CHAPTER 1

Polynomials

© W W L Chen, 1984, 2013.

This chapter originates from material used by the author at Imperial College London between 1981 and 1990.

It is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied, with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system without permission from the author, unless such system is not accessible to any individuals other than its owners.

1.1. Divisibility

In this chapter, we very briefly consider some properties of polynomials which we need in the study of algebraic number fields. Suppose that R is a commutative ring with multiplicative identity 1. We denote by R[t] the collection of all polynomials in the variable t and with coefficients in R. It is well known that R[t] itself is a commutative ring with multiplicative identity 1. This ring is called the ring of polynomials over R.

Suppose that $a(t), b(t) \in R[t]$ and a(t) is not identically zero. Then we say that a(t) divides b(t), denoted by $a(t) \mid b(t)$, if there exists $c(t) \in R[t]$ such that b(t) = a(t)c(t); in other words, we have a factorization b(t) = a(t)c(t). In this case, we say that a(t) is a divisor of b(t).

Recall that divisibility in \mathbb{Z} is governed by the magnitude of the integers. In the case of polynomials, this role is now played by the degree of the polynomials. Suppose that the polynomial $a(t) \in R[t]$ is given by $a(t) = a_n t^n + \ldots + a_0$, where $a_0, \ldots, a_n \in R$ and $a_n \neq 0$. Then we say that a(t) is of degree n, denoted by $n = \deg a(t)$.

THEOREM 1.1. Suppose that $a(t), b(t) \in K[t]$, where K is a field, and a(t) is not identically zero. Then there exist $q(t), r(t) \in K[t]$ such that b(t) = a(t)q(t) + r(t), where either $\deg r(t) < \deg a(t)$ or r(t) = 0.

PROOF. We first show the existence of such polynomials $q(t), r(t) \in K[t]$. Consider the set

$$S = \{b(t) - a(t)s(t) : s(t) \in K[t]\}.$$

Suppose first that $0 \in S$. Then there exists $q(t) \in K[t]$ such that b(t) - a(t)q(t) = 0. In this case, we have r(t) = b(t) - a(t)q(t) = 0. On the other hand, if $0 \notin S$, then the degrees of the polynomials in the non-empty set S forms a non-empty subset of the set of all non-negative integers. It then follows from the Principle of induction that there exists a polynomial $r(t) \in S$ of smallest degree, m say. Let $q(t) \in K[t]$ such that b(t) - a(t)q(t) = r(t). Then $\deg r(t) < \deg a(t)$, for otherwise, writing

$$a(t) = a_n t^n + \dots + a_0$$
 and $r(t) = r_m t^m + \dots + r_0$,

where $a_n \neq 0$, $r_m \neq 0$ and $m \geqslant n$, we have

$$r(t) - (r_m a_n^{-1} t^{m-n}) a(t) = b(t) - a(t) \left(q(t) + r_m a_n^{-1} t^{m-n} \right) \in K[t].$$

Clearly $\deg(r(t) - (r_m a_n^{-1} t^{m-n}) a(t)) < \deg r(t)$, contradicting the minimality of m. Next, we show that such polynomials $q(t), r(t) \in K[t]$ are unique. Suppose that

$$b(t) = a(t)q_1(t) + r_1(t) = a(t)q_2(t) + r_2(t).$$

Then

$$r_1(t) - r_2(t) = a(t)(q_2(t) - q_1(t)).$$

If $q_1(t) \neq q_2(t)$, then clearly $\deg(a(t)(q_2(t)-q_1(t))) \geqslant \deg a(t)$, while $\deg(r_1(t)-r_2(t)) < \deg a(t)$, a contradiction. It follows that $q_1(t) = q_2(t)$, and so $r_1(t) = r_2(t)$ also. \bigcirc

We next establish the existence of greatest common divisors.

THEOREM 1.2. Suppose that K is a field, and that $a(t), b(t) \in K[t]$ are not identically zero. Then there exists $g(t) \in K[t]$, unique up to multiplication by non-zero elements of K, such that

- (i) there exist polynomials $u(t), v(t) \in K[t]$ such that g(t) = a(t)u(t) + b(t)v(t);
- (ii) $g(t) \mid a(t)$ and $g(t) \mid b(t)$; and
- (iii) for every polynomial $h(t) \in K[t]$ such that $h(t) \mid a(t)$ and $h(t) \mid b(t)$, we have $h(t) \mid g(t)$.

PROOF. Consider the set

$$I = \{a(t)x(t) + b(t)y(t) : x(t), y(t) \in K[t]\}.$$

Suppose that $g(t) \in I$ is not identically zero and is of smallest degree. The conclusion (i) follows trivially.

Next, we show that g(t) divides every polynomial in I. Suppose that

$$z(t) = a(t)x(t) + b(t)y(t)$$

is any polynomial in I. By Theorem 1.1, there exist $q(t), r(t) \in K[t]$ such that z(t) = g(t)q(t) + r(t), where either $\deg r(t) < \deg g(t)$ or r(t) = 0. Then

$$r(t) = z(t) - g(t)q(t) = a(t)(x(t) - u(t)q(t)) + b(t)(y(t) - v(t)q(t)) \in I.$$

If $r(t) \neq 0$, then the requirement $\deg r(t) < \deg g(t)$ contradicts the minimality of the degree of g(t). Hence r(t) = 0, so that z(t) = g(t)q(t), whence g(t) divides z(t).

Taking x(t) = 1 and y(t) = 0 gives $g(t) \mid a(t)$. Taking x(t) = 0 and y(t) = 1 gives $g(t) \mid b(t)$. Also, the conclusion (iii) is a simple consequence of (i).

Finally, note that if $g_1(t)$ and $g_2(t)$ both satisfy the requirements, then each must be a divisor of the other, and therefore must be multiples of each other by non-zero elements in K. \bigcirc

The polynomial $g(t) \in K[t]$ in Theorem 1.2 is called a greatest common divisor of the polynomials a(t) and b(t), and denoted by g(t) = (a(t), b(t)). Two polynomials $a(t), b(t) \in K[t]$ which are not identically zero are said to be relatively prime, or coprime, if $(a(t), b(t)) \in K$.

REMARK. The set I in the proof of Theorem 1.2 forms a non-zero ideal in the polynomial ring K[t]. The first part of our proof merely shows that any non-zero ideal I in a polynomial ring K[t], where K is a field, is generated by a non-zero element of I.

1.2. Irreducibility

Suppose that R is a commutative ring with multiplicative identity 1. A polynomial $u(t) \in R[t]$ is said to be a unit in R[t] if u(t) divides the multiplicative identity 1 of R. A factorization b(t) = a(t)c(t) is said to be proper if neither a(t) nor c(t) is a unit in R[t]. A non-constant polynomial $b(t) \in R[t]$ is said to be irreducible if b(t) does not have a proper factorization; in other words, if b(t) = a(t)c(t), where $a(t), c(t) \in R[t]$, then at least one of a(t) or c(t) is a unit.

Theorem 1.3. Suppose that K is a field, and that $a(t), b(t) \in K[t]$. Suppose further that $p(t) \in K[t]$ is irreducible. If $p(t) \mid a(t)b(t)$, then $p(t) \mid a(t)$ or $p(t) \mid b(t)$.

PROOF. Suppose that $p(t) \nmid a(t)$. Since p(t) is irreducible, the only divisors of p(t) are non-zero elements of K or polynomials of the form cp(t), where $c \in K$ is non-zero. Clearly $cp(t) \nmid a(t)$ for any non-zero $c \in K$. Hence we must have (a(t), p(t)) = 1. It follows from Theorem 1.2 that there exist $u(t), v(t) \in K[t]$ such that

$$1 = a(t)u(t) + p(t)v(t)$$
, so that $b(t) = a(t)b(t)u(t) + p(t)b(t)v(t)$.

Clearly $p(t) \mid b(t)$. \bigcirc

We next restrict our attention to the special case when the field K consists of complex numbers.

Theorem 1.4. Suppose that $K \subseteq \mathbb{C}$ is a field. Then every irreducible polynomial in K[t] has no repeated roots in \mathbb{C} .

The proof depends on the following observation.

THEOREM 1.5. Suppose that $K \subseteq \mathbb{C}$ is a field, and the polynomial $a(t) \in K[t]$ is not identically zero. Then a(t) is divisible by the square of a polynomial of positive degree in K[t] if and only if a(t) and a'(t) have a common factor of positive degree in K[t].

PROOF. Suppose first of all that

$$a(t) = b^2(t)c(t),$$

where $b(t), c(t) \in K[t]$ and deg b(t) > 0. Differentiating formally, we obtain

$$a'(t) = 2b(t)b'(t) + b^{2}(t)c'(t),$$

so that the polynomials a(t) and a'(t) have b(t) as a common factor.

Suppose now that a(t) is not divisible by the square of any polynomial in K[t] of positive degree. Then for any irreducible factor b(t) of a(t), we have a(t) = b(t)c(t), where b(t) and c(t) are coprime. Differentiating formally, we have

$$a'(t) = b'(t)c(t) + b(t)c'(t).$$

Suppose on the contrary that a(t) and a'(t) have b(t) as a common factor. Then we must have $b(t) \mid b'(t)c(t)$, and so it follows from Theorem 1.3 that $b(t) \mid b'(t)$. This is only possible if deg b(t) = 0, so that b(t) is a constant polynomial. \bigcirc

PROOF OF THEOREM 1.4. Suppose that $a(t) \in K[t]$ is irreducible in K[t]. Then a(t) is not divisible by the square of any polynomial of positive degree in K[t], and so it follows from Theorem 1.5 that a(t) and a'(t) are coprime. By Theorem 1.2, there exist $u(t), v(t) \in K[t]$ such that

$$a(t)u(t) + a'(t)v(t) = 1.$$

Clearly $a(t), a'(t), u(t), v(t) \in \mathbb{C}[t]$. This implies that a(t) and a'(t) are coprime over $\mathbb{C}[t]$. It now follows from Theorem 1.5 that a(t) is not divisible by the square of any polynomial of positive degree in $\mathbb{C}[t]$, and so cannot have repeated zeros in \mathbb{C} .

1.3. Polynomials with Rational Coefficients

In this section, we study factorization and irreducibility properties in the polynomial ring $\mathbb{Q}[t]$. Our first result shows that if a polynomial with rational integer coefficients can be factorized, then it is possible to write the factors as polynomials with rational integer coefficients.

THEOREM 1.6 (Gauss's lemma). Suppose that $a(t) \in \mathbb{Z}[t]$. Suppose further that a(t) = b(t)c(t), where $b(t), c(t) \in \mathbb{Q}[t]$. Then there exists a non-zero $\lambda \in \mathbb{Q}$ such that $\lambda b(t), \lambda^{-1}c(t) \in \mathbb{Z}[t]$.

PROOF. The equation a(t) = b(t)c(t) can be written in the form

(1.1)
$$na(t) = b^*(t)c^*(t),$$

where $n \in \mathbb{Z}$ is non-zero, and where the polynomials $b^*(t), c^*(t) \in \mathbb{Z}[t]$ are rational multiples of $b(t), c(t) \in \mathbb{Q}[t]$ respectively. Write

$$b^*(t) = b_r t^r + \ldots + b_0$$
 and $c^*(t) = c_s t^s + \ldots + c_0$,

where $b_0, \ldots, b_r, c_0 \ldots, c_s \in \mathbb{Z}$, with $b_r \neq 0$ and $c_s \neq 0$. Clearly the integer n divides all the coefficients of $b^*(t)c^*(t)$. Let p be a prime factor of n.

We first show that either $p \mid b_i$ for every i = 0, ..., r or $p \mid c_j$ for every j = 0, ..., s. Suppose on the contrary that this is not the case. Then there exists m satisfying $0 \le m \le r$ such that $p \nmid b_m$ and

$$p \mid b_i, \quad i = 0, \dots, m - 1.$$

Similarly, there exists q satisfying $0 \le q \le s$ such that $p \nmid c_q$ and

$$p \mid c_j, \quad j = 0, \dots, q - 1.$$

Then the coefficient of t^{m+q} in $b^*(t)c^*(t)$ is equal to

$$b_0c_{m+q} + \ldots + b_mc_q + \ldots + b_{m+q}c_0,$$

with the convention that this sum only includes those terms for which the coefficients exist. Clearly every term in this expression apart from $b_m c_q$ is divisible by p. It follows that this coefficient is not divisible by p, a contradiction.

We now remove the prime factor p from the expression (1.1) in a suitable way, and repeat this argument with prime factors of n/p, and so on. \bigcirc

Our next result gives a sufficient condition for irreducibility in $\mathbb{Q}[t]$.

THEOREM 1.7 (Eisenstein's criterion). Suppose that $a(t) \in \mathbb{Z}[t]$, and $a(t) = a_n t^n + \ldots + a_0$, where $a_0, \ldots, a_n \in \mathbb{Z}$. Suppose further that there exists a prime number p such that

- (i) $p \nmid a_n$;
- (ii) $p \mid a_i \text{ for every } i = 0, \dots, n-1; \text{ and }$
- (iii) $p^2 \nmid a_0$.

Then a(t) is irreducible in $\mathbb{Q}[t]$.

PROOF. Suppose on the contrary that a(t) is not irreducuble in $\mathbb{Q}[t]$. Then there exist non-constant polynomials $b(t), c(t) \in \mathbb{Q}[t]$ such that a(t) = b(t)c(t). In view of Gauss's lemma, we can further assume that $b(t), c(t) \in \mathbb{Z}[t]$. Write

$$b(t) = b_r t^r + \ldots + b_0$$
 and $c(t) = c_s t^s + \ldots + c_0$,

where $b_0, \ldots, b_r, c_0 \ldots, c_s \in \mathbb{Z}$, with $b_r \neq 0$, $c_s \neq 0$, r+s=n and $r,s \geqslant 1$. Note that $a_0 = b_0 c_0$. It follows from (ii) and (iii) that p divides exactly one of b_0 and c_0 . Without loss of generality, suppose that $p \mid b_0$ and $p \nmid c_0$. It now follows from (i) that there exists m satisfying $1 \leqslant m \leqslant r$ such that $p \nmid b_m$ and

$$p \mid b_i, \quad i = 1, \dots, m - 1.$$

Then the coefficient of t^m in a(t) = b(t)c(t) is equal to

$$a_m = b_0 c_m + \ldots + b_m c_0,$$

where $m \leq r < n$ and with the convention that this sum only includes those terms for which the coefficients exist. Clearly $p \nmid a_m$, contradicting (ii). \bigcirc

1.4. Symmetric Polynomials

In this last section, we consider polynomials of more than one variable. Suppose that R is a commutative ring with multiplicative identity 1. We denote by $R[t_1, \ldots, t_n]$ the collection of all polynomials in the variables t_1, \ldots, t_n and with coefficients in R. As before, $R[t_1, \ldots, t_n]$ itself is a commutative ring with multiplicative identity 1.

A polynomial $a(t_1, \ldots, t_n) \in R[t_1, \ldots, t_n]$ is said to be symmetric if

$$a(t_1,\ldots,t_n)=a(t_{\sigma(1)},\ldots,t_{\sigma(n)})$$

for all permutations σ on the set $\{1,\ldots,n\}$. In particular, the elementary symmetric polynomials are given by

$$s_1(t_1, \dots, t_n) = t_1 + t_2 + \dots + t_n,$$

$$s_2(t_1, \dots, t_n) = t_1t_2 + t_1t_3 + \dots + t_1t_n + t_2t_3 + \dots + t_{n-1}t_n,$$

$$\vdots$$

$$s_n(t_1, \dots, t_n) = t_1 \dots t_n.$$

EXAMPLE. Consider a polynomial $f(t) \in K[t]$, where $K \subseteq \mathbb{C}$ is a field. Resolving f(t) into linear factors over \mathbb{C} , we have

$$f(t) = a(t - \alpha_1) \dots (t - \alpha_n) = a(t^n - s_1 t^{n-1} + \dots + (-1)^n s_n),$$

where $s_i = s_i(\alpha_1, \dots, \alpha_n)$ for every $i = 1, \dots, n$.

Elementary symmetric polynomials are of particular interest as a consequence of the following important result.

THEOREM 1.8. Let R be a commutative ring with multiplicative identity 1. Then every symmetric polynomial in $R[t_1, \ldots, t_n]$ can be expressed as a polynomial in $R[s_1, \ldots, s_n]$, where $s_i = s_i(t_1, \ldots, t_n)$ for every $i = 1, \ldots, n$.

PROOF. We first define the following "lexicographic" order on the monomials $t_1^{\beta_1} \dots t_n^{\beta_n}$ by saying that $t_1^{\beta_1} \dots t_n^{\beta_n}$ precedes $t_1^{\gamma_1} \dots t_n^{\gamma_n}$ if the first non-vanishing $\beta_i - \gamma_i$, where $i = 1, \dots, n$, is positive. For every symmetric polynomial $a(t_1, \dots, t_n)$ in $R[t_1, \dots, t_n]$, we order its terms lexicographically. If $ct_1^{\beta_1} \dots t_n^{\beta_n}$ is one of the terms of $a(t_1, \dots, t_n)$, then there are similar monomials with the exponents β_1, \dots, β_n permuted. It is then not too difficult to see that the leading term in lexicographic order of $a(t_1, \dots, t_n)$ is one of the form $ct_1^{\beta_1} \dots t_n^{\beta_n}$, where $\beta_1 \geqslant \dots \geqslant \beta_n$. On the other hand, the leading term of

$$s_1^{k_1} \dots s_n^{k_n} = (t_1 + \dots + t_n)^{k_1} \dots (t_1 \dots t_n)^{k_n}$$

is

$$t_1^{k_1+\ldots+k_n}t_2^{k_2+\ldots+k_n}\ldots t_n^{k_n}.$$

It follows that choosing $k_1 = \beta_1 - \beta_2, \ldots, k_{n-1} = \beta_{n-1} - \beta_n$ and $k_n = \beta_n$, we conclude that the leading term of

(1.2)
$$a(t_1, \dots, t_n) - cs_1^{\beta_1 - \beta_2} \dots s_{n-1}^{\beta_{n-1} - \beta_n} s_n^{\beta_n}$$

in lexicographic order comes after $ct_1^{\beta_1} \dots t_n^{\beta_n}$. There are only finitely many monomials in lexicographic order in $a(t_1, \dots, t_n)$. Repeating our argument on (1.2) and so on, noting that (1.2) is symmetric, we can clearly reduce $a(t_1, \dots, t_n)$ to a polynomial in $R[s_1, \dots, s_n]$. \bigcirc