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9.1. Ideals in Polynomial Rings

We shall discuss field extensions in the language of quotient rings of the form R[X]/I, where R is a
field and I is an ideal in R[X]. We therefore first need to understand the structure of ideals in R[X],
where R is a field. Then we need to find out under what conditions R[X]/I is a field. Also there is
the question of whether R[X]/I contains the field R.

Theorem 9.1. Suppose that R is a field. Then every ideal in R[X] is of the form 〈a(X)〉, where
a(X) ∈ R[X].

Proof. Suppose that I is an ideal in R[X]. If I = {0}, then clearly I = 〈0〉. Suppose now that I
is a non-zero ideal. Let a(X) ∈ I be non-zero and of smallest degree. We shall show that I = 〈a(X)〉.
Clearly 〈a(X)〉 ⊆ I. Suppose now that b(X) ∈ I. Then there exist polynomials q(X), r(X) ∈ R[X]
such that b(X) = a(X)q(X) + r(X), where r(X) = 0 or deg r(X) < deg a(X). Clearly r(X) ∈ I.
If r(X) %= 0, then the requirement deg r(X) < deg a(X) contradicts the minimality of the degree
of a(X). It follows that r(X) = 0, so that b(X) = a(X)q(X) ∈ 〈a(X)〉. Hence I = 〈a(X)〉. ©

Example. Consider the ideal 〈X2 + 1〉 in R[X]. Note that R is a field. In view of Propositions
8.2 and 8.3, R[X] is a commutative ring with unity. Let J be an ideal in R[X] satisfying

〈X2 + 1〉 ! J ⊆ R[X].

By Theorem 9.1, there exists a polynomial b(X) ∈ R[X] such that J = 〈b(X)〉. Since 〈X2 + 1〉 %= J ,
we must have b(X) %= r(X2 + 1) for any non-zero r ∈ R. On the other hand, since 〈X2 + 1〉 ⊂ J , we
must have X2+1 = b(X)q(X) for some polynomial q(X) ∈ R[X]. Note now that X2+1 is irreducible
in R[X]. It follows that we must have b(X) = r for some non-zero r ∈ R, so that J = 〈1〉 = R[X].
Hence 〈X2 + 1〉 is maximal in R[X]. It now follows from Theorem 7.14 that R[X]/〈X2 + 1〉 is a field.

Our example motivates the second step of our argument.

Theorem 9.2. Suppose that R is a field, and that the polynomial a(X) ∈ R[X] is non-constant
and irreducible in R[X]. Then R[X]/〈a(X)〉 is a field.

Proof. Note that R is a field. In view of Propositions 8.2 and 8.3, R[X] is a commutative ring
with unity. Let J be an ideal in R[X] satisfying

〈a(X)〉 ! J ⊆ R[X].

By Theorem 9.1, there exists a polynomial b(X) ∈ R[X] such that J = 〈b(X)〉. Since 〈a(X)〉 %= J ,
we must have b(X) %= ra(X) for any non-zero r ∈ R. On the other hand, since 〈a(X)〉 ⊂ J , we must
have a(X) = b(X)q(X) for some polynomial q(X) ∈ R[X]. Since a(X) is irreducible in R[X], we
must have b(X) = r for some non-zero r ∈ R, so that J = 〈1〉 = R[X]. Hence 〈a(X)〉 is maximal in
R[X]. It now follows from Theorem 7.14 that R[X]/〈a(X)〉 is a field. ©

We shall continue with our example of the ideal 〈X2 + 1〉 in R[X]. However, to understand the
motivation of our approach, we need the following result on evaluation homomorphisms.
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46 9. FIELD EXTENSIONS

Proposition 9.3. Suppose that R and S are commutative rings, and that R is a subring of S.
Suppose further that x ∈ S is fixed. Then the function φx : R[X]→ S, defined by a(X)φx = a(x) for
every a(X) ∈ R[X], is a ring homomorphism.

Proof. Suppose that a(X), b(X) ∈ R[X]. Write f(X) = a(X) + b(X). Then

(a(X) + b(X))φx = f(x) and a(X)φx + b(X)φx = a(x) + b(x).

Note that f(x) = a(x) + b(x) in view of Lemma 8.7. It follows that φx satisfies (RH1). Next, write
g(X) = a(X)b(X). Then

(a(X)b(X))φx = g(x) and a(X)φxb(X)φx = a(x)b(x).

Note that g(x) = a(x)b(x) in view of Lemma 8.8. It follows that φx satisfies (RH2). ©

Example. We shall now show that the field R[X]/〈X2 + 1〉 is isomorphic to

C = R(i) = {x + yi : x, y ∈ R}.

Consider the function φi : R[X] → C, defined by a(X)φi = a(i) for every a(X) ∈ R[X]. By Proposi-
tion 9.3, φi : R[X]→ C is a ring homomorphism. In view of the Fundamental theorem of ring homo-
morphisms, it remains to show that kerφi = 〈X2 +1〉 and (R[X])φi = C. To show that (R[X])φi = C,
note that for every x, y ∈ R, the polynomial x + yX ∈ R[X] satisfies (x + yX)φi = x + yi. To show
that kerφi = 〈X2 + 1〉, note first of all that if a(X) ∈ 〈X2 + 1〉, then a(X) = (X2 + 1)q(X) for some
q(X) ∈ R[X]. It follows that a(X)φi = (i2+1)q(i) = 0, so that a(X) ∈ kerφi. Hence 〈X2+1〉 ⊆ kerφi.
On the other hand, we know that kerφi is an ideal in R[X] and that kerφi %= R[X]. Since 〈X2 + 1〉
is maximal, it follows that 〈X2 + 1〉 = kerφi, as required. Now that R[X]/〈X2 + 1〉 is isomorphic to
a field C which contains the field R as well as a root of the polynomial X2 + 1, we can say that the
field R[X]/〈X2 + 1〉 contains the field R as well as a root of the polynomial X2 + 1. In other words,
we can think of the field R[X]/〈X2 + 1〉 as an extension of the field R.

Example. The polynomial X2 + X + 1 is irreducible in Z2[X]. It follows from Theorem 9.2 that
Z2[X]/〈X2 + X + 1〉 is a field. We can use Proposition 9.3 to show that Z2[X]/〈X2 + X + 1〉 is
isomorphic to the field Z2(α) = {x + yα : x, y ∈ Z2}, where α2 + α + 1 = 0. We can therefore think
of the field Z2[X]/〈X2 + X + 1〉 as an extension of the field Z2.

Slightly abusing terminology, we have the following situation in general.

Theorem 9.4. Suppose that R is a field, and that the polynomial a(X) ∈ R[X] is irreducible in
R[X] and has degree at least 2. Then the field R[X]/〈a(X)〉 contains the field R as well as a root of
the polynomial a(X).

Proof. Write F = R[X]/〈a(X)〉. Consider the function φ : R → F defined for every x ∈ R
by xφ = x + 〈a(X)〉. It is not difficult to show that φ : R → F is a ring homomorphism with
kerφ = {0}. It follows from Proposition 7.7 that φ : R → F is one-to-one. Hence Rφ is a field
isomorphic to R. Note that Rφ ⊆ F . It follows that F contains R if we identify every x ∈ R with
the coset x + 〈a(X)〉 ∈ F . Now let α = X + 〈a(X)〉 ∈ F . Suppose that

a(X) = a0 + a1X + . . . + anXn,

where a0, a1, . . . , an ∈ R. Then

a(α) = a0 + a1α + . . . + anαn

= a0 + a1(X + 〈a(X)〉) + . . . + an(X + 〈a(X)〉)n

= a0 + a1(X + 〈a(X)〉) + . . . + an(Xn + 〈a(X)〉)
= (a0 + a1X + . . . + anXn) + 〈a(X)〉
= 〈a(X)〉,

the zero element of F , so that α is a root of a(X). ©

Remark. Note that in the proof, we have shown that F contains an isomorphic copy of R. As is
common in algebra, we abuse terminology and say that F contains R.
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9.2. The Structure of an Extension Field

Example. Consider the field Q and the polynomial a(X) = X3 − 5 ∈ Q[X]. By Theorem 9.4,
the field F = Q[X]/〈X3 − 5〉 contains Q as well as a root of the polynomial X3 − 5. It can be seen,
by applying the Fundamental theorem of ring homomorphisms to the evaluation homomorphism
φ 3√5 : Q[X] → R, defined for every polynomial q(X) ∈ Q[X] by (q(X))φ 3√5 = q( 3

√
5), that F is

isomorphic to the field

Q( 3
√

5) = {x + y 3
√

5 + z( 3
√

5)2 : x, y, z ∈ Q}.

Writing s = 3
√

5 and noting that s3 − 5 = 0, we then have the factorization

X3 − 5 = (X − s)(X2 + sX + s2)

in F [X]. We now investigate the roots of the polynomial X2 + sX + s2. Note that the roots

X =
−s±

√
s2 − 4s2

2
=
−s±

√
−3s2

2

do not lie in F . To see this, note that if −3s2 = u2 for some u ∈ F , then since F is isomorphic to
Q( 3
√

5), there would be some v ∈ Q( 3
√

5) such that v2 = −3( 3
√

5)2, clearly impossible since v2 ! 0
for every v ∈ Q( 3

√
5) ⊆ R. It follows that the polynomial X2 + sX + s2 is irreducible over F . By

Theorem 9.4 again, the field

K = F [X]/〈X2 + sX + s2〉

contains F , which contains Q. Furthermore, K contains a root t of X2 + sX + s2. It follows that

X3 − 5 = (X − s)(X − t)(X − w)

in K, since the remaining factor on dividing X2 + sX + s2 by X − t in K must be a linear factor.
Hence K contains Q and all the three roots of X3− 5. Finally, note that K is isomorphic to the field

(Q( 3
√

5))(
√

3i) = {x + y
√

3i : x, y ∈ Q( 3
√

5)} = Q( 3
√

5,
√

3i).

Theorem 9.5. Suppose that R is a field, and that the polynomial a(X) ∈ R[X] is irreducible
in R[X] and has degree n ! 2. Let α = X + 〈a(X)〉, and identify every x ∈ R with the coset
x + 〈a(X)〉 ∈ R[X]/〈a(X)〉. Then the field R[X]/〈a(X)〉 consists of all elements of the form

c0 + c1α + c2α
2 + . . . + cn−1α

n−1, c0, c1, c2, . . . , cn−1 ∈ R.

Proof. Write F = R[X]/〈a(X)〉. Any element of F is of the form b(X) + 〈a(X)〉, where b(X) ∈
R[X]. We can write b(X) = a(X)q(X) + r(X), where q(X), r(X) ∈ Q[X] and either r(X) = 0 or
deg r(X) < n. Then

b(X) + 〈a(X)〉 = r(X) + 〈a(X)〉.

We can write

r(X) = c0 + c1X + . . . + cn−1X
n−1,

where c0, c1, . . . , cn−1 ∈ R. It follows that every element of F can be written in the form

c0 + c1X + . . . + cn−1X
n−1 + 〈a(X)〉 = c0 + c1α + . . . + cn−1α

n−1

if we identify each ci ∈ R with the coset ci + 〈a(X)〉 ∈ F for every i = 0, 1, . . . , n− 1. ©

Definition. Suppose that R is a field, and that α is given as in Theorem 9.5. We write

R(α) = {c0 + c1α + c2α
2 + . . . + cn−1α

n−1 : c0, c1, c2, . . . , cn−1 ∈ R}.

An immediate consequence of Theorem 9.5 is the following useful result.

Proposition 9.6. Suppose that R is a field with k elements, and that the polynomial a(X) ∈ R[X]
is irreducible in R[X] and has degree n ! 2. Then the field F = R[X]/〈a(X)〉 has kn elements.
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9.3. Characteristic of a Field

Definition. Suppose that F is a field. For every m ∈ N, consider the statement

a + . . . + a︸ ︷︷ ︸
m

= 0 for all a ∈ F.

(i) If the statement is false for every m ∈ N, then we say that the field F has characteristic 0.
(ii) If the statement is true for some m ∈ N, then let k be the smallest value of m for which the

statement holds. In this case, we say that the field F has characteristic k.

Examples. (1) Consider the field Q. Note that for every m ∈ N, there exists a ∈ Q such that
ma %= 0. It follows that the field Q has characteristic 0. It can also be checked that the fields R, C
and Q( 3

√
5) all have characteristic 0.

(2) Recall that for every prime p, Zp = {0, 1, . . . , p − 1} is a field. It is not difficult to check that
Zp has characteristic p.

Theorem 9.7. The characteristic of a field is either 0 or a prime.

Proof. Suppose that the field F is of non-zero characteristic k. Then the element 1 has order k
in the additive group (F,+), for if m < k and 1 is of order m, then

a + . . . + a︸ ︷︷ ︸
m

= (1 + . . . + 1︸ ︷︷ ︸
m

)a = 0

for every a ∈ F , so that F has characteristic at most m, a contradiction. Suppose now that k is not
a prime. Then we can write k = rs where 1 < r, s < k, so that

(1 + . . . + 1︸ ︷︷ ︸
r

)(1 + . . . + 1︸ ︷︷ ︸
s

) = 1 + . . . + 1︸ ︷︷ ︸
rs

= 1 + . . . + 1︸ ︷︷ ︸
k

= 0,

and so F has zero divisors. Hence k must be prime. ©

Theorem 9.8. Suppose that F is a field.
(i) If F has characteristic 0, then F contains Q.
(ii) If F has non-zero characteristic p, where p is prime, then F contains Zp.

Proof. Let H denote the additive subgroup of (F,+) generated by 1. Define φ : Z → F by writing

mφ =






0, if m = 0,
1 + . . . + 1︸ ︷︷ ︸

m

, if m ∈ N,

−((−m)φ), if −m ∈ N.

It is not difficult to see that φ : Z → F is a ring homomorphism with Zφ = H.
(i) If F has characteristic 0, then kerφ = {0}. By the Fundamental theorem of ring homomor-

phisms, Z is isomorphic to H. Then it is not difficult to show that

Q = {xy−1 : x, y ∈ H, y %= 0}

is isomorphic to

Q = {ab−1 : a, b ∈ Z, b %= 0}.

Note now that Q is a field and Q ⊆ F . It follows that F contains Q.
(ii) If F has characteristic p, then kerφ = 〈p〉. By the Fundamental theorem of ring homomor-

phisms, Z/〈p〉 is isomorphic to H. Since Z/〈p〉 and Zp are isomorphic, it follows that Zp is isomorphic
to H. Note now that H is a subfield of F . It follows that F contains Zp. ©

9.4. Finite Fields

In view of Theorem 9.8, any finite field must have characteristic p, where p is prime. Furthermore,
it can be shown that the number of elements of a finite field must be of the form pn, where p is prime
and n ∈ N. Our main task in this section, however, is to show that for every prime p and every
n ∈ N, there is a field containing precisely pn elements.
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To do this, one might have hoped to start with the field Zp and use Proposition 9.6. For this
approach to succeed, one must find a polynomial a(X) ∈ Zp[X] which is irreducible in Zp[X] and has
degree n. However, it turns out to be rather difficult to prove the existence of such polynomials.

We therefore take an alternative approach, and shall exhibit a polynomial with pn distinct roots
and show that the collection of these roots form a field. We therefore first need some mechanism to
detect repeated roots.

Definition. Suppose that F is a field, and that the polynomial

a(X) =
n∑

k=0

akXk ∈ F [X].

Then the polynomial

a′(X) =
n∑

k=1

kakXk−1 ∈ F [X]

is known as the derivative of the polynomial a(X).

Remark. It is not difficult to check the product rule, that if c(X) = a(X)b(X) in F [X], then we
must have c′(X) = a′(X)b(X) + a(X)b′(X).

Proposition 9.9. Suppose that F is a field, and that a(X) ∈ F [X]. Then a(X) has multiple roots
if and only if a(X) and a′(X) have a non-constant common factor in F [X].

Proof. (⇒) Suppose that x is a multiple root of a(X). Let b(X) ∈ F [X] be an irreducible factor
of a(X) having x as a root. Then deg b(X) > 0 and b2(X) is a factor of a(X), so that we can write
a(X) = b2(X)q(X), where q(X) ∈ F [X]. It follows that

a′(X) = 2b(X)b′(X)q(X) + b2(X)q′(X) = b(X)(2b′(X)q(X) + b(X)q′(X)),

so that a(X) and a′(X) have a common factor b(X). Since deg b(X) > 0, this common factor is
clearly non-constant.

(⇐) Suppose now that a(X) and a′(X) have some non-constant common factor b(X) ∈ F [X]. Let
x be a root of b(X), and let K be a field which contains F as well as the root x. Then a(X) and
a′(X) have (X − x) as a common factor in K[X]. It follows that a(X) = (X − x)q(X) for some
q(X) ∈ K[X], so that

a′(X) = q(X) + (X − x)q′(X).

Now (X − x) is a factor of both a′(X) and (X − x)q′(X), hence also of q(X). It follows that
q(X) = (X − x)r(X) for some r(X) ∈ K[X], so that a(X) = (X − x)2r(X) in K[X]. Clearly x is a
multiple root of a(X). ©

Theorem 9.10. For every prime p and every n ∈ N, there is a field containing precisely pn

elements.

To prove Theorem 9.10, consider the polynomial a(X) = Xpn −X ∈ Zp[X]. Then

a′(X) = pnXpn−1 − 1 = −1

in Zp[X]. It follows from Proposition 9.9 that a(X) has no multiple roots. Let F be the set of all the
pn distinct roots of a(X). Next, note that by a finite number of applications of Theorem 9.4, there
exists a field K which contains Zp as well as all the pn roots of a(X). We shall show in the following
two lemmas that F is a subfield of K.

Lemma 9.11. Suppose that x, y ∈ R, where R is a field of characteristic prime p. Then for every
n ∈ N, we have (x− y)pn

= xpn − ypn

.

Proof. We shall prove the assertion by induction on n. For n = 1, note that by the Binomial
theorem, which holds in every field, we have

(x− y)p = xp + (u + . . . + u︸ ︷︷ ︸
p

)− yp = xp − yp,



50 9. FIELD EXTENSIONS

where u ∈ R. Suppose now that the assertion is true for n = k, so that (x− y)pk

= xpk − ypk

. Then

(x− y)pk+1
= ((x− y)pk

)p = (xpk

− ypk

)p = (xpk

)p − (ypk

)p = xpk+1
− ypk+1

.

The result follows from the Principle of induction. ©

Lemma 9.12. F is a subfield of K.

Proof. We need to show that F is a subring of K, and that the multiplicative inverse of any
non-zero element of F lies in F . Suppose that x, y ∈ F . Then xpn

= x and ypn

= y. It follows from
Lemma 9.11 that (x − y)pn

= xpn − ypn

= x − y, so that x − y ∈ F . This gives (SG). On the other
hand, (xy)pn

= xpn

ypn

= xy, so that xy ∈ F . This gives (SR). Finally, note that if x ∈ F and x %= 0,
then (x−1)pn

= (xpn

)−1 = x−1, so that x−1 ∈ F . ©

Remarks. (1) It can be shown for every prime p and every n ∈ N, any two fields containing
precisely pn elements are isomorphic to each other. It follows that there is essentially only one field
containing precisely pn elements. We denote this field by GF(pn), and call this a Galois field.

(2) We can show that the number of elements of a finite field F must be of the form pn, where p
is prime and n ∈ N. As noted in Theorem 9.8, F must be an extension of Zp. It is easily checked
that F can be viewed as a vector space over Zp, where vector addition is addition in F and scalar
multiplication is multiplication of an element in F by an element in Zp. Since F is finite, it must
have a finite basis over Zp. Let x1, . . . , xn be such a basis. Then

F = {c1x1 + . . . + cnxn : c1, . . . , cn ∈ Zp}.
Clearly there are precisely p choices for each coefficient ci. Hence F has precisely pn elements. We
have therefore completely solved the problem of the number of elements of a finite field.

Examples. (1) Consider the case p = 2 and n = 3. Then a(X) = X8 −X ∈ Z2[X]. This can be
factorized into irreducible factors in Z2[X] as

a(X) = X8 −X = X(X + 1)(X3 + X + 1)(X3 + X2 + 1).

By Theorem 9.4, the field F = Z2[X]/〈X3 + X + 1〉 contains a root x of X3 + X + 1. Then

X3 + X + 1 = (X − x)(X2 + xX + (x2 + 1))

in F [X]. By Proposition 9.6 and Theorem 9.5, F has 8 elements, and these are 0, 1, x, x + 1, x2,
x2 + 1, x2 + x and x2 + x + 1. By trial and error, we see that x2 and x2 + x are the two other roots
of X3 + X + 1. It follows that x + 1, x2 + 1 and x2 + x + 1 are the roots of X3 + X2 + 1. We also
conclude that F consists of the 8 distinct roots of X8 −X.

(2) Consider the case p = 3 and n = 2. Then a(X) = X9−X ∈ Z3[X]. This can be factorized into
irreducible factors in Z3[X] as

a(X) = X9 −X = X(X + 1)(X + 2)(X2 + 1)(X2 + X + 2)(X2 + 2X + 2).

Let x be a root of one of the three quadratic factors. Then the 9 roots are of the form ax + b, where
a, b ∈ Z3. Also, the three fields below are isomorphic to each other:

Z3[X]/〈X2 + 1〉, Z3[X]/〈X2 + X + 2〉, Z3[X]/〈X2 + 2X + 2〉.

9.5. Connection with Group Theory

Suppose that F is a finite field. Then the set F ∗ of all the non-zero elements of F forms a group
under multiplication. We are interested in understanding the structure of this group. We start with
an example.

Example. Let F be the Galois field GF(32). Then F ∗ has 8 elements. By the Fundamental
theorem of finite abelian groups, F ∗ is isomorphic to precisely one of the following:

Z8, Z2 × Z4, Z2 × Z2 × Z2.

If F ∗ is isomorphic to either of the last two direct products, then the order of every element of F ∗

must divide 4. It follows that all 8 elements of F ∗ must satisfy the polynomial equation X4 − 1 = 0,
so that this equation has more roots than its degree, a contradiction. It follows that F ∗ must be
isomorphic to Z8.

Generalizing this, we have the following important result.
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Theorem 9.13. Suppose that F is a finite field. Then the multiplicative group F ∗ of all the non-zero
elements of F is cyclic.

Proof. We apply the Fundamental theorem of finite abelian groups to F ∗. Then F ∗ is isomorphic
to a direct product of cyclic groups of prime power order. Grouping together all the factors involving
the same primes, we conclude that F ∗ is isomorphic to the direct product

Gq1 × . . .×Gqs ,

where q1, . . . , qs are distinct primes, and where, for every q = q1, . . . , qs,

Gq = Zqα1 × . . .× Zqαk ,

where α1, . . . , αk ∈ N. Write a = α1 + . . . + αk and b = max{α1, . . . , αk}. If b < a, then the order of
any element in Gq divides qb < qa. It follows that every element of Gq must satisfy the polynomial
equation Xqb−1 = 0, so that this equation has more roots than its degree, a contradiction. It follows
that b = a and so Gq = Zqa . Hence F ∗ is isomorphic to a direct product

Zq
a1
1
× . . .× Zqas

s
,

where q1, . . . , qs are distinct primes and a1, . . . , as ∈ N. It follows from Proposition 5.3(iii) that F ∗

is cyclic. ©
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Problems for Chapter 9

1. Show that 〈X2 + 1〉 is a prime ideal but not a maximal ideal in Z[X]. What can we say about
the quotient ring Z[X]/〈X2 + 1〉?

2. Suppose that R is a field, and that a(X) ∈ R[X] is reducible. Show that R[X]/〈a(X)〉 has zero
divisors.

3. Show that Z2[X]/〈X2 + 1〉 has precisely 4 elements. Is Z2[X]/〈X2 + 1〉 a field?
4. Show that Z3[X]/〈X2 + 1〉 has precisely 9 elements. Is Z3[X]/〈X2 + 1〉 a field?
5. Consider the field Z2 and the polynomial X3 + X + 1.

(i) Find a field which contains Z2 as well as a root of X3 + X + 1.
(ii) Find a field which contains Z2 as well as all the roots of X3 + X + 1.

6. Consider the field Z5 and the polynomial X2 + 2.
(i) Find a field F which contains Z5 as well as a root of X2 + 2.
(ii) How many elements does F have? Describe the elements.
(iii) Find an element that generates F ∗.

7. Suppose that F is a field of characteristic 0. Define φ : Q → F by writing, for every a ∈ Z and
b ∈ N,

(a

b

)
φ =






a︷ ︸︸ ︷
1 + . . . + 1
1 + . . . + 1︸ ︷︷ ︸

b

, if a > 0,

0, if a = 0,

−
(
−a

b

)
φ, if a < 0.

(i) Show that φ is well defined.
(ii) Show that φ is a ring homomorphism.
(iii) Show that φ is one-to-one.
(iv) Show that F is an extension of Q.

8. Consider the field Z2 and the polynomial X4 + X3 + X2 + X + 1.
(i) Show that a(X) is irreducible over Z2.
(ii) How many elements does the field F = Z2[X]/〈a(X)〉 have?
(iii) What is the order of the multiplicative group F ∗?
(iv) Let s be a root of a(X). Show that s does not generate F ∗.


