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8.1. Introduction and Elementary Properties

Suppose that R is a ring, not necessarily commutative. We write

R[X] = {a0 + a1X + a2X
2 + . . . + anXn : n ! 0, a0, a1, . . . , an ∈ R};

in other words, R[X] denotes the set of all polynomials with coefficients in the ring R. Furthermore,
for any two polynomials a(X), b(X) ∈ R[X], where

a(X) = a0 + a1X + a2X
2 + . . . + anXn and b(X) = b0 + b1X + b2X

2 + . . . + bmXm,

we define addition and multiplication as follows: Adding zero coefficients if necessary, we may write

a(X) = a0 + a1X + a2X
2 + . . . + apX

p and b(X) = b0 + b1X + b2X
2 + . . . + bpX

p,

where p = max{n, m}. Then we let

a(X) + b(X) = (a0 + b0) + (a1 + b1)X + (a2 + b2)X2 + . . . + (ap + bp)Xp.

On the other hand, we let

(8.1) a(X)b(X) = c0 + c1X + c2X
2 + . . . + cn+mXn+m,

where for every j = 0, 1, 2, . . . , n + m,

(8.2) cj = a0bj + a1bj−1 + a2bj−2 + . . . + ajb0.

It is not difficult to prove the following result.

Theorem 8.1. Suppose that R is a ring. Then R[X] is also a ring.

The proofs of the next two results are almost trivial.

Proposition 8.2. Suppose that R is a commutative ring. Then R[X] is also a commutative ring.

Proposition 8.3. Suppose that the ring R has unity 1. Then R[X] has unity 1.

Proposition 8.4. Suppose that R is an integral domain. Then R[X] is also an integral domain.

Proof. In view of Propositions 8.2 and 8.3, it remains to show that R[X] has no zero divisors.
Suppose that a(X) = a0 + a1X + a2X2 + . . . + anXn and b(X) = b0 + b1X + b2X2 + . . . + bmXm,
where an "= 0 and bm "= 0. Then a(X)b(X) satisfies (8.1) with cn+m = anbm. Since R is an integral
domain, it follows that anbm "= 0, so that a(X)b(X) "= 0. Hence R[X] is an integral domain. ©

Remark. Note that we have proved a result on the degree of the polynomial a(X)b(X).

Proposition 8.5. For every ring R, the ring R[X] is not a field.
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Proof. If R has no unity, then R[X] has no unity, and is therefore not a field. We may therefore
assume that R has unity 1, so that R[X] has unity 1. Then the polynomial X has no multiplicative
inverse. To see this, note that for every a(X) = a0 +a1X +a2X2 + . . .+anXn ∈ R[X], where an "= 0,
we have

Xa(X) = a0X + a1X
2 + a2X

3 + . . . + anXn+1.

Since an "= 0, the polynomial on the right hand side is non-constant, and so Xa(X) "= 1. ©

Examples. (1) The rings Q[X] and R[X] are familiar.
(2) In Z3[X], we have (1 + 2X2 + X5)(X + X4) = X + 2X3 + X4 + X9.
(3) In Z6[X], we have (2X3 + 4X + 2)(3X2 + 3) = 0.

8.2. Factorization Properties

Definition. Suppose that R is a field, and that a(X) ∈ R[X] is a non-constant polynomial. Then
a(X) is said to be irreducible over R if the following condition holds: If b(X), c(X) ∈ R[X] satisfy
a(X) = b(X)c(X), then b(X) or c(X) is constant.

Example. The polynomial X2 − 3 is irreducible over Q[X] but X2 − 3 = (X +
√

3)(X −
√

3) in
R[X].

As in this example, we shall, for the remainder of this chapter, abuse notation by using a(X)−b(X)
to denote a(X) + (−b(X)).

As in factorization of integers, the first result is naturally the Division algorithm.

Proposition 8.6. Suppose that R is a field. Suppose further that a(X), b(X) ∈ R[X], and that
a(X) "= 0. Then there exist unique polynomials q(X), r(X) ∈ R[X] such that

(i) b(X) = a(X)q(X) + r(X); and
(ii) either r(X) = 0 or deg r(X) < deg a(X).

Proof. Consider all polynomials of the form b(X) − a(X)Q(X), where Q(X) ∈ R[X]. If there
exists q(X) ∈ R[X] such that b(X) − a(X)q(X) = 0, then our proof is complete. Suppose now that
b(X)− a(X)Q(X) "= 0 for any Q(X) ∈ R[X]. Then

m = min{deg(b(X)− a(X)Q(X)) : Q(X) ∈ R[X]}
exists. Let q(X) ∈ R[X] satisfy deg(b(X)−a(X)q(X)) = m, and let r(X) = b(X)−a(X)q(X). Then
deg r(X) < deg a(X), for otherwise, writing

a(X) = a0 + a1X + a2X
2 + . . . + anXn and r(X) = r0 + r1X + r2X

2 + . . . + rmXm,

where m ! n, we have

r(X)− (rma−1
n Xm−n)a(X) = b(X)− a(X)(q(X) + rma−1

n Xm−n) ∈ R[X].

Clearly deg(r(X) − (rma−1
n Xm−n)a(X)) < deg r(X), contradicting the minimality of m. On the

other hand, suppose that q1(X), q2(X) ∈ R[X] satisfy

deg(b(X)− a(X)q1(X)) = m and deg(b(X)− a(X)q2(X)) = m.

Let r1(X) = b(X)− a(X)q1(X) and r2(X) = b(X)− a(X)q2(X). Then

r1(X)− r2(X) = a(X)(q2(X)− q1(X)).

If q1(X) "= q2(X), then deg(a(X)(q2(X)−q1(X))) ! deg a(X), while deg(r1(X)−r2(X)) < deg a(X),
a contradiction. It follows that q(X), and hence r(X), is unique. ©

Recall the Fundamental theorem of algebra, that for any polynomial b(X) ∈ C[X], a number x ∈ C
is a root of b(X) if and only if X − x is a factor of b(X). Our task here is to prove the analogue for a
commutative polynomial ring with unity. We need some intermediate results. The proof of the first
of these is simple.

Lemma 8.7. Suppose that R is a ring, and that p(X) = a(X) + b(X) in R[X]. Then for every
x ∈ R, p(x) = a(x) + b(x).

Note that we do not require the ring R to be commutative in Lemma 8.7. However, for our next
intermediate result, we have to make this assumption.
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Lemma 8.8. Suppose that R is a commutative ring, and that p(X) = a(X)b(X) in R[X]. Then for
every x ∈ R, p(x) = a(x)b(x).

Proof. Note that if a(X) = a0+a1X+a2X2+. . .+anXn and b(X) = b0+b1X+b2X2+. . .+bmXm,
then p(X) = a(X)b(X) satisfies (8.1) and (8.2), so that

(8.3) p(x) = c0 + c1x + c2x
2 + . . . + cn+mxn+m =

n+m∑

j=0

cjx
j .

On the other hand, since R is a commutative ring,

a(x)b(x) = (a0 + a1x + a2x
2 + . . . + anxn)(b0 + b1x + b2x

2 + . . . + bmxm)(8.4)

=
n+m∑

j=0

j∑

i=0

aix
ibj−ix

j−i =
n+m∑

j=0

j∑

i=0

aibj−ix
ixj−i

=
n+m∑

j=0

(
j∑

i=0

aibj−i

)
xj =

n+m∑

j=0

cjx
j .

It follows on combining (8.3) and (8.4) that p(x) = a(x)b(x). ©

Our next result is a generalization of the Division algorithm to monic divisors over a commutative
ring.

Lemma 8.9. Suppose that R is a commutative ring. Suppose further that b(X) ∈ R[X], and that
x ∈ R. Then there exist unique polynomials q(X), r(X) ∈ R[X] such that b(X) = (X−x)q(X)+r(X)
and r(X) is a constant polynomial.

Proof. This is similar to Proposition 8.6 with a(X) = X − x. However, R is only a commutative
ring, so we need to make modifications. Note that in the terminology of the proof of Proposition 8.6,
we have n = 1 and an = a1 = 1. It follows that the polynomial r(X) in the proof of Proposition 8.6
has degree less than deg(X − x) = 1, so that r(X) is a constant. We need to prove that q(X),
and hence r(X), is uniquely determined. Suppose that q1(X), q2(X) ∈ R[X] are such that both
b(X)−(X−x)q1(X) and b(X)−(X−x)q2(X) are constant but different. Then (X−x)(q1(X)−q2(X))
is a non-zero constant. On the other hand, writing q1(X)− q2(X) = s0 + s1X + s2X2 + . . . + skXk,
where sk "= 0, we conclude that (X − x)(q1(X) − q2(X)) = −xs0 + . . . + skXk+1 is non-constant, a
contradiction. ©

Theorem 8.10. Suppose that R is a commutative ring with unity, and that b(X) ∈ R[X] is non-
constant. Then x ∈ R is a root of b(X) if and only if X − x is a factor of b(X).

Proof. (⇒) By Lemma 8.9, there exist a unique polynomial q(X) ∈ R[X] and a unique element
r ∈ R such that b(X) = (X − x)q(X) + r. It now follows from Lemmas 8.7 and 8.8 that

0 = b(x) = (x− x)q(x) + r = r.

Hence r = 0, so that b(X) = (X − x)q(X), whence (X − x) is a factor of b(X).
(⇐) Suppose that (X − x) is a factor of b(X), so that b(X) = (X − x)q(X) for some q(X) ∈ R[X].

It follows from Lemmas 8.7 and 8.8 that b(x) = (x− x)q(x) = 0, so that x is a root of b(X). ©

We conclude this chapter by proving the following important result.

Theorem 8.11. Suppose that R is an integral domain, and that the polynomial b(X) ∈ R[X] is
non-zero and has degree n ! 0. Then b(X) has at most n roots in R.

Proof. We shall prove the following by induction on n:
P (n): Any polynomial b(X) ∈ R[X] of degree n has at most n roots in R. If these roots are

x1, x2, . . . , xm, where m " n, then b(X) = (X − x1)(X − x2) . . . (X − xm)s(X), where
s(X) ∈ R[X] has no roots in R.

Clearly P (0) is true. Suppose now that P (k) is true. Let b(X) ∈ R[X] have degree k + 1. If
b(X) has no roots in R, the proof is complete. Otherwise, let x0 ∈ X be a root of b(X). Then by
Theorem 8.10, b(X) = (X − x0)q(X), where q(X) ∈ R[X] has degree k, and therefore has at most
k roots in R. Let the roots of q(X) be x1, x2, . . . , xm, where m " k. Then q(X) has factorization
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q(X) = (X − x1)(X − x2) . . . (X − xm)s(X), where s(X) ∈ R[X] has no roots in R. It follows that
b(X) = (X − x0)(X − x1)(X − x2) . . . (X − xm)s(X). Now let x ∈ R \ {x0, x1, x2, . . . , xm}. Then

b(x) = (x− x0)(x− x1)(x− x2) . . . (x− xm)s(x).

Note that the terms on the right hand side are all non-zero. Since R is an integral domain, it follows
that b(x) "= 0. Hence b(X) has m + 1 " k + 1 roots. ©

However, if the ring R is not an integral domain, then we may have more roots than the degree of
the polynomial. See Problems 2 and 3.
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Problems for Chapter 8

1. For each of the following polynomials, factorize the polynomial within the given polynomial ring:
(i) X2 + X + 3 in Z5[X]
(ii) X3 + 2X2 + 6X + 1 in Z11[X]
(iii) X4 + X3 + 2X + 2 in Z3[X]

2. For each of the following polynomials within the given polynomial rings, find all the roots:
(i) X2 + X + 8 in Z10[X]
(ii) X2 + 4X + 4 in Z8[X]
(iii) X3 + 7X in Z8[X]

3. Consider the polynomial X3 + 5X2 + 6X in Z10[X].
(i) Find all the roots x ∈ Z10 of the polynomial.
(ii) Find three different factorizations of the polynomial in Z10[X].
(iii) Comment on the results.

4. Consider the collection of all cubic polynomials in Z2[X].
(i) Determine which of these are irreducible in Z2[X].
(ii) Find a proper factorization of each of the remaining cases.

5. Give an example of a polynomial a(X) ∈ Z[X] which satisfies all the following conditions:
(i) a(X) has degree 3.
(ii) There exist three polynomials b1(X), b2(X), b3(X) ∈ Z[X], each one of degree 1, such that

a(X) = b1(X)b2(X)b3(X) in Z[X].
(iii) a(X) has no roots in Z.


