2(X), b_3(X) \in \mathbb{Z}[X]$ , each one of degree 1, such that  $a(X) = b_1(X)b_2(X)b_3(X)$  in  $\mathbb{Z}[X]$ .
  - (iii) a(X) has no roots in  $\mathbb{Z}$ .