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In this chapter, we are interested in the question of factorization in integral domains. More precisely,
we are interested in whether factorization exists, and if so, whether it is unique. To do this, we first
of all need to generalize the notion of divisibility.

DEFINITION. Suppose that R is a commutative ring with unity. Suppose further that a,b € R and
a # 0. Then we say that a divides b, denoted by a | b, if there exists ¢ € R such that b = ac. In this
case, we also say that a is a divisor of b, or that b is a multiple of a.

EXAMPLES. (1) We are already familiar with divisibility in the ring Z and in polynomial rings of
the type R[X], where R is a commutative ring with unity.

(2) Suppose that a,b,c € R. If a | b and b | ¢, then a | ¢. To see this, note that if a | b and b | ¢,
then there exist m,n € R such that b = am and ¢ = bn, so that ¢ = amn.

10.1. A Simple Case

Throughout this section, F' denotes a field. We shall discuss the case of polynomial rings of the
form F[X].

PROPOSITION 10.1. Suppose that a(X),b(X) € F[X], not both zero. Then there exists a unique
monic polynomial d(X) € F[X] such that
(i) d(X) | a(X) and d(X) | b(X);
(ii) if e(X) € F[X] and ¢(X) | a(X) and ¢(X) | b(X), then ¢(X) | d(X); and
(iii) there exist polynomials s(X),t(X) € F[X] such that d(X) = a(X)s(X) + b(X)t(X).
Proor. Consider the set
I'={a(X)u(X)+b(X)v(X) : w(X),v(X) € F[X]}.
It is not difficult to check that I is an ideal in F[X]. It follows from Theorem 9.1 that I = (d(X))
for some d(X) € F[X]. Clearly we may assume without loss of generality that d(X) is monic. Since
d(X) € I, there exist s(X),t(X) € F[X] such that
d(X) = a(X)s(X) 4+ b(X)t(X).
Suppose that ¢(X) € F[X] and ¢(X) | a(X) and ¢(X) | b(X). Then there exist f(X),g(X) € F[X]
such that a(X) = ¢(X) f(X) and b(X) = ¢(X)g(X). It follows that
d(X) = e(X)(f(X)s(X) + g(X)H(X)),
so that ¢(X) | d(X). Note also that a(X),b(X) € I (why?), so that d(X) | a(X) and d(X) | b(X).
Finally, the uniqueness of d(X) follows from (i) and (ii), since if d;(X) and d2(X) both satisfy the

requirements of d(X), then we must have d;(X) | d2(X) and da(X) | d1(X). Since both d;(X) and
da(X) are monic, it follows that di(X) = d2(X). O

DEFINITION. The polynomial d(X) in Proposition 10.1 is known as the greatest common divisor
of the polynomials a(X) and b(X), and denoted by d(X) = (a(X), b(X)).
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54 10. UNIQUE FACTORIZATION

PROPOSITION 10.2. Suppose that a(X),b(X) € F[X], and that p(X) € F[X] is irreducible. If
p(X) [ a(X)b(X), then p(X) | a(X) or p(X) | b(X).

PROOF. Suppose that p(X) | a(X)b(X). Suppose further that p(X) { a(X). Since p(X) is irre-
ducible, the only divisors of p(X) are non-zero elements of F' or ¢p(X), where ¢ € F is non-zero.
Clearly ¢p(X) { a(X) for any non-zero ¢ € F. Hence we must have 1 = (a(X),p(X)). It follows from
Proposition 10.1 that there exist s(X),t(X) € F[X] such that

1= a(X)s(X) + p(X)t(X),
so that
b(X) = a(X)b(X)s(X) + p(X)b(X)H(X).
Clearly p(X) | b(X). O
Using Proposition 10.2 a finite number of times, we have

PROPOSITION 10.3. Suppose that a1(X),...,ap(X) € F[X], and that p(X) € F[X] is irreducible.
Ifp(X) | a1(X)...ax(X), then p(X) | a;(X) for somei=1,...,k.

PROPOSITION 10.4. Suppose that a(X) € F[X] is a non-constant monic polynomial. Then a(X) is
representable as a finite product of irreducible monic polynomial factors in F[X)], uniquely up to the
order of factors.

SKETCH OF PROOF. Existence of factorization can be demonstrated either by using the fact that
every ideal in F[X] is principal, as in Theorem 10.6, or by using the degrees of polynomials in F[X],
as in Theorem 10.12. Uniqueness of factorization is demonstrated by using Proposition 10.3, as in
the usual proof of uniqueness of factorization in N. (O

10.2. Principal Ideal Domains

Note that in the previous section, the main idea in the proof of Proposition 10.1 is Theorem 9.1.
In other words, we depend on the fact that any ideal in F[X] is generated by a single polynomial. In
this section, we shall generalize our argument to prove existence and uniqueness of factorization in
integral domains in which every ideal is principal.

We need a few definitions.

DEFINITION. Suppose that R is a commutative ring with unity. An element u € R is said to be a
unit in R if it has multiplicative inverse in R. Two elements a,b € R are said to be associates if there
exists a unit v € R such that a = ub.

EXAMPLES. (1) In the ring Z, 1 and —1 are the only units. Also, for every a € Z, a and —a are
associates.

(2) In F[X] where F is a field, every non-zero element of F' is a unit. Also the polynomials X + 3
and 27X + 81 are associates in R[X].

DEFINITION. Suppose that R is an integral domain. A non-zero non-unit element p € R is said to
be irreducible in R if the following condition is satisfied:

(U) For every a,b € R such that p = ab, either a or b is a unit.

DEFINITION. Suppose that R is an integral domain. A non-zero non-unit element p € R is said to
be prime in R if the following condition is satisfied:

(P) For every a,b € R such that p | ab, either p | a or p | b.

ExaMPLE. Consider the integral domain Z[X] and the polynomial p(X) = 2X + 6. Then p(X) is
reducible, since p(X) = 2(X + 3), and neither 2 nor (X + 3) is a unit. Also p(X) is not prime, for let
a(X) =4 and b(X) = X + 3. Then p(X) | a(X)b(X). But p(X) 1 a(X) and p(X) 1 b(X).

DEFINITION. Suppose that R is an integral domain.

(i) We say that R is a principal ideal domain (PID) if every ideal in R is of the form (a), where
ac R
(ii) We say that R is a unique factorization domain (UFD) if every non-zero non-unit element of

R can be represented as a finite product of irreducible elements of R, uniquely up to order
and associates.
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Our aim here is to prove that every principal ideal domain is a unique factorization domain. To
prove existence of factorization, we have the following result.

THEOREM 10.5. Suppose that R is a principal ideal domain. Then every non-zero non-unit element
of R can be represented as a finite product of irreducible elements of R.

We shall state and prove Theorem 10.5 in a slightly different form.

THEOREM 10.6. Suppose that R is a principal ideal domain, and that the non-zero non-unit element
y € R cannot be represented as a finite product of irreducible elements of R. Then
(i) there exist two infinite sequences yi,y2,Ys, ... and q1,q2,qs, ... of non-zero non-unit ele-
ments in R such that

Y = Y1491 = Y1¥Y292 = Y1Y2Y343 = .. .;

(ii) for every k € N, the principal ideals (qr) satisfy (qr) G (qr+1);
(iii) the union

1= )
k=1

is an ideal in R; and
(iv) there exists j € N such that (¢;) = (gj+1) = ... = 1.

ProoOF OF THEOREM 10.5. Simply note that (iv) contradicts (ii). O

PrROOF OF THEOREM 10.6. (i) Clearly y cannot be irreducible. It follows that there exist non-
zero non-unit y;,q1 € R such that y = y1¢q;. Also at least one of y1,¢q; cannot be represented as
a finite product of irreducible elements of R. Without loss of generality, we assume that ¢; cannot
be represented as a finite product of irreducible elements of R. Clearly ¢; cannot be irreducible. It
follows that there exist non-zero non-unit ys, g2 € R such that ¢; = y2q2. Also at least one of ys, qo
cannot be represented as a finite product of irreducible elements of R. Without loss of generality, we
assume that ¢o cannot be represented as a finite product of irreducible elements of R. And so on.

(ii) Since qx = Yr+1qr+1, we clearly have g € (gr+1), so that (gx) C {(qr+1). Suppose on the
contrary that (gx) = (qx+1). Then gr+1 = ugy for some v € R, so that yrr;u = 1, whence yi41 is a
unit, a contradiction.

(ili) Suppose that a,b € I. Then there exist k1,k2 € N such that a € (qx,) and b € (gi,). Let
k = max{ki, ko}. Then a,b € {(qi). Hence we have a — b € (q;) C I. Also, for any 2 € R, we have
za,ax € (q;) C I.

(iv) Since R is a principal ideal domain, there exists ¢ € R such that

(@)=1= U<Qk>~
k=1

Note that ¢ € I. It follows that ¢ € {(g;) for some j € N, so that (¢) C (g;). On the other hand, we
clearly have (gx) C (q) for every k € N. Hence for every k > j, we have (¢) C (¢g;) C (gx) C (g), so

that (gx) = (¢). O

To prove uniqueness of factorization, we need the following three results which are generalizations
of Propositions 10.1, 10.2 and 10.3.

THEOREM 10.7. Suppose that R is a principal ideal domain, and that a,b € R, not both zero. Then
there exists an element d € R, unique up to associates, such that
(i) d|a and d | b;
(ii) fce R andc|a and c|b, then c|d; and
(iii) there exist s,t € R such that d = as + bt.

ProoF. Consider the set
I={au+bv:u,ve R}

It is not difficult to check that I is an ideal in R. Since R is a principal ideal domain, there exists
d € R such that I = (d). Since d € I, there exist s,t € R such that d = as + bt. Suppose that
¢ € Rand ¢ | a and ¢ | b. Then there exist f,g € R such that a = ¢f and b = cg. It follows that
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d = c(fs+ gt), so that ¢ | d. Note also that a,b € I, so that d | a and d | b. Finally, the uniqueness of
d up to assiciates follows from (i) and (ii), since if d; and ds both satisfy the requirements of d, then
we must have d | da and ds | di, so that dy and dy are associates. O

DEFINITION. The element d in Theorem 10.7 is known as a greatest common divisor of the elements
a and b, and denoted by d = (a, b).

THEOREM 10.8. Suppose that R is a principal ideal domain. Suppose further that a,b € R, and
that p € R is irreducible. If p | ab, then p|a orp|b.

PROOF. Suppose that p | ab. Suppose further that p t a. Since p is irreducible, the only divisors of
p are units or associates of p. Clearly no associate of p will divide a. Hence we must have 1 = (a, p).
It follows from Theorem 10.7 that there exist s,t € R such that 1 = as + pt, so that b = abs + pbt.
Clearly p | b. O

Using Theorem 10.8 a finite number of times, we have

THEOREM 10.9. Suppose that R is a principal ideal domain. Suppose further that aq,...,ar € R,
and that p € R is irreducible. If p| a;y...ax, then p| a; for somei=1,... k.

THEOREM 10.10. Suppose that R is a principal ideal domain. Then the representation of any non-
zero non-unit element of R as a finite product of irreducible elements of R is unique up to order and
associates.

PROOF. Suppose that

P1---DPk=4q1..-9m,
where p1,...,Pk,q1, - -, qm are all irreducible in R. Since p1 | ¢1 . . . ¢m, it follows from Theorem 10.9

that p1 | ¢; for some i = 1,...,m. Without loss of generality, we may assume that p; | ¢1. Since ¢;
is irreducible, it follows that p; and ¢; are associates. Hence

P2...Pk=Uq2...qm

for some unit u € R. We now continue by induction, noting that p t u for any irreducible p € R and
unitu € R. O

10.3. The Simple Case Again

Let us briefly return to the case of F[X] where F is a field. In Section 10.1, Proposition 10.2 is
proved using Proposition 10.1, while the proof of Proposition 10.1 hinges on the fact that F[X] is
a principal ideal domain. Let us now give an alternative proof of Proposition 10.2 without using
Proposition 10.1 or the fact that F[X] is a principal ideal domain.

Recall Proposition 8.6, which we restate below in the notation of this chapter.

PROPOSITION 10.11. Suppose that a(X),b(X) € F[X], and that a(X) # 0. Then there exist unique
polynomials ¢(X),r(X) € F[X] such that
(i) b(X) = a(X)q(X) + r(X); and
(i1) either r(X) =0 or degr(X) < dega(X).
ALTERNATIVE PROOF OF PROPOSITION 10.2. Suppose that p(X) {a(X) in F[X]. Let
S ={b(X) € F[X]: p(X) | a(X)b(X), p(X) 1b(X)}.

Clearly it is sufficient to show that S = (). Suppose, on the contrary, that S # ). Since 0 € S, there
exists a non-zero ¢(X) € S of smallest degree. In particular,

p(X) [a(X)e(X) and  p(X) f ¢(X).

)
Since p(X) 1 a(X), ¢(X) must be non-constant, so that degc(X) > 1. It follows that ¢(X) is not
a unit in F[X] (why?). On the other hand, since p(X) 1 ¢(X), ¢(X) is not an associate of p(X).
Next, we can assume that deg ¢(X) < deg p(X), for otherwise write ¢(X) = p(X)u(X) 4+ v(X), where
u(X),v(X) € F[X] and where v(X) = 0 or degv(X) < degp(X). Clearly v(X) # 0, and it is easily
shown that v(X) € S, contradicting the minimality of degc(X). By Proposition 10.11, there exist
q(X),r(X) € F[X] such that p(X) = ¢(X)g(X) + r(X), where 7(X) = 0 or degr(X) < dege(X). If
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r(X) = 0, then p(X) = ¢(X)g(X), contradicting the assumption that p(X) is irreducible in F[X].
Hence r(X) # 0. Note now that

p(X) | a(X)r(X) and degr(X) < dege(X).

Also, it follows from degr(X) < dege(X) < degp(X) that p(X) t r(X). Hence r(X) € S, contra-
dicting the minimality of degc(X). O

10.4. Euclidean Domains

Note that our alternative proof of Proposition 10.2 depends heavily on the use of the degree of
polynomials. Indeed, if we think of Proposition 10.2 as the analogue of the corresponding result in Z,
then the only essential difference in the proof is that whereas we consider the magnitude of numbers
in Z, we consider the degree of polynomials in F[X]. It follows that if we wish to consider more
general situations, we need a notion that will incorporate these two cases as special cases.

DEFINITION. Suppose that R is an integral domain. Then we say that R is a euclidean domain if
there exists a function NV : R — N U {0} which satisfies the following two conditions:
(ED1) For every non-zero a,b € R, we have N(a) < N(b) whenever a | b.
(ED2) For every a,b € R with a # 0, there exist ¢, € R such that b = ag + r, where either r =0
or N(r) < N(a).
REMARKS. (1) The function N : R — N U {0} is sometimes called a euclidean function.

(2) Suppose that R is a euclidean domain. Suppose further that non-zero a,b € R are not associates
and a | b. Then N(a) < N(b).

ExAMPLES. (1) In Z, we can take the function N(a) = |a| for every a € Z.

(2) In F[X], where F is a field, we can take the function N(a(X)) = dega(X), in view of Propo-
sition 10.11.

(3) One of the most important examples of a euclidean domain is the ring

Z[i] ={a+bi:a,beZ}
of all gaussian integers. To show this, define a function N : Z[i] — NU{0} by writing N (a+bi) = a®+b?
for every a,b € Z. Suppose that (a + bi) | (¢ + di). Then there exists e + fi € Zli] such that
(c+di) = (a+bi)(e + fi). Note then that ¢ = ae — bf and d = af + be, so that
N(c+di) = (ae — bf)* + (af +be)® = (e* + f2)N(a + bi) = N(a + bi),

since clearly €2 + f2 > 1 if e + fi # 0. This gives (ED1). The proof of (ED2) is harder, and we shall
cheat briefly to illustrate the ideas. Suppose that we try to divide a + bi by ¢+ di to get a main term
and a remainder. Going to Q(i) = {a + bi: a,b € Q}, we can think of

a+bi  (a+bi)(c—di) ac+bd bc—ad,

ctdi | E+dE At E At dE
We can write
ac + bd LT and be — ad + !
—_— = 5 . 10 11 =5
craz 1T aye ¢ +d? ¢ +d
where ¢,7,s,t € Z and
P b <L
<g and S 2
2+a| Sz M Prd?] 2
Then
| . . . , t
a+b1(C+d1)(Q+51)+(C+dl)(02+d2+02+d21)'
Clearly

: r to. .
(c+di) <02—|—d2 + 62—|—d21> € Z[i].

(ED2) now follows from

. T to. 1 .
N <(c+d1) (c2+d2 + C2+d2l)> < 5(02+d2) < N(c+ di).
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Our aim here is to prove that every euclidean domain is a unique factorization domain. To prove
existence of factorization, we have the following result.

THEOREM 10.12. Suppose that R is a euclidean domain. Then every non-zero non-unit element of
R can be represented as a finite product of irreducible elements of R.

PRrROOF. We shall prove the result by induction on N(a), where N : R — N U {0} is a euclidean
function. In view of Remark (2) above, if a € R is not irreducible, then clearly N(a) > 1. It follows
that every non-zero non-unit element a € R with N(a) = 0 is irreducible, and obviously can be
represented as a finite product of irreducible elements of R. Suppose now that k£ € N, and that every
non-zero non-unit element b € R with N(b) < k can be represented as a finite product of irreducible
elements of R. Then for every non-zero non-unit a € R satisfying N(a) = k, either a is irreducible
or there exist non-zero non-unit by,bs € R such that a = bibe. Clearly N(b1) < k and N(bs) < k,
so that by and by can both be represented as a finite product of irreducible elements of R. In either
case, a can be represented as a finite product of irreducible elements of R. ()

To prove uniqueness of factorization, we need the following two results which are generalizations
of Propositions 10.2 and 10.3.

THEOREM 10.13. Suppose that R is a euclidean domain. Suppose further that a,b € R, and that
p € R is irreducible. If p | ab, then p | a or p|b.

PROOF. Suppose that p{a in R. Let
S={beR:p|ab, ptb}.

Clearly it is sufficient to show that S = (). Suppose, on the contrary, that S # ). Since 0 € S, there
exists a non-zero ¢ € S for which N(c¢) is minimal. In particular,

plac and pte.

Since p t a, it follows that ¢ is not a unit in R. On the other hand, since p { ¢, it follows that ¢
is not an associate of p. Next, we can assume that N(c) < N(p), for otherwise, by (ED2), we can
write ¢ = pu + v, where u,v € R and where v = 0 or N(v) < N(p). Clearly v # 0, and it is easily
shown that v € S, contradicting the minimality of N(c). By (ED2), there exist ¢, € R such that
p=cq+r, where r =0 or N(r) < N(c). If » = 0, then p = ¢g, contradicting the assumption that p
is irreducible in R. Hence r # 0. Note now that

plar and N(r) < N(c).
Also, it follows from N(r) < N(c) < N(p) that p t r. Hence r € S, contradicting the minimality
of N(¢). O
Using Theorem 10.13 a finite number of times, we have

THEOREM 10.14. Suppose that R is a euclidean domain. Suppose further that aq,...,a;r € R, and
that p € R is irreducible. If p | ay ...ay, then p| a; for somei=1,... k.

We can now deduce the following theorem from Theorem 10.14 in the same way as we deduce
Theorem 10.10 from Theorem 10.9.

THEOREM 10.15. Suppose that R is a euclidean domain. Then the representation of any non-zero
non-unit element of R as a finite product of irreducible elements of R is unique up to order and
associates.

10.5. A Shortcut

Indeed, the argument in Section 10.4 appears to have a great deal in common with the argument in
Section 10.2. This is explained by the following important result, which gives a shortcut to the result
that every euclidean domain is a unique factorization domain. We have the following generalization
of Theorem 9.1.

THEOREM 10.16. Fvery euclidean domain is a principal ideal domain.
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PROOF. Let R be a euclidean domain, and let I be an ideal in R. If I = {0}, then clearly I = (0).
Suppose now that I is a non-zero ideal. Let a € I be non-zero and such that N(a) is minimal. We
shall show that I = (a). Clearly (a) C I. To show that I C (a), note that 0 € (a). Also, if b € I is
non-zero, then by (ED2), there exist ¢,r € R such that b = aq+ r, where r =0 or N(r) < N(a). If
r # 0, then clearly r € I, contradicting the minimality of N(a). Hence r = 0, so that b = ag € (a),
as required. ()

EXAMPLE. Z[X] is not a euclidean domain. In fact, we can show that Z[X] is not a principal ideal
domain. It is easy to show that

I ={2u(X)+ Xv(X) :u(X),v(X) € Z[X]}

is an ideal in Z[X]. Suppose that I = (a(X)), where a(X) € Z[X]. Then since 2 € I, we must
have 2 = a(X)r(X) for some r(X) € Z[X]. Hence a(X) € Z. On the other hand, since X € I, we
must have X = a(X)s(X) for some s(X) € Z[X]. Tt follows that we must have a(X) = £1, so that
(a(X)) = Z[X]. But then 5 ¢ I.

10.6. Two Remarks

The first remark concerns the integral domain Z[X]. We have shown that Z[X] is not a euclidean
domain nor a principle ideal domain. Nevertheless, it can be shown that Z[X] is a unique factorization
domain. However, this result naturally does not follow from Theorems 10.5 and 10.6. There is, in
fact, an approach which uses the facts that Z is contained in Q and that Q[X] is a unique factorization
domain. Let a(X) € Z[X]. The idea is to factorize a(X) in Q[X] instead, and then attempt to carry
this factorization back to Z[X].

The second remark concerns the origin of ideal theory. Consider the integral domain

ZV15) = {a +bV15 :a,b € Z}.
Here we have two essentially different factorizations into products of irreducibles
10=2-5=(5+V15)(5 — V15).

It follows that Z[v/15] is not a unique factorization domain. Indeed, non-uniqueness of factorization
gives rise to many difficulties in mathematics. Perhaps the most celebrated case is Fermat’s last
theorem, that for every n € N satisfying n > 3, there is no solution of the equation
with z,y,z € Z\ {0}. It is generally believed that Fermat wrongly thought that he could prove this
famous assertion because he did not realize that in the ring of integers of some number fields, there
is no uniqueness of factorization. In order to study this very difficult problem, Kummer introduced
the notion of ideal theory and managed to prove a unique factorization theorem of ideals. However,
this is rather difficult algebraic number theory, and Fermat’s last theorem resisted many attempts to
establish it.

We conclude by saying that Fermat’s last theorem is now established, through the fundamental
work of the English mathematician Sir Andrew Wiles.
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Problems for Chapter 10

1. Prove that Z is a principal ideal domain.
2. Suppose that R is a field. Is R a principal ideal domain?
3. Suppose that F is a field, and consider the polynomial ring F[X]. Show that the function
N : F[X] — NU {0}, defined for every a(X) € F[X] by N(a(X)) = 29°8¢(X) is a euclidean function.
4. Show that Z[v2] = {a + bV2 : a,b € Z} is a euclidean domain by considering the function
N : Z[v/2] — N U {0}, defined for every a,b € Z by N(a + bv/2) = |a® — 2b?|.
5. Consider the ring Z[i] of all gaussian integers, and let N : Z[i] — N U {0} be defined for every
a,b € Z by N(a+ bi) = a® + b2
(i) Show that N is multiplicative, i.e. N(af) = N(a)N(B) for every «, 5 € Z]i].
(ii) Show that w € Z[i] is a unit if and only if N(u) = 1.
(iii) Show that 1 and +i are the only units in Z[i].
(iv) Show that « € Z[i] is irreducible in Z[i] if N(«) is a prime in N.
(v) Show that if a € Z[j] is irreducible, then o divides precisely one prime in N.



