
CHAPTER 12

Application to Coding

c© W W L Chen, 1991, 1993, 2013.
This chapter is available free to all individuals,

on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,

unless such system is not accessible to any individuals other than its owners.

12.1. Introduction

Consider the transmission of a message in the form of a string of digits 0 and 1. More precisely,
consider the transmission of the string w = w1 . . . wm ∈ {0, 1}m, where m ∈ N. We can identify this
string with the element w = (w1, . . . , wm) of the cartesian product

Zm
2 = Z2 × . . .× Z2︸ ︷︷ ︸

m

.

Now there may be interference, and a different string v = v1 . . . vm ∈ {0, 1}m may be received instead.
We can identify this received string with the element v = (v1, . . . , vm) of the cartesian product Zm

2 .
Then the error e = (e1, . . . , em) ∈ Zm

2 is defined by

e = w + v

if we interpret w, v and e as elements of the direct group product

(Z2,+)× . . .× (Z2,+)︸ ︷︷ ︸
m

.

Note also that w + e = v and v + e = w.
We shall make no distinction between the strings w, v, e ∈ {0, 1}m and their corresponding elements

w,v, e ∈ Zm
2 , and shall henceforth abuse notation and write w, v, e ∈ Zm

2 and e = w + v to mean
w,v, e ∈ Zm

2 and e = w + v respectively.
One way to decrease the possibility of error is to use extra digits. Instead of sending messages

in Zm
2 , we shall send messages in Zn

2 instead, where n ∈ N satisfies n > m. The following steps
represent the idea of the (n, m) block code:

(1) We shall first of all add extra digits to each string in Zm
2 in order to make it a string in Zn

2 .
This process is known as encoding and is represented by a function α : Zm

2 → Zn
2 . To ensure that

different strings do not end up the same during encoding, we must ensure that the encoding function
α : Zm

2 → Zn
2 is one-to-one.

(2) Suppose now that w ∈ Zm
2 , and that c = wα ∈ Zn

2 . Suppose further that during transmission,
the string c ∈ Zn

2 is received as cτ . As errors may occur during transmission, τ is not a function.
(3) On receipt of the transmission, we now want to decode the message cτ , in the hope that it is c,

to recover w. This is known as the decoding process, and is represented by a function σ : Zn
2 → Zm

2 .
(4) Ideally the composition ατσ should be the identity function. As this cannot be achieved, we

hope to find two functions α : Zm
2 → Zn

2 and σ : Zn
2 → Zm

2 so that wατσ = w or the error cτ $= c can
be detected with a high probability.

12.2. Group Codes

We are interested in the case of group codes.
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70 12. APPLICATION TO CODING

Definition. Suppose that m, n ∈ N and n > m. Consider an encoding function of the type
α : Zm

2 → Zn
2 . Then we say that

C = Zm
2 α = {wα : w ∈ Zm

2 }
is a group code if C is a subgroup of Zn

2 .

In view of Theorem 4.2, we have the following result.

Proposition 12.1. Suppose that m, n ∈ N and n > m. Suppose further that the encoding function
α : Zm

2 → Zn
2 is a group homomorphism. Then the code C = Zm

2 α is a group code.

In this chapter, we shall concentrate on the situation when the encoding function α : Zm
2 → Zn

2 is
a group homomorphism.

12.3. Matrix Codes

Examples. (1) Consider a (5, 4) block code. Define the encoding function α : Z4
2 → Z5

2 in the
following way. For each string w = w1 . . . w4 ∈ Z4

2, let wα = wG, where w is considered as a row
vector and where

G =





1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1



 .

It is not difficult to see that wα = w1 . . . w5, where

(12.1) w5 = w1 + . . . + w4.

It follows that if a message 01011 is received, we know that an error has occurred, as this message
does not satisfy (12.1). However, we do not know how to correct this error. On the other hand, if
a message 01010 is received, we shall assume that it is correct. Clearly, if a single error occurs in
transmission, then the received message will not satisfy (12.1). It follows that this code is capable of
detecting single errors but incapable of correcting them.

(2) Consider a (12, 4) block code. Define the encoding function α : Z4
2 → Z12

2 in the following way.
For each string w = w1 . . . w4 ∈ Z4

2, let wα = wG, where w is considered as a row vector and where

G =





1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1



 .

It is not difficult to see that wα = w1 . . . w4w1 . . . w4w1 . . . w4. We now use the decoding function
σ : Z12

2 → Z4
2, defined by

(v1 . . . v4v
′
1 . . . v′4v

′′
1 . . . v′′4 )σ = u1 . . . u4,

where, for every j = 1, . . . , 4, the digit uj is equal to the majority of the three entries vj , v′j , v
′′
j . It

follows that if at most one entry among vj , v′j , v
′′
j is different from wj , then we still have uj = wj .

This code is therefore capable of correcting single errors.

These two examples can be generalized to the following situation.
Suppose that m, n ∈ N and n > m. Consider an encoding function α : Zm

2 → Zn
2 , defined for each

string w ∈ Zm
2 by wα = wG, where w is considered as a row vector and G is an m×n matrix over Z2.

The matrix G is called the generator matrix for the code C = Zm
2 α, and has the form G = (Im|A),

where Im denotes the m×m identity matrix and A is an m× (n−m) matrix over Z2.

Proposition 12.2. Suppose that m, n ∈ N and n > m. Suppose further that α : Zm
2 → Zn

2 is an
encoding function given by a generator matrix G = (Im|A), where Im denotes the m × m identity
matrix and A is an m× (n−m) matrix over Z2. Then α : Zm

2 → Zn
2 is a group homomorphism and

C = Zm
2 α is a group code.

Proof. Simply note that for every w, z ∈ Zm
2 , we have (w+z)α = (w+z)G = wG+zG = wα+zα.

©

A first step towards decoding is the following observation.
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Proposition 12.3. Suppose that m, n ∈ N and n > m. Suppose further that α : Zm
2 → Zn

2 is
an encoding function given by a generator matrix G = (Im|A), where A is an m × (n −m) matrix
over Z2. Then for every c = c1 . . . cn ∈ C, we have

H(c1 . . . cn)T = 0,

where 0 is the (n−m)-dimensional column zero vector and H = (B|In−m) where B = AT .

Proof. Let w = w1 . . . wm ∈ Zm
2 satisfy c = wα. Then

(c1 . . . cn) = wG = w(Im|A) = (w|wA).

Hence

(c1 . . . cm) = (w1 . . . wm) and (cm+1 . . . cn) = wA.

It follows that we must have

(cm+1 . . . cn) + (c1 . . . cm)A = (0 . . . 0︸ ︷︷ ︸
n−m

).

This can be described in the equivalent form

(c1 . . . cm cm+1 . . . cn)

(
A

In−m

)
= (0 . . . 0︸ ︷︷ ︸

n−m

).

The result follows on taking transposes. ©

Definition. The matrix H in Proposition 12.3 is called the associated parity check matrix of the
generator matrix G.

12.4. Error Detection and Correction

Before we continue with our study of matrix codes, let us first consider group codes in general.

Definition. Suppose that x = x1 . . . xn ∈ Zn
2 . Then the weight of x is given by

ω(x) = |{j = 1, . . . , n : xj = 1}|;

i.e. ω(x) denotes the number of non-zero entries among the digits of x.

Definition. Suppose that m, n ∈ N and n > m. Suppose further that α : Zm
2 → Zn

2 is a group
homomorphism, and that C = Zm

2 α. Then the weight ω(C) of the code C is defined by

ω(C) = min{ω(x) : x ∈ C, x $= 0}.

Proposition 12.4. Suppose that m, n ∈ N and n > m. Suppose further that α : Zm
2 → Zn

2 is a
group homomorphism, and that C = Zm

2 α. Let k ∈ N ∪ {0}. If ω(C) = 2k + 1 or ω(C) = 2k + 2, then
(i) any received string v ∈ Zn

2 with at most k errors can be corrected; and
(ii) it is not possible to correct all received strings with more than k errors.

Proof. (i) Suppose that the received string v ∈ Zn
2 has at most k errors. Then v = c + e, where

c ∈ C and ω(e) ! k. Suppose now that c′ ∈ C and c′ $= c. If v = c′ + e′, then we must have ω(e′) > k.
For otherwise, ω(e′) ! k. Since v + v = 0, we must have c + e + c′ + e′ = 0. Since C is a group, we
must therefore have e + e′ = c + c′ ∈ C. But clearly ω(c + c′) = ω(e + e′) ! ω(e) + ω(e′) ! 2k, a
contradiction. It follows that

ω(v + c) = ω(e) ! k < ω(e′) = ω(v + c′)

for every c′ ∈ C such that c′ $= c. This means that c ∈ C is the code word closest to v.
(ii) Suppose that c ∈ C satisfies ω(c) = 2k + 1 or ω(c) = 2k + 2. Let v ∈ Zn

2 be obtained from c by
changing precisely k + 1 of the digits in c from 1 to 0, so that ω(v) = k or ω(v) = k + 1. Note also
that ω(c + v) = k + 1. We then have

ω(v + 0) ! k + 1 = ω(v + c),

so that c ∈ C is not the code word closest to v. ©
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12.5. Decoding in Matrix Codes

Returning to matric codes, we have the following result.

Proposition 12.5. In the notation of Proposition 12.3, suppose that H does not contain a zero
column or two identical columns. Then we must have ω(C) " 3, so that single errors in transmission
can always be corrected.

Proof. It is sufficient to show that no element c ∈ C satisfies ω(c) = 1 or ω(c) = 2. Suppose that
c ∈ C. Then in view of Proposition 12.3, we must have

H(c1 . . . cn)T = 0.

Suppose that ω(c) = 1. Let cj be the only non-zero entry in c. Then H(c1 . . . cn)T represents the
j-th column of H, which must then be a zero column. Suppose that ω(c) = 2. Let ci and cj be the
only non-zero entries in c. Then H(c1 . . . cn)T represents the sum of the i-th and j-th columns of H,
so that these two columns must be identical. ©

Remark. Let us return to the two examples in Section 12.3. Note that Proposition 12.5 supports
our conclusion in Example (2). On the other hand, try to see that the proof of Proposition 12.5
explains our conclusion in Example (1).

Proposition 12.6. In the notation of Proposition 12.3, for every c ∈ C and every element

e = 0 . . . 0︸ ︷︷ ︸
j−1

1 0 . . . 0︸ ︷︷ ︸
n−j

∈ Zn
2 ,

the (n−m)-dimensional column vector

H(c + e)T

is identical to the j-th column of H.

Proof. In view of Proposition 12.3, we see that

H(c + e)T = HcT +HeT = HeT = H(0 . . . 0︸ ︷︷ ︸
j−1

1 0 . . . 0︸ ︷︷ ︸
n−j

)T

represents the j-th column of H. ©

It follows that the following decoding algorithm is reasonable. Suppose that v ∈ Zn
2 is received.

(1) If HvT = 0, then we feel that the transmission is correct. The decoded message consists of the
first m digits of the string v.

(2) If HvT is equal to the j-th column of H, then we alter the j-th entry of the received string.
The decoded message consists of the first m digits of the altered string.

(3) If HvT is non-zero and not equal to any of the columns of H, then we conclude that more than
one error has occurred. We may have no reliable way of correcting the transmission.

Examples. (1) Consider an encoding function α : Z3
2 → Z5

2, given by the generator matrix

G =




1 0 0 1 0
0 1 0 1 1
0 0 1 0 1



 .

Then since

Z3
2 = {000, 001, 010, 011, 100, 101, 110, 111},

it is easy to check that

C = Z3
2α = {00000, 00101, 01011, 01110, 10010, 10111, 11001, 11100},

so that ω(C) = 2. It follows from Proposition 12.4 that it is not possible to correct all received strings
with single error. Note that the parity check matrix

H =
(

1 1 0 1 0
0 1 1 0 1

)

contains identical columns.
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(2) Consider an encoding function α : Z3
2 → Z6

2, given by the generator matrix

G =




1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



 .

It is easy to check that

C = Z3
2α = {000000, 001011, 010110, 011101, 100101, 101110, 110011, 111000},

so that ω(C) = 3. It follows from Proposition 12.5 that single errors in transmission can always be
corrected. Note that

H =




1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1



 .

Suppose now that v = 011110 is received, with one error in the third entry from c = 010110. Then
it is easily checked that

HvT =




0
1
1



 ,

the third column of H. We correct v by v +001000 = 010110. Clearly, if v = 011110 is received, with
errors in the fifth and sixth entries from c = 011101, then the decoding process will be erroneous.
Finally, suppose that v = 111111 is received, with at least two errors from any code word c ∈ C.
Then it is easily checked that

HvT =




1
1
1



 ,

not equal to any column of H.

12.6. Coset Leaders

Suppose that we are interested in correcting all errors in the most plausible way. Then we may
approach the problem in the following way. Note that C is a subgroup of Zn

2 .

Proposition 12.7. In the notation of Proposition 12.3, suppose that v and z belong to the same
coset of C in Zn

2 . Then

HvT = HzT .

Proof. If v and z belong to the same coset of C in Zn
2 , then v+z ∈ C. It follows that H(v+z)T = 0.

The result follows. ©

Definition. Suppose that S is a coset of C in Zn
2 . Then an element of smallest weight in S is

called a coset leader in S.

Remark. The interpretation of all this is that in view of Proposition 12.7, the elements of the
coset S arise from the same error pattern applied to the elements of C. The coset leader is therefore
the most plausible error pattern. It follows that if we add the coset leader to the received message,
then we have the most plausible correction of the transmission error.

Example. Let us return to Example (2) in Section 12.5, and consider the encoding function
α : Z3

2 → Z6
2, given by the generator matrix

G =




1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



 .
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Recall that C = {000000, 001011, 010110, 011101, 100101, 101110, 110011, 111000}. Then the cosets
are

C = {000000, 001011, 010110, 011101, 100101, 101110, 110011, 111000},
100000 + C = {100000, 101011, 110110, 111101, 000101, 001110, 010011, 011000},
010000 + C = {010000, 011011, 000110, 001101, 110101, 111110, 100011, 101000},
001000 + C = {001000, 000011, 011110, 010101, 101101, 100110, 111011, 110000},
000100 + C = {000100, 001111, 010010, 011001, 100001, 101010, 110111, 111100},
000010 + C = {000010, 001001, 010100, 011111, 100111, 101100, 110001, 111010},
000001 + C = {000001, 001010, 010111, 011100, 100100, 101111, 110010, 111001},
100010 + C = {100010, 101001, 110100, 111111, 000111, 001100, 010001, 011010}.

Note now that v = 011110 is in the coset 001000 + C, with coset leader 001000. However, v = 111111
is in the coset 100010 + C, with no unique coset leader.

12.7. Hamming Codes

Consider the matrix

H =




1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1



 .

Note that no non-zero column can be added without resulting in two identical columns. It follows
that the number of columns is maximal if H is to be the associated parity check matrix of some
generator matrix G.

The matrix H is in fact the associated parity check matrix of the generator matrix

G =





1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1





of an encoding function α : Z4
2 → Z7

2.
Let us alter our viewpoint somewhat from before. Suppose that we start with a parity check matrix

H with k rows. The maximal number of columns of the matrix H without having a zero column or
two identical columns is 2k − 1. Then H = (B|Ik), where the matrix B is a k × (2k − 1− k) matrix.
Hence H is the associated parity check matrix of G = (Im|A), where m = 2k − 1 − k and where
A = BT is an m × k matrix. It is easy to see that G gives rise to a (2k − 1, 2k − 1 − k) group code.
This code is known as a Hamming code.

Examples. (1) With k = 4, a possible Hamming code is given by the parity check matrix

H =





1 1 1 0 0 0 1 1 1 0 1 1 0 0 0
1 0 0 1 1 0 1 1 0 1 1 0 1 0 0
0 1 0 1 0 1 1 0 1 1 1 0 0 1 0
0 0 1 0 1 1 0 1 1 1 1 0 0 0 1



 .

The corresponding generator matrix G is 11× 15.
(2) With k = 5, a possible Hamming code is given by the parity check matrix

H =





1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0
0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1




.

The corresponding generator matrix G is 26× 31.

In view of Proposition 12.5, we have ω(C) " 3 if C is a Hamming code. We shall show that for any
Hamming code C, we have ω(C) = 3.
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Proposition 12.8. In the notation of this section, suppose that k ∈ N and k " 3, and consider a
Hamming code given by a generator matrix G with its associated parity check matrix H with k rows.
Then there exists c ∈ C such that ω(c) = 3. Furthermore, any message containing precisely two errors
will be decoded wrongly.

Proof. Suppose that v ∈ Zn
2 satisfies v = c + e, where c ∈ C and

e = (0 . . . 0︸ ︷︷ ︸
i−1

1 0 . . . 0 1 0 . . . 0︸ ︷︷ ︸
n−j

),

where i < j. Then since H contains all possible non-zero columns of entries 0 and 1,

HvT = H(c + e)T = HeT ,

equal to the sum of the i-th and j-th columns of H, must also be equal to one of the columns of H.
Let this be the s-th column of H. Clearly i, j, s are distinct. It follows that the decoding

v + (0 . . . 0︸ ︷︷ ︸
s−1

1 0 . . . 0︸ ︷︷ ︸
n−s

) $= c.

However,

c′ = v + (0 . . . 0︸ ︷︷ ︸
s−1

1 0 . . . 0︸ ︷︷ ︸
n−s

) ∈ C,

for there are 2n/2m = 2k = n + 1 cosets of C in Zn
2 , with coset leaders

0 . . . 0, 10 . . . 0, 010 . . . 0, . . . , 0 . . . 01.

Since C is a group, it follows that

c + c′ = e + (0 . . . 0︸ ︷︷ ︸
s−1

1 0 . . . 0︸ ︷︷ ︸
n−s

) ∈ C

satisfies ω(c + c′) = 3. ©

12.8. Polynomial Codes

The basic idea of a polynomial code is the following. Again, suppose that m, n ∈ N and n > m. We
shall define an encoding function α : Zm

2 → Zn
2 in the following way. For every w = w1 . . . wm ∈ Zm

2 ,
let

(12.2) w(X) = w1 + w2X + . . . + wmXm−1 ∈ Z2[X].

Suppose now that g(X) ∈ Z2[X] is fixed and of degree n−m. Then w(X)g(X) ∈ Z2[X] is of degree
at most n− 1. We can therefore write

(12.3) w(X)g(X) = c1 + c2X + . . . + cnXn−1,

where c1, . . . , cn ∈ Z2. Now let

(12.4) wα = c1 . . . cn ∈ Zn
2 .

Proposition 12.9. Suppose that m, n ∈ N and n > m. Suppose further that g(X) ∈ Z2[X]
is fixed and of degree n − m, and that the encoding function α : Zm

2 → Zn
2 is defined for every

w = w1 . . . wm ∈ Zm
2 by (12.2)–(12.4). Then C = Zm

2 α is a group code.

Proof. Let w = w1 . . . wm ∈ Zm
2 and z = z1 . . . zm ∈ Zm

2 . Then (w + z)(X) = w(X) + z(X),
so that (w + z)(X)g(X) = w(X)g(X) + z(X)g(X), whence (w + z)α = wα + zα. It follows that
α : Zm

2 → Zn
2 is a group homomorphism. ©

Remark. The polynomial g(X) in Proposition 12.9 is sometimes known as the multiplier.

We are interested in polynomial codes with an extra structure.

Definition. Suppose that m, n ∈ N and n > m. Suppose further that α : Zm
2 → Zn

2 is an encoding
function. Then the code C = Zm

2 α is said to be cyclic if the following condition is satisfied:
(CC) If the string c1 . . . cn ∈ C, then the cyclically shifted string cnc1 . . . cn−1 ∈ C.
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Example. Consider an encoding function α : Z4
2 → Z6

2 defined by the multiplier polynomial
1 + X + X2. We have the following table, where the rows are specially ordered so that we can check
the right hand column to convince ourselves that this gives rise to a cyclic code.

w w(X) w(X)(1 + X + X2) wα = c

0000 0 0 000000
1100 1 + X 1 + X3 100100
0110 X + X2 X + X4 010010
0011 X2 + X3 X2 + X5 001001
1000 1 1 + X + X2 111000
0100 X X + X2 + X3 011100
0010 X2 X2 + X3 + X4 001110
0001 X3 X3 + X4 + X5 000111
1101 1 + X + X3 1 + X4 + X5 100011
1011 1 + X2 + X3 1 + X + X5 110001
1110 1 + X + X2 1 + X2 + X4 101010
0111 X + X2 + X3 X + X3 + X5 010101
1010 1 + X2 1 + X + X3 + X4 110110
0101 X + X3 X + X2 + X4 + X5 011011
1111 1 + X + X2 + X3 1 + X2 + X3 + X5 101101
1001 1 + X3 1 + X + X2 + X3 + X4 + X5 111111

Definition. Suppose that n ∈ N. For every c = c1 . . . cn ∈ Zn
2 and every non-negative integer

k ! n, we write

c(k) = cn−k+1 . . . cnc1 . . . cn−k.

In other words, c(k) is obtained from c by removing the last k digits of c and replacing them at the
front.

Proposition 12.10. Suppose that n ∈ N, and that the non-negative integer k ! n. Then the
polynomial c(k)(X) ∈ Z2[X] is equal to the remainder on dividing the polynomial Xkc(X) by the
polynomial Xn + 1 in Z2[X].

Proof. Clearly q(X) + q(X) = 0 for any q(X) ∈ Z2[X]. It follows that

Xkc(X) = Xk(c1 + c2X + . . . + cnXn−1)

= (c1X
k + c2X

k+1 + . . . + cn−kXn−1) + (cn−k+1X
n + cn−k+2X

n+1 + . . . + cnXk+n−1)

= (cn−k+1 + cn−k+2X + . . . + cnXk−1) + (c1X
k + c2X

k+1 + . . . + cn−kXn−1)

+ (cn−k+1 + cn−k+2X + . . . + cnXk−1) + (cn−k+1X
n + cn−k+2X

n+1 + . . . + cnXk+n−1)

= c(k)(X) + (Xn + 1)(cn−k+1 + cn−k+2X + . . . + cnXk−1).

The result follows. ©

Proposition 12.11. In the notation of Proposition 12.9, C is a cyclic code if and only if the
polynomial g(X) divides the polynomial Xn + 1 in Z2[X].

Proof. (⇒) For every c ∈ C, there exists w ∈ Zm
2 such that c(X) = w(X)g(X). Since C is a

cyclic code, it follows that for every k = 1, . . . , n, c(k) ∈ C, so that there exists v ∈ Zm
2 such that

c(k)(X) = v(X)g(X). By Proposition 12.10, there exists q(X) ∈ Z2[X] such that

(12.5) Xkc(X) = (Xn + 1)q(X) + c(k)(X),

so that

Xkc(X) + c(k)(X) = (Xn + 1)q(X).

Since g(X) divides both c(X) and c(k)(X) in Z2[X], it follows that g(X) divides (Xn + 1)q(X) in
Z2[X]. We now choose c and k to satisfy deg Xkc(X) = n, so that q(X) = 1. Then clearly g(X)
divides (Xn + 1) in Z2[X].
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(⇐) Suppose that c ∈ C. We need to show that for every k = 1, . . . , n, the polynomial g(X) divides
the polynomial c(k)(X) in Z2[X]. Rearranging (12.5), we have

c(k)(X) = Xkc(X) + (Xn + 1)q(X).

Since g(X) divides c(X) and (Xn + 1) in Z2[X], the result follows. ©

Naturally we would like to identify polynomials g(X) ∈ Z2[X] which will give rise to cyclic codes.
Observe the following as a useful step.

Proposition 12.12. In the notation of Proposition 12.9, if C is a cyclic code, then the constant
term of the polynomial g(X) is non-zero.

Proof. This follows from the observation that g(X) must divide Xn +1 in Z2[X]. If the constant
term of g(X) is zero, then X divides g(X) in Z2[X], and so must also divide Xn +1 in Z2[X], clearly
impossible. ©

Examples. (1) Consider α : Z3
2 → Z5

2. Then any multiplier polynomial g(X) must be of degree 2,
have constant term 1 and divide X5 + 1 in Z2[X] in order to give a cyclic code. Note that the only
polynomials in Z2[X] of degree 2 and with constant term 1 are 1 + X2 and 1 + X + X2. Neither
divides X5 + 1 in Z2[X]. Hence no cyclic code exists in this situation.

(2) Consider α : Z4
2 → Z7

2. Then any multiplier polynomial g(X) must be of degree 3, have constant
term 1 and divide X7 + 1 in Z2[X] in order to give a cyclic code. Note that the only polynomials in
Z2[X] of degree 3 and with constant term 1 are 1+X3, 1+X +X3, 1+X2+X3 and 1+X +X2+X3.
Of these, only 1 + X + X3 and 1 + X2 + X3 divide X7 + 1 in Z2[X], giving rise to two cyclic codes.

Let us now turn to the question of decoding. Suppose that the string v = v1 . . . vn ∈ Zn
2 is received.

We consider the polynomial

v(X) = c1 + c2X + . . . + cnXn−1.

If g(X) divides v(X) in Z2[X], then clearly v ∈ C. This is the analogue of Proposition 12.3.
Corresponding to Proposition 12.6, we have the following result.

Proposition 12.13. In the notation of Proposition 12.9, for every c ∈ C and every element

e = 0 . . . 0︸ ︷︷ ︸
j−1

1 0 . . . 0︸ ︷︷ ︸
n−j

∈ Zn
2 ,

the remainder on dividing the polynomial (c+e)(X) by the polynomial g(X) is equal to the remainder
on dividing the polynomial Xj−1 by the polynomial g(X).

Proof. Note that (c+e)(X) = c(X)+Xj−1. The result follows on noting that g(X) divides c(X)
in Z2[X]. ©

It follows that the following decoding algorithm is reasonable. Suppose that we know that single
errors can be corrected, and that v ∈ Zn

2 is received.
(1) If g(X) divides v(X) in Z2[X], then we feel that the transmission is correct. The decoded

message is the string q ∈ Zm
2 where v(X) = g(X)q(X) in Z2[X].

(2) If g(X) does not divide v(X) in Z2[X] and the remainder is the same as the remainder on
dividing Xj−1 by g(X), then add Xj−1 to v(X). The decoded message is the string q ∈ Zm

2 where
v(X) + Xj−1 = g(X)q(X) in Z2[X].

(3) If g(X) does not divide v(X) in Z2[X] and the remainder is different from the remainder on
dividing Xj−1 by g(X) for any j = 1, . . . , n, then we conclude that more than one error has occurred.
We may have no reliable way of correcting the transmission.

Example. Consider the cyclic code with encoding function α : Z4
2 → Z7

2 given by the multiplier
polynomial 1 + X + X3. Let w = 1011 ∈ Z4

2. Then w(X) = 1 + X2 + X3, so that

c(X) = w(X)g(X) = 1 + X + X2 + X3 + X4 + X5 + X6,

giving rise to the code word 1111111 ∈ C. Suppose that v = 1110111 is received, so that there is one
error. Then

v(X) = 1 + X + X2 + X4 + X5 + X6 = g(X)(X2 + X3) + (X + 1).
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On the other hand,

X3 = g(X) + (X + 1).

It follows that if we add X3 to v(X) and then divide by g(X), we recover w(X). Suppose next that
v = 1010111 is received, so that there are two errors. Then

v(X) = 1 + X2 + X4 + X5 + X6 = g(X)(X2 + X3) + 1.

On the other hand,

1 = g(X)0 + 1.

It follows that if we add 1 to v(X) and then divide by g(X), we get X2 + X3, corresponding to
w = 0011 ∈ Z4

2. Hence our decoding process gives the wrong answer in this case. We shall return to
this example later.

Suppose again that we are interested in correcting all errors in the most plausible way. Then we
again use coset leaders. Corresponding to Proposition 12.7, we have the following result.

Proposition 12.14. In the notation of Proposition 12.9, suppose that v and z belong to the same
coset of C in Zn

2 . Then the remainder on dividing v(X) by g(X) is equal to the remainder on dividing
z(X) by g(X).

Proof. Since v and z belong to the same coset of C in Zn
2 , we have v +z ∈ C, so that g(X) divides

x(X) + z(X) in Z2[X]. The result follows. ©

Remark. Again, the coset leader is therefore the most plausible error pattern. It follows that if
we add the coset leader to the received message, then we have the most plausible correction of the
transmission error.

12.9. Connection with Field Theory

In this section, we look for the analogue of a Hamming code.

Proposition 12.15. Suppose that g(X) ∈ Z2[X] is irreducible and of degree k, and that g(X)
divides Xn + 1 in Z2[X], where n = 2k − 1. Consider the field extension F = Z2[X]/〈g(X)〉, and
suppose further that there is a root of g(X) that generates the cyclic multiplicative group F ∗. Then
the polynomial code α : Zm

2 → Zn
2 , where m = n− k = 2k − 1− k and with multiplier g(X) is a cyclic

code which corrects all received messages that contain precisely one error. Furthermore, any message
containing precisely two errors will be decoded wrongly.

Proof. Note that the field F = Z2[X]/〈g(X)〉 has 2k elements, in view of Proposition 9.6. Fur-
thermore, by Theorem 9.5, these elements can be expressed in the form

a1 + a2X + . . . + akXk−1 + 〈g(X)〉, a1, a2 . . . , ak ∈ Z2.

On the other hand, the multiplicative group F ∗ is generated by X + 〈g(X)〉. It follows that

F = {〈g(X)〉, 1 + 〈g(X)〉, X + 〈g(X)〉, X2 + 〈g(X)〉, . . . , Xn−1 + 〈g(X)〉}.
This gives a one-to-one correspondence between all single error patterns of the polynomials Xj−1,
where j = 1, . . . , n, and the non-zero remainders a1 + a2X + . . . + akXk−1 on division by g(X) in
Z2[X]. Hence we have shown that the error patterns of the polynomials Xj−1, where j = 1, . . . , n, give
all the non-zero coset leaders. This ensures that all received messages containing precisely one error
will be corrected, while ensuring that any message containing precisely two errors will be decoded
wrongly. ©

Remark. Note that the cyclic code in our last example is such a code.
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Problems for Chapter 12

1. The encoding function α : Z3
2 → Z6

2 is given by the parity-check matrix

H =




1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 .

(i) Determine all the code words.
(ii) Can all single errors be detected?
(iii) Determine all the coset leaders. Are they all uniquely determined?

2. Suppose that

H =




1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1





is the parity-check matrix for a Hamming (7, 4) code.
(i) Encode the messages 1000, 1100, 1011, 1110, 1001 and 1111.
(ii) Decode the messages 0101001, 0111111, 0010001 and 1010100.
(iii) Give all the coset leaders without writng down any of the cosets.

3. Consider the cyclic code with encoding function α : Z4
2 → Z7

2 given by the multiplier polynomial
1 + X + X3.

(i) Decode the messages 0011010, 1101101, 0000000 and 0101111.
(ii) Write down the coset leaders and their remainders on division by the multiplier polynomial.

4. Show that there is no multiplier polynomial that will give a cyclic code with encoding function
α : Z5

2 → Z7
2.

5. Consider the cyclic code with encoding function α : Z4
2 → Z6

2 given in the example on page 76.
(i) Consider the field F = Z2[X]/〈X2 + X + 1〉. Show that a root of X2 + X + 1 generates the

cyclic group F ∗.
(ii) Find the remainder of every one-term error polynomial on division by X2 + X + 1.
(iii) Can all single errors in transmission be corrected? Justify your assertion.


