CHAPTER 9

Field Extensions

© W W L Chen, 1991, 1993, 2013.

This chapter is available free to all individuals,
on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

9.1. Ideals in Polynomial Rings

We shall discuss field extensions in the language of quotient rings of the form R[X]/I, where R is a field and I is an ideal in R[X]. We therefore first need to understand the structure of ideals in R[X], where R is a field. Then we need to find out under what conditions R[X]/I is a field. Also there is the question of whether R[X]/I contains the field R.

THEOREM 9.1. Suppose that R is a field. Then every ideal in R[X] is of the form $\langle a(X) \rangle$, where $a(X) \in R[X]$.

PROOF. Suppose that I is an ideal in R[X]. If $I = \{0\}$, then clearly $I = \langle 0 \rangle$. Suppose now that I is a non-zero ideal. Let $a(X) \in I$ be non-zero and of smallest degree. We shall show that $I = \langle a(X) \rangle$. Clearly $\langle a(X) \rangle \subseteq I$. Suppose now that $b(X) \in I$. Then there exist polynomials $q(X), r(X) \in R[X]$ such that b(X) = a(X)q(X) + r(X), where r(X) = 0 or $\deg r(X) < \deg a(X)$. Clearly $r(X) \in I$. If $r(X) \neq 0$, then the requirement $\deg r(X) < \deg a(X)$ contradicts the minimality of the degree of a(X). It follows that r(X) = 0, so that $b(X) = a(X)q(X) \in \langle a(X) \rangle$. Hence $I = \langle a(X) \rangle$. \bigcirc

EXAMPLE. Consider the ideal $\langle X^2 + 1 \rangle$ in $\mathbb{R}[X]$. Note that \mathbb{R} is a field. In view of Propositions 8.2 and 8.3, $\mathbb{R}[X]$ is a commutative ring with unity. Let J be an ideal in $\mathbb{R}[X]$ satisfying

$$\langle X^2 + 1 \rangle \subsetneq J \subseteq \mathbb{R}[X].$$

By Theorem 9.1, there exists a polynomial $b(X) \in \mathbb{R}[X]$ such that $J = \langle b(X) \rangle$. Since $\langle X^2 + 1 \rangle \neq J$, we must have $b(X) \neq r(X^2 + 1)$ for any non-zero $r \in \mathbb{R}$. On the other hand, since $\langle X^2 + 1 \rangle \subset J$, we must have $X^2 + 1 = b(X)q(X)$ for some polynomial $q(X) \in \mathbb{R}[X]$. Note now that $X^2 + 1$ is irreducible in $\mathbb{R}[X]$. It follows that we must have b(X) = r for some non-zero $r \in \mathbb{R}$, so that $J = \langle 1 \rangle = \mathbb{R}[X]$. Hence $\langle X^2 + 1 \rangle$ is maximal in $\mathbb{R}[X]$. It now follows from Theorem 7.14 that $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ is a field.

Our example motivates the second step of our argument.

THEOREM 9.2. Suppose that R is a field, and that the polynomial $a(X) \in R[X]$ is non-constant and irreducible in R[X]. Then $R[X]/\langle a(X) \rangle$ is a field.

PROOF. Note that R is a field. In view of Propositions 8.2 and 8.3, R[X] is a commutative ring with unity. Let J be an ideal in R[X] satisfying

$$\langle a(X) \rangle \subsetneq J \subseteq R[X].$$

By Theorem 9.1, there exists a polynomial $b(X) \in R[X]$ such that $J = \langle b(X) \rangle$. Since $\langle a(X) \rangle \neq J$, we must have $b(X) \neq ra(X)$ for any non-zero $r \in R$. On the other hand, since $\langle a(X) \rangle \subset J$, we must have a(X) = b(X)q(X) for some polynomial $q(X) \in R[X]$. Since a(X) is irreducible in R[X], we must have b(X) = r for some non-zero $r \in R$, so that $J = \langle 1 \rangle = R[X]$. Hence $\langle a(X) \rangle$ is maximal in R[X]. It now follows from Theorem 7.14 that $R[X]/\langle a(X) \rangle$ is a field. \bigcirc

We shall continue with our example of the ideal $\langle X^2 + 1 \rangle$ in $\mathbb{R}[X]$. However, to understand the motivation of our approach, we need the following result on evaluation homomorphisms.

PROPOSITION 9.3. Suppose that R and S are commutative rings, and that R is a subring of S. Suppose further that $x \in S$ is fixed. Then the function $\phi_x : R[X] \to S$, defined by $a(X)\phi_x = a(x)$ for every $a(X) \in R[X]$, is a ring homomorphism.

PROOF. Suppose that $a(X), b(X) \in R[X]$. Write f(X) = a(X) + b(X). Then

$$(a(X) + b(X))\phi_x = f(x)$$
 and $a(X)\phi_x + b(X)\phi_x = a(x) + b(x)$.

Note that f(x) = a(x) + b(x) in view of Lemma 8.7. It follows that ϕ_x satisfies (RH1). Next, write g(X) = a(X)b(X). Then

$$(a(X)b(X))\phi_x = g(x)$$
 and $a(X)\phi_x b(X)\phi_x = a(x)b(x)$.

Note that g(x) = a(x)b(x) in view of Lemma 8.8. It follows that ϕ_x satisfies (RH2). \bigcirc

EXAMPLE. We shall now show that the field $\mathbb{R}[X]/\langle X^2+1\rangle$ is isomorphic to

$$\mathbb{C} = \mathbb{R}(i) = \{x + yi : x, y \in \mathbb{R}\}.$$

Consider the function $\phi_i: \mathbb{R}[X] \to \mathbb{C}$, defined by $a(X)\phi_i = a(i)$ for every $a(X) \in \mathbb{R}[X]$. By Proposition 9.3, $\phi_i: \mathbb{R}[X] \to \mathbb{C}$ is a ring homomorphism. In view of the Fundamental theorem of ring homomorphisms, it remains to show that $\ker \phi_i = \langle X^2 + 1 \rangle$ and $(\mathbb{R}[X])\phi_i = \mathbb{C}$. To show that $(\mathbb{R}[X])\phi_i = \mathbb{C}$, note that for every $x, y \in \mathbb{R}$, the polynomial $x + yX \in \mathbb{R}[X]$ satisfies $(x + yX)\phi_i = x + yi$. To show that $\ker \phi_i = \langle X^2 + 1 \rangle$, note first of all that if $a(X) \in \langle X^2 + 1 \rangle$, then $a(X) = (X^2 + 1)q(X)$ for some $q(X) \in \mathbb{R}[X]$. It follows that $a(X)\phi_i = (i^2+1)q(i) = 0$, so that $a(X) \in \ker \phi_i$. Hence $\langle X^2 + 1 \rangle \subseteq \ker \phi_i$. On the other hand, we know that $\ker \phi_i$ is an ideal in $\mathbb{R}[X]$ and that $\ker \phi_i \neq \mathbb{R}[X]$. Since $\langle X^2 + 1 \rangle$ is maximal, it follows that $\langle X^2 + 1 \rangle = \ker \phi_i$, as required. Now that $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ is isomorphic to a field \mathbb{C} which contains the field \mathbb{R} as well as a root of the polynomial $X^2 + 1$, we can say that the field $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ contains the field \mathbb{R} as well as a root of the polynomial $X^2 + 1$. In other words, we can think of the field $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ as an extension of the field \mathbb{R} .

EXAMPLE. The polynomial $X^2 + X + 1$ is irreducible in $\mathbb{Z}_2[X]$. It follows from Theorem 9.2 that $\mathbb{Z}_2[X]/\langle X^2 + X + 1 \rangle$ is a field. We can use Proposition 9.3 to show that $\mathbb{Z}_2[X]/\langle X^2 + X + 1 \rangle$ is isomorphic to the field $\mathbb{Z}_2(\alpha) = \{x + y\alpha : x, y \in \mathbb{Z}_2\}$, where $\alpha^2 + \alpha + 1 = 0$. We can therefore think of the field $\mathbb{Z}_2[X]/\langle X^2 + X + 1 \rangle$ as an extension of the field \mathbb{Z}_2 .

Slightly abusing terminology, we have the following situation in general.

THEOREM 9.4. Suppose that R is a field, and that the polynomial $a(X) \in R[X]$ is irreducible in R[X] and has degree at least 2. Then the field $R[X]/\langle a(X)\rangle$ contains the field R as well as a root of the polynomial a(X).

PROOF. Write $F = R[X]/\langle a(X) \rangle$. Consider the function $\phi: R \to F$ defined for every $x \in R$ by $x\phi = x + \langle a(X) \rangle$. It is not difficult to show that $\phi: R \to F$ is a ring homomorphism with $\ker \phi = \{0\}$. It follows from Proposition 7.7 that $\phi: R \to F$ is one-to-one. Hence $R\phi$ is a field isomorphic to R. Note that $R\phi \subseteq F$. It follows that F contains R if we identify every $x \in R$ with the coset $x + \langle a(X) \rangle \in F$. Now let $\alpha = X + \langle a(X) \rangle \in F$. Suppose that

$$a(X) = a_0 + a_1 X + \ldots + a_n X^n,$$

where $a_0, a_1, \ldots, a_n \in R$. Then

$$a(\alpha) = a_0 + a_1 \alpha + \dots + a_n \alpha^n$$

$$= a_0 + a_1 (X + \langle a(X) \rangle) + \dots + a_n (X + \langle a(X) \rangle)^n$$

$$= a_0 + a_1 (X + \langle a(X) \rangle) + \dots + a_n (X^n + \langle a(X) \rangle)$$

$$= (a_0 + a_1 X + \dots + a_n X^n) + \langle a(X) \rangle$$

$$= \langle a(X) \rangle,$$

the zero element of F, so that α is a root of a(X). \bigcirc

REMARK. Note that in the proof, we have shown that F contains an isomorphic copy of R. As is common in algebra, we abuse terminology and say that F contains R.

9.2. The Structure of an Extension Field

EXAMPLE. Consider the field $\mathbb Q$ and the polynomial $a(X)=X^3-5\in\mathbb Q[X]$. By Theorem 9.4, the field $F=\mathbb Q[X]/\langle X^3-5\rangle$ contains $\mathbb Q$ as well as a root of the polynomial X^3-5 . It can be seen, by applying the Fundamental theorem of ring homomorphisms to the evaluation homomorphism $\phi_{\sqrt[3]{5}}:\mathbb Q[X]\to\mathbb R$, defined for every polynomial $q(X)\in\mathbb Q[X]$ by $(q(X))\phi_{\sqrt[3]{5}}=q(\sqrt[3]{5})$, that F is isomorphic to the field

$$\mathbb{Q}(\sqrt[3]{5}) = \{x + y\sqrt[3]{5} + z(\sqrt[3]{5})^2 : x, y, z \in \mathbb{Q}\}.$$

Writing $s = \sqrt[3]{5}$ and noting that $s^3 - 5 = 0$, we then have the factorization

$$X^3 - 5 = (X - s)(X^2 + sX + s^2)$$

in F[X]. We now investigate the roots of the polynomial $X^2 + sX + s^2$. Note that the roots

$$X = \frac{-s \pm \sqrt{s^2 - 4s^2}}{2} = \frac{-s \pm \sqrt{-3s^2}}{2}$$

do not lie in F. To see this, note that if $-3s^2 = u^2$ for some $u \in F$, then since F is isomorphic to $\mathbb{Q}(\sqrt[3]{5})$, there would be some $v \in \mathbb{Q}(\sqrt[3]{5})$ such that $v^2 = -3(\sqrt[3]{5})^2$, clearly impossible since $v^2 \ge 0$ for every $v \in \mathbb{Q}(\sqrt[3]{5}) \subseteq \mathbb{R}$. It follows that the polynomial $X^2 + sX + s^2$ is irreducible over F. By Theorem 9.4 again, the field

$$K = F[X]/\langle X^2 + sX + s^2 \rangle$$

contains F, which contains Q. Furthermore, K contains a root t of $X^2 + sX + s^2$. It follows that

$$X^{3} - 5 = (X - s)(X - t)(X - w)$$

in K, since the remaining factor on dividing $X^2 + sX + s^2$ by X - t in K must be a linear factor. Hence K contains \mathbb{Q} and all the three roots of $X^3 - 5$. Finally, note that K is isomorphic to the field

$$(\mathbb{Q}(\sqrt[3]{5}))(\sqrt{3}i) = \{x + y\sqrt{3}i : x, y \in \mathbb{Q}(\sqrt[3]{5})\} = \mathbb{Q}(\sqrt[3]{5}, \sqrt{3}i).$$

THEOREM 9.5. Suppose that R is a field, and that the polynomial $a(X) \in R[X]$ is irreducible in R[X] and has degree $n \ge 2$. Let $\alpha = X + \langle a(X) \rangle$, and identify every $x \in R$ with the coset $x + \langle a(X) \rangle \in R[X]/\langle a(X) \rangle$. Then the field $R[X]/\langle a(X) \rangle$ consists of all elements of the form

$$c_0 + c_1 \alpha + c_2 \alpha^2 + \ldots + c_{n-1} \alpha^{n-1}, \quad c_0, c_1, c_2, \ldots, c_{n-1} \in \mathbb{R}.$$

PROOF. Write $F = R[X]/\langle a(X) \rangle$. Any element of F is of the form $b(X) + \langle a(X) \rangle$, where $b(X) \in R[X]$. We can write b(X) = a(X)q(X) + r(X), where $q(X), r(X) \in Q[X]$ and either r(X) = 0 or $\deg r(X) < n$. Then

$$b(X) + \langle a(X) \rangle = r(X) + \langle a(X) \rangle.$$

We can write

$$r(X) = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1},$$

where $c_0, c_1, \ldots, c_{n-1} \in R$. It follows that every element of F can be written in the form

$$c_0 + c_1 X + \ldots + c_{n-1} X^{n-1} + \langle a(X) \rangle = c_0 + c_1 \alpha + \ldots + c_{n-1} \alpha^{n-1}$$

if we identify each $c_i \in R$ with the coset $c_i + \langle a(X) \rangle \in F$ for every $i = 0, 1, \dots, n-1$.

DEFINITION. Suppose that R is a field, and that α is given as in Theorem 9.5. We write

$$R(\alpha) = \{c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_{n-1} \alpha^{n-1} : c_0, c_1, c_2, \dots, c_{n-1} \in R\}.$$

An immediate consequence of Theorem 9.5 is the following useful result.

PROPOSITION 9.6. Suppose that R is a field with k elements, and that the polynomial $a(X) \in R[X]$ is irreducible in R[X] and has degree $n \ge 2$. Then the field $F = R[X]/\langle a(X) \rangle$ has k^n elements.

9.3. Characteristic of a Field

DEFINITION. Suppose that F is a field. For every $m \in \mathbb{N}$, consider the statement

$$\underbrace{a+\ldots+a}_m=0 \text{ for all } a\in F.$$

- (i) If the statement is false for every $m \in \mathbb{N}$, then we say that the field F has characteristic 0.
- (ii) If the statement is true for some $m \in \mathbb{N}$, then let k be the smallest value of m for which the statement holds. In this case, we say that the field F has characteristic k.

EXAMPLES. (1) Consider the field \mathbb{Q} . Note that for every $m \in \mathbb{N}$, there exists $a \in \mathbb{Q}$ such that $ma \neq 0$. It follows that the field \mathbb{Q} has characteristic 0. It can also be checked that the fields \mathbb{R} , \mathbb{C} and $\mathbb{Q}(\sqrt[3]{5})$ all have characteristic 0.

(2) Recall that for every prime p, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field. It is not difficult to check that \mathbb{Z}_p has characteristic p.

Theorem 9.7. The characteristic of a field is either 0 or a prime.

PROOF. Suppose that the field F is of non-zero characteristic k. Then the element 1 has order k in the additive group (F, +), for if m < k and 1 is of order m, then

$$\underbrace{a + \ldots + a}_{m} = (\underbrace{1 + \ldots + 1}_{m})a = 0$$

for every $a \in F$, so that F has characteristic at most m, a contradiction. Suppose now that k is not a prime. Then we can write k = rs where 1 < r, s < k, so that

$$(\underbrace{1+\ldots+1}_r)(\underbrace{1+\ldots+1}_s)=\underbrace{1+\ldots+1}_{rs}=\underbrace{1+\ldots+1}_k=0,$$

and so F has zero divisors. Hence k must be prime. \bigcirc

Theorem 9.8. Suppose that F is a field.

- (i) If F has characteristic 0, then F contains \mathbb{Q} .
- (ii) If F has non-zero characteristic p, where p is prime, then F contains \mathbb{Z}_p .

PROOF. Let H denote the additive subgroup of (F, +) generated by 1. Define $\phi : \mathbb{Z} \to F$ by writing

$$m\phi = \begin{cases} 0, & \text{if } m = 0, \\ \underbrace{1 + \dots + 1}_{m}, & \text{if } m \in \mathbb{N}, \\ -((-m)\phi), & \text{if } -m \in \mathbb{N} \end{cases}$$

It is not difficult to see that $\phi: \mathbb{Z} \to F$ is a ring homomorphism with $\mathbb{Z}\phi = H$.

(i) If F has characteristic 0, then $\ker \phi = \{0\}$. By the Fundamental theorem of ring homomorphisms, \mathbb{Z} is isomorphic to H. Then it is not difficult to show that

$$Q = \{xy^{-1} : x, y \in H, y \neq 0\}$$

is isomorphic to

$$\mathbb{Q} = \{ab^{-1} : a, b \in \mathbb{Z}, \ b \neq 0\}.$$

Note now that Q is a field and $Q \subseteq F$. It follows that F contains \mathbb{Q} .

(ii) If F has characteristic p, then $\ker \phi = \langle p \rangle$. By the Fundamental theorem of ring homomorphisms, $\mathbb{Z}/\langle p \rangle$ is isomorphic to H. Since $\mathbb{Z}/\langle p \rangle$ and \mathbb{Z}_p are isomorphic, it follows that \mathbb{Z}_p is isomorphic to H. Note now that H is a subfield of F. It follows that F contains \mathbb{Z}_p . \bigcirc

9.4. Finite Fields

In view of Theorem 9.8, any finite field must have characteristic p, where p is prime. Furthermore, it can be shown that the number of elements of a finite field must be of the form p^n , where p is prime and $n \in \mathbb{N}$. Our main task in this section, however, is to show that for every prime p and every $n \in \mathbb{N}$, there is a field containing precisely p^n elements.

To do this, one might have hoped to start with the field \mathbb{Z}_p and use Proposition 9.6. For this approach to succeed, one must find a polynomial $a(X) \in \mathbb{Z}_p[X]$ which is irreducible in $\mathbb{Z}_p[X]$ and has degree n. However, it turns out to be rather difficult to prove the existence of such polynomials.

We therefore take an alternative approach, and shall exhibit a polynomial with p^n distinct roots and show that the collection of these roots form a field. We therefore first need some mechanism to detect repeated roots.

DEFINITION. Suppose that F is a field, and that the polynomial

$$a(X) = \sum_{k=0}^{n} a_k X^k \in F[X].$$

Then the polynomial

$$a'(X) = \sum_{k=1}^{n} k a_k X^{k-1} \in F[X]$$

is known as the derivative of the polynomial a(X).

REMARK. It is not difficult to check the product rule, that if c(X) = a(X)b(X) in F[X], then we must have c'(X) = a'(X)b(X) + a(X)b'(X).

PROPOSITION 9.9. Suppose that F is a field, and that $a(X) \in F[X]$. Then a(X) has multiple roots if and only if a(X) and a'(X) have a non-constant common factor in F[X].

PROOF. (\Rightarrow) Suppose that x is a multiple root of a(X). Let $b(X) \in F[X]$ be an irreducible factor of a(X) having x as a root. Then $\deg b(X) > 0$ and $b^2(X)$ is a factor of a(X), so that we can write $a(X) = b^2(X)q(X)$, where $q(X) \in F[X]$. It follows that

$$a'(X) = 2b(X)b'(X)q(X) + b^{2}(X)q'(X) = b(X)(2b'(X)q(X) + b(X)q'(X)),$$

so that a(X) and a'(X) have a common factor b(X). Since $\deg b(X)>0$, this common factor is clearly non-constant.

 (\Leftarrow) Suppose now that a(X) and a'(X) have some non-constant common factor $b(X) \in F[X]$. Let x be a root of b(X), and let K be a field which contains F as well as the root x. Then a(X) and a'(X) have (X-x) as a common factor in K[X]. It follows that a(X)=(X-x)q(X) for some $q(X) \in K[X]$, so that

$$a'(X) = q(X) + (X - x)q'(X).$$

Now (X-x) is a factor of both a'(X) and (X-x)q'(X), hence also of q(X). It follows that q(X)=(X-x)r(X) for some $r(X)\in K[X]$, so that $a(X)=(X-x)^2r(X)$ in K[X]. Clearly x is a multiple root of a(X). \bigcirc

Theorem 9.10. For every prime p and every $n \in \mathbb{N}$, there is a field containing precisely p^n elements.

To prove Theorem 9.10, consider the polynomial $a(X) = X^{p^n} - X \in \mathbb{Z}_p[X]$. Then

$$a'(X) = p^n X^{p^n - 1} - 1 = -1$$

in $\mathbb{Z}_p[X]$. It follows from Proposition 9.9 that a(X) has no multiple roots. Let F be the set of all the p^n distinct roots of a(X). Next, note that by a finite number of applications of Theorem 9.4, there exists a field K which contains \mathbb{Z}_p as well as all the p^n roots of a(X). We shall show in the following two lemmas that F is a subfield of K.

LEMMA 9.11. Suppose that $x, y \in R$, where R is a field of characteristic prime p. Then for every $n \in \mathbb{N}$, we have $(x - y)^{p^n} = x^{p^n} - y^{p^n}$.

PROOF. We shall prove the assertion by induction on n. For n = 1, note that by the Binomial theorem, which holds in every field, we have

$$(x-y)^p = x^p + (\underbrace{u + \dots + u}_p) - y^p = x^p - y^p,$$

where $u \in R$. Suppose now that the assertion is true for n = k, so that $(x - y)^{p^k} = x^{p^k} - y^{p^k}$. Then

$$(x-y)^{p^{k+1}} = ((x-y)^{p^k})^p = (x^{p^k} - y^{p^k})^p = (x^{p^k})^p - (y^{p^k})^p = x^{p^{k+1}} - y^{p^{k+1}}.$$

The result follows from the Principle of induction. \bigcirc

Lemma 9.12. F is a subfield of K.

PROOF. We need to show that F is a subring of K, and that the multiplicative inverse of any non-zero element of F lies in F. Suppose that $x,y\in F$. Then $x^{p^n}=x$ and $y^{p^n}=y$. It follows from Lemma 9.11 that $(x-y)^{p^n}=x^{p^n}-y^{p^n}=x-y$, so that $x-y\in F$. This gives (SG). On the other hand, $(xy)^{p^n}=x^{p^n}y^{p^n}=xy$, so that $xy\in F$. This gives (SR). Finally, note that if $x\in F$ and $x\neq 0$, then $(x^{-1})^{p^n}=(x^{p^n})^{-1}=x^{-1}$, so that $x^{-1}\in F$. \bigcirc

REMARKS. (1) It can be shown for every prime p and every $n \in \mathbb{N}$, any two fields containing precisely p^n elements are isomorphic to each other. It follows that there is essentially only one field containing precisely p^n elements. We denote this field by $GF(p^n)$, and call this a Galois field.

(2) We can show that the number of elements of a finite field F must be of the form p^n , where p is prime and $n \in \mathbb{N}$. As noted in Theorem 9.8, F must be an extension of \mathbb{Z}_p . It is easily checked that F can be viewed as a vector space over \mathbb{Z}_p , where vector addition is addition in F and scalar multiplication is multiplication of an element in F by an element in \mathbb{Z}_p . Since F is finite, it must have a finite basis over \mathbb{Z}_p . Let x_1, \ldots, x_n be such a basis. Then

$$F = \{c_1 x_1 + \ldots + c_n x_n : c_1, \ldots, c_n \in \mathbb{Z}_p\}.$$

Clearly there are precisely p choices for each coefficient c_i . Hence F has precisely p^n elements. We have therefore completely solved the problem of the number of elements of a finite field.

EXAMPLES. (1) Consider the case p=2 and n=3. Then $a(X)=X^8-X\in\mathbb{Z}_2[X]$. This can be factorized into irreducible factors in $\mathbb{Z}_2[X]$ as

$$a(X) = X^8 - X = X(X+1)(X^3 + X + 1)(X^3 + X^2 + 1).$$

By Theorem 9.4, the field $F = \mathbb{Z}_2[X]/\langle X^3 + X + 1 \rangle$ contains a root x of $X^3 + X + 1$. Then

$$X^{3} + X + 1 = (X - x)(X^{2} + xX + (x^{2} + 1))$$

in F[X]. By Proposition 9.6 and Theorem 9.5, F has 8 elements, and these are 0, 1, x, x + 1, x^2 , $x^2 + 1$, $x^2 + x$ and $x^2 + x + 1$. By trial and error, we see that x^2 and $x^2 + x$ are the two other roots of $X^3 + X + 1$. It follows that x + 1, $x^2 + 1$ and $x^2 + x + 1$ are the roots of $X^3 + X^2 + 1$. We also conclude that F consists of the 8 distinct roots of $X^8 - X$.

(2) Consider the case p=3 and n=2. Then $a(X)=X^9-X\in\mathbb{Z}_3[X]$. This can be factorized into irreducible factors in $\mathbb{Z}_3[X]$ as

$$a(X) = X^9 - X = X(X+1)(X+2)(X^2+1)(X^2+X+2)(X^2+2X+2).$$

Let x be a root of one of the three quadratic factors. Then the 9 roots are of the form ax + b, where $a, b \in \mathbb{Z}_3$. Also, the three fields below are isomorphic to each other:

$$\mathbb{Z}_3[X]/\langle X^2+1\rangle$$
, $\mathbb{Z}_3[X]/\langle X^2+X+2\rangle$, $\mathbb{Z}_3[X]/\langle X^2+2X+2\rangle$.

9.5. Connection with Group Theory

Suppose that F is a finite field. Then the set F^* of all the non-zero elements of F forms a group under multiplication. We are interested in understanding the structure of this group. We start with an example.

EXAMPLE. Let F be the Galois field $GF(3^2)$. Then F^* has 8 elements. By the Fundamental theorem of finite abelian groups, F^* is isomorphic to precisely one of the following:

$$\mathbb{Z}_8$$
, $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

If F^* is isomorphic to either of the last two direct products, then the order of every element of F^* must divide 4. It follows that all 8 elements of F^* must satisfy the polynomial equation $X^4 - 1 = 0$, so that this equation has more roots than its degree, a contradiction. It follows that F^* must be isomorphic to \mathbb{Z}_8 .

Generalizing this, we have the following important result.

Theorem 9.13. Suppose that F is a finite field. Then the multiplicative group F^* of all the non-zero elements of F is cyclic.

PROOF. We apply the Fundamental theorem of finite abelian groups to F^* . Then F^* is isomorphic to a direct product of cyclic groups of prime power order. Grouping together all the factors involving the same primes, we conclude that F^* is isomorphic to the direct product

$$G_{q_1} \times \ldots \times G_{q_s}$$
,

where q_1, \ldots, q_s are distinct primes, and where, for every $q = q_1, \ldots, q_s$,

$$G_q = \mathbb{Z}_{q^{\alpha_1}} \times \ldots \times \mathbb{Z}_{q^{\alpha_k}},$$

where $\alpha_1, \ldots, \alpha_k \in \mathbb{N}$. Write $a = \alpha_1 + \ldots + \alpha_k$ and $b = \max\{\alpha_1, \ldots, \alpha_k\}$. If b < a, then the order of any element in G_q divides $q^b < q^a$. It follows that every element of G_q must satisfy the polynomial equation $X^{q^b} - 1 = 0$, so that this equation has more roots than its degree, a contradiction. It follows that b = a and so $G_q = \mathbb{Z}_{q^a}$. Hence F^* is isomorphic to a direct product

$$\mathbb{Z}_{q_1^{a_1}} \times \ldots \times \mathbb{Z}_{q_s^{a_s}},$$

where q_1, \ldots, q_s are distinct primes and $a_1, \ldots, a_s \in \mathbb{N}$. It follows from Proposition 5.3(iii) that F^* is cyclic. \bigcirc

Problems for Chapter 9

- 1. Show that $\langle X^2 + 1 \rangle$ is a prime ideal but not a maximal ideal in $\mathbb{Z}[X]$. What can we say about the quotient ring $\mathbb{Z}[X]/\langle X^2 + 1 \rangle$?
- 2. Suppose that R is a field, and that $a(X) \in R[X]$ is reducible. Show that $R[X]/\langle a(X)\rangle$ has zero divisors.
 - 3. Show that $\mathbb{Z}_2[X]/\langle X^2+1\rangle$ has precisely 4 elements. Is $\mathbb{Z}_2[X]/\langle X^2+1\rangle$ a field?
 - 4. Show that $\mathbb{Z}_3[X]/\langle X^2+1\rangle$ has precisely 9 elements. Is $\mathbb{Z}_3[X]/\langle X^2+1\rangle$ a field?
 - 5. Consider the field \mathbb{Z}_2 and the polynomial $X^3 + X + 1$.
 - (i) Find a field which contains \mathbb{Z}_2 as well as a root of $X^3 + X + 1$.
 - (ii) Find a field which contains \mathbb{Z}_2 as well as all the roots of $X^3 + X + 1$.
 - 6. Consider the field \mathbb{Z}_5 and the polynomial $X^2 + 2$.
 - (i) Find a field F which contains \mathbb{Z}_5 as well as a root of $X^2 + 2$.
 - (ii) How many elements does F have? Describe the elements.
 - (iii) Find an element that generates F^* .
- 7. Suppose that F is a field of characteristic 0. Define $\phi : \mathbb{Q} \to F$ by writing, for every $a \in \mathbb{Z}$ and $b \in \mathbb{N}$,

$$\left(\frac{a}{b}\right)\phi = \begin{cases}
\frac{1}{1+\ldots+1}, & \text{if } a > 0, \\
0, & \text{if } a = 0, \\
-\left(\frac{-a}{b}\right)\phi, & \text{if } a < 0.
\end{cases}$$

- (i) Show that ϕ is well defined.
- (ii) Show that ϕ is a ring homomorphism.
- (iii) Show that ϕ is one-to-one.
- (iv) Show that F is an extension of \mathbb{Q} .
- 8. Consider the field \mathbb{Z}_2 and the polynomial $X^4 + X^3 + X^2 + X + 1$.
 - (i) Show that a(X) is irreducible over \mathbb{Z}_2 .
 - (ii) How many elements does the field $F = \mathbb{Z}_2[X]/\langle a(X)\rangle$ have?
 - (iii) What is the order of the multiplicative group F^* ?
 - (iv) Let s be a root of a(X). Show that s does not generate F^* .