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8.1. Introduction and Elementary Properties
Suppose that R is a ring, not necessarily commutative. We write
RIX]|={ao+ a1 X +aX*+...+a, X" :n >0, ag,a1,...,a, € R};

in other words, R[X]| denotes the set of all polynomials with coefficients in the ring R. Furthermore,
for any two polynomials a(X),b(X) € R[X], where

a(X)=ap+ a1 X +axX?+...+a, X" and b(X)=by+b01 X +bX?+ ...+ b, X",
we define addition and multiplication as follows: Adding zero coefficients if necessary, we may write
a(X)=ao+a X +axX?+...4+a,XP and b(X)=bo+b X +bX>+... +b,X?,
where p = max{n,m}. Then we let
a(X) +b(X) = (ag + bo) + (a1 +b1) X + (ag +b2) X% + ... + (ap + by) XP.
On the other hand, we let

(8.1) a(X)b(X)=co+ a1 X + X+ ... 4 cppmX™T™,
where for every j =0,1,2,...,n+m,
(82) Cj = aobj —+ albj—l —+ agbj_g + ...+ ajbo.

It is not difficult to prove the following result.

THEOREM 8.1. Suppose that R is a ring. Then R[X] is also a ring.

The proofs of the next two results are almost trivial.

PROPOSITION 8.2. Suppose that R is a commutative ring. Then R[X] is also a commutative ring.
PROPOSITION 8.3. Suppose that the ring R has unity 1. Then R[X] has unity 1.

PROPOSITION 8.4. Suppose that R is an integral domain. Then R[X] is also an integral domain.

PrOOF. In view of Propositions 8.2 and 8.3, it remains to show that R[X] has no zero divisors.
Suppose that a(X) = ag + a1 X + aaX? + ...+ a, X" and b(X) = by + b1 X + b2 X% + ... + b, X™,
where a,, # 0 and b,, # 0. Then a(X)b(X) satisfies (8.1) with ¢;,+m = anby,. Since R is an integral
domain, it follows that a,b,, # 0, so that a(X)b(X) # 0. Hence R[X] is an integral domain. O

REMARK. Note that we have proved a result on the degree of the polynomial a(X)b(X).
PROPOSITION 8.5. For every ring R, the ring R[X] is not a field.
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PROOF. If R has no unity, then R[X] has no unity, and is therefore not a field. We may therefore
assume that R has unity 1, so that R[X] has unity 1. Then the polynomial X has no multiplicative
inverse. To see this, note that for every a(X) = ag+a1 X + a2 X?+...+a, X" € R[X], where a,, # 0,
we have

Xa(X)=aoX + a1 X? +aX> 4+ ... +a, X"
Since a,, # 0, the polynomial on the right hand side is non-constant, and so Xa(X) #1. O

ExXAMPLES. (1) The rings Q[X] and R[X] are familiar.
(2) In Z3[X], we have (1 +2X2% + X°)(X + X%) = X +2X°% + X* + X°.
(3) In Zg[X], we have (2X3 +4X + 2)(3X2 + 3) = 0.

8.2. Factorization Properties

DEFINITION. Suppose that R is a field, and that a(X) € R[X] is a non-constant polynomial. Then
a(X) is said to be irreducible over R if the following condition holds: If b(X),c(X) € R[X] satisfy
a(X) = b(X)c(X), then b(X) or ¢(X) is constant.

EXAMPLE. The polynomial X2 — 3 is irreducible over Q[X] but X2 — 3 = (X + v/3)(X — v/3) in
R[X].

As in this example, we shall, for the remainder of this chapter, abuse notation by using a(X)—b(X)
to denote a(X) + (—=b(X)).

As in factorization of integers, the first result is naturally the Division algorithm.

PROPOSITION 8.6. Suppose that R is a field. Suppose further that a(X),b(X) € R[X], and that
a(X) # 0. Then there exist unique polynomials q(X),r(X) € R[X] such that

(i) b(X) =a(X)q(X) +7(X); and
(ii) either r(X) =0 or degr(X) < dega(X).

ProoF. Consider all polynomials of the form b(X) — a(X)Q(X), where Q(X) € R[X]. If there
exists ¢(X) € R[X] such that b(X) — a(X)q(X) = 0, then our proof is complete. Suppose now that
b(X) —a(X)Q(X) # 0 for any Q(X) € R[X]. Then

m = min{deg(b(X) — a(X)Q(X)) : Q(X) € R[X]}
exists. Let ¢(X) € R[X] satisfy deg(b(X) —a(X)q(X)) = m, and let r(X) = b(X) — a(X)g(X). Then
degr(X) < dega(X), for otherwise, writing
a(X)=ao+a X +axX?*+.. . +a, X" and r(X)=ro+nrmX +rX>+. . +r, X",
where m > n, we have
r(X) = (rmay ' X™a(X) = b(X) — a(X)(¢(X) + rmay ' X™7") € R[X].

Clearly deg(r(X) — (rma,'X™ ™)a(X)) < degr(X), contradicting the minimality of m. On the
other hand, suppose that ¢ (X), g2(X) € [ | satisty
deg(b(X) — a(X)q1 (X)) =m and  deg(b(X) — a(X)g2(X)) = m.

Let r1(X) =b(X) — a(X)q:1(X) and ro(X) = b(X) —a(X)ga(X). Then

r1(X) = ra(X) = a(X)(g2(X) — 2 (X))
If 1 (X) # q2(X), then deg(a(X)(g2(X)—q1(X))) > dega(X), while deg(ri(X) —r2(X)) < dega(X),
a contradiction. It follows that ¢(X), and hence r(X), is unique. O

Recall the Fundamental theorem of algebra, that for any polynomial b(X) € C[X], a number z € C
is a root of b(X) if and only if X — x is a factor of b(X). Our task here is to prove the analogue for a
commutative polynomial ring with unity. We need some intermediate results. The proof of the first
of these is simple.

LEMMA 8.7. Suppose that R is a ring, and that p(X) = a(X) + b(X) in R[X]. Then for every
x € R, p(z) = a(z) + b(x).

Note that we do not require the ring R to be commutative in Lemma 8.7. However, for our next
intermediate result, we have to make this assumption.
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LEMMA 8.8. Suppose that R is a commutative ring, and that p(X) = a(X)b(X) in R[X]. Then for
every x € R, p(z) = a(z)b(x).

PRrROOF. Note that if a(X) = ag+a; X +as X2 +.. . 4+a, X" and b(X) = bg+by X +bo X% +.. . +b, X™,
then p(X) = a(X)b(X) satisfies (8.1) and (8.2), so that

n+m
(8.3) p(x) =co+ x4 cor’ + ... 4 cppma™ ™ = Z cjmj.
j=0
On the other hand, since R is a commutative ring,
(8.4) a(x)b(z) = (ag + a1z + asx® + ... + anz™)(bg + bz + box® + ... + bpa™)
n+m j . o n+m J o
= Z Zaixlbj_ixjﬂ = Z Zaibj_il‘zmjil
j=0 i=0 j=0 i=0

n+m 7 n+m
= E aibj,i z) = E Cj.’IJ].
7=0 0 7=0

It follows on combining (8.3) and (8.4) that p(z) = a(z)b(z). O

Our next result is a generalization of the Division algorithm to monic divisors over a commutative
ring.

LEMMA 8.9. Suppose that R is a commutative ring. Suppose further that b(X) € R[X], and that
x € R. Then there exist unique polynomials ¢(X),r(X) € R[X] such that b(X) = (X —2)q(X)+r(X)
and r(X) is a constant polynomial.

PROOF. This is similar to Proposition 8.6 with a(X) = X — z. However, R is only a commutative
ring, so we need to make modifications. Note that in the terminology of the proof of Proposition 8.6,
we have n = 1 and a,, = a1 = 1. It follows that the polynomial 7(X) in the proof of Proposition 8.6
has degree less than deg(X — z) = 1, so that 7(X) is a constant. We need to prove that ¢(X),
and hence r(X), is uniquely determined. Suppose that ¢1(X),¢2(X) € R[X] are such that both
b(X)—(X—2)q1(X) and b(X)— (X —x)q2(X) are constant but different. Then (X —x)(q1(X)—q2(X))
is a non-zero constant. On the other hand, writing q; (X) — ¢2(X) = s0 + 51X + 52 X2 + ... + s XF,
where s;, # 0, we conclude that (X — z)(q1(X) — q2(X)) = —xs¢ + ... + sxX*T! is non-constant, a
contradiction. ()

THEOREM 8.10. Suppose that R is a commutative ring with unity, and that b(X) € R[X] is non-
constant. Then x € R is a root of b(X) if and only if X — x is a factor of b(X).

PROOF. (=) By Lemma 8.9, there exist a unique polynomial ¢(X) € R[X] and a unique element
r € R such that b(X) = (X — z)q(X) + r. It now follows from Lemmas 8.7 and 8.8 that

0="0b(z) =(x—a)g(x)+r=r
Hence r = 0, so that b(X) = (X — x)q(X), whence (X — z) is a factor of b(X).
(<) Suppose that (X — z) is a factor of b(X), so that b(X) = (X — x)q(X) for some ¢(X) € R[X].
It follows from Lemmas 8.7 and 8.8 that b(z) = (z — z)gq(z) = 0, so that z is a root of b(X). O
We conclude this chapter by proving the following important result.

THEOREM 8.11. Suppose that R is an integral domain, and that the polynomial b(X) € R[X] is
non-zero and has degree n > 0. Then b(X) has at most n roots in R.

ProOOF. We shall prove the following by induction on n:

P(n): Any polynomial b(X) € R[X] of degree n has at most n roots in R. If these roots are
X1,L2,...,Tm, where m < n, then b(X) = (X — 21)(X — z2)... (X — 2)8(X), where

s(X) € R[X] has no roots in R.
Clearly P(0) is true. Suppose now that P(k) is true. Let b(X) € R[X] have degree k + 1. If
b(X) has no roots in R, the proof is complete. Otherwise, let g € X be a root of b(X). Then by
Theorem 8.10, b(X) = (X — z0)q(X), where ¢(X) € R[X] has degree k, and therefore has at most
k roots in R. Let the roots of ¢(X) be x1,xa,..., %y, where m < k. Then ¢(X) has factorization
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g(X) = (X —21)(X —22)... (X —x)s(X), where s(X) € R[X] has no roots in R. It follows that

b(X)=(X —20)(X —21)(X —22)... (X —2p)s(X). Now let z € R\ {zo,21,22,...,2m}. Then
b(x) = (z —xzo)(x — x1)(x — x2) ... (x — 2 ) s(2).

Note that the terms on the right hand side are all non-zero. Since R is an integral domain, it follows

that b(z) # 0. Hence b(X) has m+ 1 < k+ 1 roots. O

However, if the ring R is not an integral domain, then we may have more roots than the degree of
the polynomial. See Problems 2 and 3.
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Problems for Chapter 8

1. For each of the following polynomials, factorize the polynomial within the given polynomial ring:
(i) X?+ X +3 in Zs[X]
(i) X3 +2X2+6X +1in Zy;[X]
(iil) X* + X3 +2X + 2 in Z3[X]
2. For each of the following polynomials within the given polynomial rings, find all the roots:
(1) X2+ X +8in Zyg[X]
(il) X2 +4X +4 in Zg[X]
(iii) X3 +7X in Zg[X]
3. Consider the polynomial X3 + 5X2 + 6X in Zo[X].
(i) Find all the roots x € Z1o of the polynomial.
(ii) Find three different factorizations of the polynomial in Zjo[X].
(iii) Comment on the results.
4. Consider the collection of all cubic polynomials in Zs[X].
(i) Determine which of these are irreducible in Zy[X].
(ii) Find a proper factorization of each of the remaining cases.
5. Give an example of a polynomial a(X) € Z[X] which satisfies all the following conditions:
(i) a(X) has degree 3.
(ii) There exist three polynomials by (X), b2(X), b3(X) € Z[X], each one of degree 1, such that
a(X) = by (X)b2(X)bs(X) in Z[X].
(iii) a(X) has no roots in Z.



