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2.1. Gaussian Integers

In this chapter, we study the problem of adjoining irrational numbers to the rational number field
Q to form algebraic number fields, as well as the ring of integers within any such algebraic number
field.

However, before we study the problem in general, we first of all investigate the special case when we
adjoin the complex number i, where i2 = −1, to the rational number field Q to obtain the algebraic
number field Q(i) of all numbers of the form a + bi, where a, b ∈ Q. Many of the techniques in the
general situation can be motivated and developed from this special case.

It is easy to see that Q(i), with the usual addition and multiplication in C, forms a field. The
subset Z[i] of all numbers of the form a+ bi, where a, b ∈ Z, forms a subring of Q(i). Elements of this
subring Z[i] are called gaussian integers.

Our first task is to develop a theory of divisibility among gaussian integers.
Suppose that α, β ∈ Z[i] and α #= 0. Then we say that α divides β, denoted by α | β, if there exists

γ ∈ Z[i] such that β = αγ; in other words, we have a factorization β = αγ. In this case, we say that
α is a divisor of β.

Furthermore, we say that a gaussian integer u ∈ Z[i] is a unit if u | 1. We also say that two gaussian
integers α, β ∈ Z[i] are associates if α = uβ for some unit u ∈ Z[i]. Finally, we say that a gaussian
integer π ∈ Z[i] is a gaussian prime if π is not a unit and if any divisor of π is either a unit or an
associate of π.

Recall that divisibility in Z is governed by the magnitude of the integers. In the case of gaussian
integers, this role is now played by essentially the modulus of the gaussian integer interpreted as a
complex number. We consider instead the square of this quantity. Accordingly, for every gaussian
integer α = a + bi ∈ Z[i], where a, b ∈ Z, we define the norm of α by N(α) = αα = a2 + b2, where
α = a− bi denotes the complex conjugate of α.

Theorem 2.1. Suppose that α, β ∈ Z[i]. Then
(i) N(α) is a non-negative rational integer;
(ii) N(αβ) = N(α)N(β);
(iii) N(α) = 1 if and only if α is a unit;
(iv) α is a unit if and only if α = ±1 or α = ±i; and
(v) α is a gaussian prime if N(α) is a rational prime.

Proof. (i) and (ii) are trivial.
To prove (iii), suppose first of all that N(α) = 1. Then αα = 1. Since α is also a gaussian integer,

it follows that α | 1, so that α is a unit. Suppose now that α is a unit. Then α | 1. Hence there exists
a gaussian integer β such that αβ = 1. It follows from (ii) that N(α)N(β) = N(αβ) = N(1) = 1,
and so N(α) | 1 in Z. Since N(α) is non-negative, it follows that N(α) = 1.
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It is easy to show that ±1 or ±i are units. Suppose now that the gaussian integer α = a + bi
is a unit. Then it follows from (iii) that a2 + b2 = 1. The only solutions are (a, b) = (±1, 0) and
(a, b) = (0,±1), giving rise to α = ±1 or α = ±i respectively, proving (iv).

To prove (v), suppose that β | α. Then there exists a gaussian integer γ such that α = βγ. It now
follows from (ii) that N(α) = N(β)N(γ) in Z. Since N(α) is a rational prime and non-negative, we
must have N(β) = 1 or N(γ) = 1. It follows from (iii) that β or γ is a unit. If γ is a unit, then β is
an associate of α. ©

Theorem 2.2. Suppose that α, β ∈ Z[i], and α #= 0. Then there exist γ, ρ ∈ Z[i] such that
β = αγ + ρ, where N(ρ) < N(α).

Proof. Clearly
β

α
= A + Bi,

where A, B ∈ Q. We now choose c, d ∈ Z such that

|A− c| ! 1
2 and |B − d| ! 1

2 ,

and write γ = c + di and ρ = β − αγ. Clearly γ, ρ ∈ Z[i]. To show that N(ρ) < N(α), we now note
that

|ρ| = |β − αγ| = |β − α(c + di)| = |α|
∣∣∣∣
β

α
− (c + di)

∣∣∣∣

= |α||(A− c) + (B − d)i| = |α|((A− c)2 + (B − d)2)
1
2 < |α|,

and the result follows on noting that N(ρ) = |ρ|2 and N(α) = |α|2. ©

Theorem 2.3. Suppose that α, β ∈ Z[i], and π ∈ Z[i] is a gaussian prime. If π | αβ, then π | α or
π | β.

Proof. We may assume that π ! α, for otherwise the conclusion of the theorem already holds. It
follows from Theorem 2.2 that there exist γ, ρ ∈ Z[i] such that α = πγ + ρ, where N(ρ) < N(π) and
ρ #= 0, so that 0 < N(ρ) < N(π). Clearly the set

S = {αξ + πη : ξ, η ∈ Z[i]}
is non-empty, and contains the element ρ = α − πγ with positive norm. It follows that there exists
an element in S with least positive norm. Suppose that this element is

(2.1) µ = αξ0 + πη0,

where ξ0, η0 ∈ Z[i]. Then

µβ = αβξ0 + πη0β,

so that π | µβ. To show that π | β, it remains to show that µ is a unit. Clearly

(2.2) N(µ) ! N(ρ) < N(π).

By Theorem 2.2, there exist τ, σ ∈ Z[i] such that π = µτ + σ, where N(σ) < N(µ). Combining this
with (2.1), we have

σ = π − µτ = α(−ξ0τ) + π(1− η0τ) ∈ S.

In view of the minimality of N(µ), we must therefore have N(σ) = 0 and so σ = 0 and π = µτ . Since
π is prime, it follows that one of µ or τ must be a unit. If τ is a unit, then N(τ) = 1, and so it follows
from N(π) = N(µ)N(τ) that N(π) = N(µ), contradicting (2.2). It follows that µ is a unit. ©

Using Theorem 2.3 a finite number of times, we can easily deduce the following generalization.

Theorem 2.4. Suppose that α1, . . . , αk ∈ Z[i], and π ∈ Z[i] is a gaussian prime. If π | α1 . . . αk,
then π | αj for some j = 1, . . . , k.

We can now establish a unique factorization theorem for gaussian integers.

Theorem 2.5. Every α ∈ Z[i], not zero or a unit, is representable as a product of gaussian primes,
uniquely up to units, associates and the order of factors.
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Proof. To establish the existence of factorization, we use induction on the norm. Clearly all the
gaussian integers with norm 2 are gaussian primes, in view of Theorem 2.1(v). Suppose now that all
gaussian integers with norm less than n can be factorized into products of gaussian primes. Let α
be a guassian integer with N(α) = n. If α is a gaussian prime, then there is nothing more to prove.
If α is not a gaussian prime, then α = α1α2, where neither gaussian integer α1 nor α2 is a unit.
Since N(α) = N(α1)N(α2), it follows that 1 < N(α1) < n and 1 < N(α2) < n. By the induction
hypothesis, both α1 and α2 can be factorized into products of gaussian primes. It follows that α can
be factorized into a product of gaussian primes.

To establish uniqueness of factorization, suppose that

α = π1 . . . πr = uκ1 . . . κs,

where u is a unit, and π1, . . . , πr, κ1, . . . , κs are gaussian primes. By Theorem 2.4, we must have
π1 | κj for some j = 1, . . . , s. Assume, without loss of generality, that π1 | κ1. Then

π2 . . . πr = u1κ2 . . . κs,

where u1 is a unit. Repeating this argument a finite number of times, we conclude that r = s, and
uniqueness of factorization follows. ©

At this point, we give a proof of Fermat’s theorem concerning sums of two squares, using ideas
from gaussian integers and gaussian primes. Recall that Fermat’s theorem states that if p ≡ 1 mod 4
is a rational prime, then there exist a, b ∈ Z such that p = a2 + b2.

Proof of Fermat’s theorem. Our starting point, as in Fermat’s proof, is to observe that −1
is a quadratic residue modulo p, and so there exists x ∈ Z such that x2 + 1 ≡ 0 mod p. Next, note
that in view of Theorem 2.5, there exists a gaussian prime π which divides p. Then it follows from
Theorem 2.1(ii) that N(π) | N(p) = p2. Since N(π) is a rational integer different from 1, it follows
that we must have N(π) = p or N(π) = p2. Suppose that N(π) = p2. Then it is easy to see that
p/π is a gaussian integer satisfying N(p/π) = 1, in view of Theorem 2.1(ii). This implies that p and
π are associates, so that p is a gaussian prime. Since p | (x2 + 1) = (x + i)(x − i), it follows from
Theorem 2.3 that p | (x + i) or p | (x− i), neither of which is true, since

x

p
± 1

p
i #∈ Z[i].

It follows that we must have N(π) = p. Suppose now that π = a + bi, where a, b ∈ Z. Then clearly
a2 + b2 = p. ©

We complete this section on gaussian integers by determining all the gaussian primes. The crucial
step in the argument is summarized in the following result.

Theorem 2.6. Every gaussian prime divides exactly one positive rational prime.

Proof. Let π be a gaussian prime. Since N(π) = ππ, it follows that π | N(π). On the other hand,
we clearly have N(π) > 1. Since N(π) is a positive integer, we can write N(π) = p1 . . . pr, where
p1, . . . , pr are rational primes. It follows from Theorem 2.4 that π | pj for some j = 1, . . . , r, so that
π divides at least one rational prime.

Suppose now that p and q are distinct positive rational primes. Then (p, q) = 1, so there exist
rational integers u and v such that 1 = pu + qv. It follows that if π divides both p and q, then π
must also divide 1, clearly impossible. Hence π divides at most one positive rational prime. ©

Theorem 2.7. The set of all gaussian primes consists of the following and their associates:
(i) the number 1 + i;
(ii) the numbers a + bi, where a, b ∈ N and a2 + b2 = p ≡ 1 mod 4 is a rational prime; and
(iii) the rational primes q ≡ 3 mod 4.

Proof. In view of Theorem 2.6, it is sufficient to factorize the positive rational primes into products
of gaussian primes. We distinguish three cases:

(i) The rational prime 2 = (1 + i)(1− i) = −i(1 + i)2. The number i is a unit and so not a gaussian
prime. On the other hand, N(1 + i) = 2 is a rational prime, so it follows from Theorem 2.1(v) that
1 + i is a gaussian prime.
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(ii) Let p ≡ 1 mod 4 be a positive rational prime. By Fermat’s theorem, there exist positive integers
a and b such that a2 + b2 = p. It follows that

p = (a + bi)(a− bi) = −i(a + bi)(b + ai).

Both numbers a + bi and b + ai are gaussian primes, since their norm is the rational prime p.
(iii) Let q ≡ 3 mod 4 be a positive rational prime. Suppose that π = a + bi is a gaussian prime

and π | q. Clearly N(π) > 1. Since N(π) | N(q) = q2, it follows that N(π) = q or N(π) = q2. But
N(π) #= q, for otherwise a2 + b2 = q ≡ 3 mod 4, an impossibility. Hence N(π) = q2. This implies
that π and q are associates, so that q is a gaussian prime. ©

2.2. Field Extensions

In this section, we give briefly the algebraic background of field extensions. Here we make no
restrictions on the fields involved.

Suppose that K and L are fields such that K ⊆ L. Then we say that the field L is an extension of
the field K, denoted by L : K. The field L has a natural structure as a vector space over K, where
vector addition is addition in L and scalar multiplication of λ ∈ K and v ∈ L is simply λv ∈ L. The
dimension of this vector space is called the degree of the extension L : K, or the degree of L over K,
and denoted by [L : K].

Theorem 2.8. Suppose that H, K and L are fields satisfying H ⊆ K ⊆ L. Then

(2.3) [L : H] = [L : K][K : H],

provided that the terms on the right hand side of (2.3) are finite.

We say that the field extension L : K is finite, or L is a finite extension of K, if [L : K] is finite.

Proof of Theorem 2.8. Let {vi : i ∈ I} be a basis of L over K, and let {wj : j ∈ J} be a basis
of K over H. To establish (2.3), it suffices to show that the set

(2.4) {viwj : i ∈ I, j ∈ J}
is a basis of L over H. For every α ∈ L, we can write

α =
∑

i∈I

βivi,

where βi ∈ K for every i ∈ I. For every i ∈ I, we can write

βi =
∑

j∈J

γijwj ,

where γij ∈ H for every j ∈ J . We therefore have

α =
∑

i∈I

∑

j∈J

γijviwj .

Hence the set (2.4) spans L as a vector space over H. It remains to show that the elements in (2.4)
are linearly independent over H. Suppose that

∑

i∈I

∑

j∈J

δijviwj = 0,

where δij ∈ H for every i ∈ I and j ∈ J . Then

∑

i∈I




∑

j∈J

δijwj



 vi = 0.

Since
∑

j∈J

δijwj ∈ K

for every i ∈ I and the elements in {vi : i ∈ I} are linearly independent over K, it follows that
∑

j∈J

δijwj = 0
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for every i ∈ I. Since δij ∈ H for every i ∈ I and j ∈ J and the elements in {wj : j ∈ J} are linearly
independent over H, it follows that δij = 0 for every i ∈ I and j ∈ J . ©

Suppose that L : K be a finite field extension. We say that an element α ∈ L is algebraic over K
if there exists a polynomial q(t) ∈ K[t], not identically zero and such that q(α) = 0. In other words,
α ∈ L is algebraic over K if it is the root of a polynomial with coefficients in K.

It is easy to see that if α ∈ L is the root of a polynomial with coefficients in K, then it is also the
root of many other polynomials with coefficients in K. Our next result shows that among all such
polynomials, there must be a “smallest” one.

Theorem 2.9. Suppose that α is algebraic over a field K. Then there exists a unique monic
polynomial p(t) ∈ K[t] of smallest degree such that p(α) = 0. Furthermore, this polynomial p(t) is
irreducible in K[t].

Remarks. (i) In Theorem 2.9, we have implicitly assumed that α belongs to a field L where L is
an extension of K.

(ii) A monic polynomial in K[t] is a polynomial of the type q(t) = qntn + . . . + q0, where qn = 1,
the multiplicative identity in K. In other words, the leading coefficient of a monic polynomial q(t)
must be equal to 1.

(iii) The polynomial p(t) in Theorem 2.9 is sometimes called the minimum polynomial of α over K.

Proof of Theorem 2.9. Suppose that q(t) ∈ K[t] such that q(α) = 0. Since K is a field, we
can divide all the coefficients of q(t) by the leading coefficient and obtain a monic polynomial in K[t]
with α as a root. Let S denote the set of all monic polynomials in K[t] with α as a root. Then S is
non-empty. Among the polynomials in S, there must be one of smallest degree, p(t) say.

To show that p(t) is unique, suppose on the contrary that the polynomial r(t) ∈ S is of the same
degree as p(t). Let s(t) = p(t) − r(t). Since p(t), r(t) ∈ S, we must have p(α) = r(α) = 0, and so
s(α) = 0. On the other hand, both p(t) and r(t) are monic and of the same degree, and so s(t) is of
smaller degree than p(t). We can now divide all the coefficients of s(t) by its leading coefficient to
obtain a monic polynomial in K[t], of smaller degree than p(t) and with α as a root. This contradicts
the minimality of the degree of p(t).

To show that p(t) is irreducible, suppose that

p(t) = p1(t)p2(t),

where p1(t), p2(t) ∈ K[t]. Since p(α) = p1(α)p2(α) = 0, we may assume without loss of generality
that p1(α) = 0. Multiplying the coefficients of p1(t) and p2(t) by elements of K if necessary, we may
further assume that both p1(t) and p2(t) are monic. Clearly, the degree of p1(t) cannot exceed the
degree of p(t). On the other hand, in view of the minimality of the degree of p(t), the degree of p1(t)
cannot be smaller than the degree of p(t). It follows that p1(t) and p(t) must have the same degree,
and must therefore be equal in view of the uniqueness of p(t). Hence p2(t) = 1 always, so that p(t)
is irreducible in K[t]. ©

Suppose that L : K is a field extension. If α ∈ L, we can adjoin the element α to the field K and
extend addition and multiplication in K to include α, in the same way as we adjoin the number i to
the field Q in the last section. The collection of elements of K, together with α and their sums and
products, now form a field K(α). Since α ∈ L, it is clear that K ⊆ K(α) ⊆ L. On the other hand, if
α #∈ K, then K(α) #= K. Indeed, we can think of K(α) as the smallest subfield of L which contains
α and all the elements of K.

Recall the example of Q(i). Since i is a root of the monic polynomial t2 + 1 ∈ Q[t], it is algebraic
over Q. On the other hand, it is easy to see that Q(i) can be interpreted as a vector space over Q,
with basis {1, i}, say. More to the point, we have [Q(i) : Q] = 2, so that the field extension Q(i) : Q
is finite.

Generalizing this observation, we prove the following result.

Theorem 2.10. Suppose that L : K is a field extension. Then an element α ∈ L is algebraic over
K if and only if K(α) is a finite extension of K.

Proof. Suppose that K(α) is a finite extension of K. Let n = [K(α) : K]. Then the elements
1, α, . . . , αn are linearly dependent over K, so it follows that there exist a0, a1, . . . , an ∈ K such that
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a0 + a1α + . . . + anαn = 0. Clearly the polynomial q(t) = antn + . . . + a0 ∈ K[t] and q(α) = 0, so
that α is algebraic over K.

Suppose now that α is algebraic over K. Let

p(t) = tn + pn−1t
n−1 + . . . + p0,

where p0, . . . , pn−1 ∈ K, be the minimum polynomial of α over K. To show that K(α) is a fi-
nite extension of K, it suffices to show that K(α) is the vector space over K spanned by the set
{1, α, . . . , αn−1}. Since any element of K(α) is of the form b0 + b1α + . . . + bmαm for some non-
negative integer m and coefficients b0, . . . , bm ∈ K, it suffices to show that for every non-negative
integer m, the term αm can be expressed as a linear combination of the elements of {1, α, . . . , αn−1}
with coefficients in K. We prove this by induction on m. The statement is trivial if m < n. On the
other hand, we have

αn = −p0 − p1α− . . .− pn−1α
n−1,

so that the term αn can be expressed as a linear combination of the elements of {1, α, . . . , αn−1} with
coefficients in K. Suppose now that m > n and for every k < m, the term αk can be expressed as a
linear combination of the elements of {1, α, . . . , αn−1} with coefficients in K. Note that

αm = −p0α
m−n − p1α

m−n+1 − . . .− pn−1α
m−1.

By the induction hypothesis, every term on the right hand side of this expression can be expressed as
a linear combination of the elements of {1, α, . . . , αn−1} with coefficients in K. This must therefore
also be the case for αm. ©

2.3. Algebraic Numbers

A number α ∈ C is said to be an algebraic number if it is algebraic over Q; in other words, if α
satisfies a non-zero polynomial equation with coefficients in Q. We denote by A the set of all algebraic
numbers.

Theorem 2.11. The set A forms a subfield of C.

Proof. We need to show that if α, β ∈ C are algebraic numbers, then so are α + β, α − β and
αβ, as well as α/β if β #= 0. These are all elements of Q(α, β), the field obtained by adjoining the
numbers α and β to the field Q.

We first show that Q(α, β) is a finite extension of Q. To see this, note that Q ⊆ Q(α) ⊆ Q(α, β),
and so it follows from Theorem 2.8 that

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q],

provided that the terms on the right hand side are finite. Since α is algebraic over Q, it follows
from Theorem 2.10 that [Q(α) : Q] is finite. Since β is algebraic over‘Q, there exists a polynomial
q(t) ∈ Q[t], not identically zero and such that q(β) = 0. Clearly q(t) ∈ (Q(α))[t], and so β is algebraic
over Q(α). Also Q(α, β) = (Q(α))(β). It follows from Theorem 2.10 that [Q(α, β) : Q(α)] is also
finite.

To complete the proof, it suffices to show that for every γ ∈ Q(α, β), the field Q(γ) is a finite
extension of Q, in view of Theorem 2.10. But this is an immediate consequence of the simple
observation that Q ⊆ Q(γ) ⊆ Q(α, β). ©

Our purpose here is not to study the set A. Instead, we are interested in finite extensions of Q.
More precisely, we say that a subfield K of C is an algebraic number field if K is a finite extension
of Q. The number [K : Q] is called the degree of K.

Suppose that K is an algebraic number field. It is a simple exercise to show that all the elements
of K are algebraic numbers, so that K ⊆ A. On the other hand, K is a finite dimensional vector
space over Q. If {α1, . . . , αn} is a basis of K over Q, then it is easy to see that K = Q(α1, . . . , αn),
the field obtained by adjoining the numbers α1, . . . , αn to Q.

In fact, an algebraic number field has a far simpler description. As a first step, we consider the
following reduction argument.

Theorem 2.12. Suppose that K = H(α, β), where H is an algebraic number field and α, β ∈ A.
Then there exists an algebraic number γ ∈ K such that K = H(γ).
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Proof. Observe first of all that α and β are algebraic over H, since Q ⊆ H clearly implies
Q[t] ⊆ H[t]. Let p(t), q(t) ∈ H[t] denote respectively the minimum polynomials of α and β over H,
with roots

α(1), . . . , α(n) and β(1), . . . , β(m)

in C. Here we use the convention that α = α(1) and β = β(1). We also assume that m " 2, for
otherwise β ∈ H and the proof is complete.

By Theorem 2.9, the polynomials p(t) and q(t) are irreducible in H[t]. It follows from Theorem 1.4
that the roots α(1), . . . , α(n) are distinct and the roots β(1), . . . , β(m) are distinct. Hence for every
i = 1, . . . , n and j = 2, . . . ,m, the equation

α(i) + xβ(j) = α(1) + xβ(1)

has at most one solution in H. Also, there are only finitely many such equations. We can therefore
choose a number c ∈ H such that

α(i) + cβ(j) #= α(1) + cβ(1)

for every i = 1, . . . , n and j = 2, . . . ,m. Now let γ = α + cβ. We next show that H(γ) = H(α, β).
It is clear that H(γ) ⊆ H(α, β). To show that H(α, β) ⊆ H(γ), it suffices to show that α, β ∈ H(γ).
Indeed, since α = γ − cβ, it suffices to show that β ∈ H(γ).

Note first of all that p(γ−cβ) = 0. It follows that the number β satisfies the equations p(γ−ct) = 0
and q(t) = 0. On the other hand, it is easy to show that the polynomials p(γ − ct) and q(t) have
only the root β = β(1) in common. Let r(t) ∈ (H(γ))[t] be the minimum polynomial of β over
H(γ). Then it is not difficult to show that r(t) | p(γ − ct) and r(t) | q(t) in (H(γ))[t]. But then the
polynomial r(t) cannot be of higher degree than 1, for otherwise the polynomials p(γ − ct) and q(t)
would have more than one root in common. Hence r(t) = t + µ for some µ ∈ H(γ). It is easy to see
that β = −µ ∈ H(γ) as required. ©

Suppose now that K is an algebraic umber field. Starting with the description K = Q(α1, . . . , αn),
where {α1, . . . , αn} is a basis of K as a vector space over Q, and applying Theorem 2.12 a finite
number of times, we obtain the following far simpler description of K.

Theorem 2.13. Suppose that K is an algebraic number field. Then there exists an algebraic number
θ ∈ K such that K = Q(θ).

Suppose that K = Q(θ) is an algebraic number field. We complete this section by establishing
a relationship between the degree of K and the degree of the minimum polynomial of the algebraic
number θ.

Theorem 2.14. Suppose that K = Q(θ) is an algebraic number field. Then deg p(t) = [K : Q],
where p(t) ∈ Q[t] is the minimum polynomial of θ over Q.

Proof. We elaborate on our proof of Theorem 2.10. Let

m = deg p(t) and n = [K : Q].

Then the elements 1, θ, . . . , θn are linearly dependent over Q. An argument similar to the first part
of the proof of Theorem 2.10 will give m ! n. On the other hand, as in the second part of the proof
of Theorem 2.10, K is spanned by the set {1, θ, . . . , θm−1} as a vector space over Q. Hence m " n.
©

Remark. In fact, we have also shown that the set {1, θ, . . . , θn−1}, where n = [K : Q], is a basis
of the algebraic number field K = Q(θ) as a vector space over Q.

2.4. Conjugates

Suppose that K = Q(θ) is an algebraic number field of degree n, and p(t) ∈ Q[t] is the minimum
polynomial of θ over Q, with distinct roots

(2.5) θ(1), . . . , θ(n)

in C. The complex numbers (2.5) are called the conjugates of θ, with the convention that θ = θ(1).
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Suppose next that α ∈ K = Q(θ). Since the set {1, θ, . . . , θn−1} forms a basis of K as a vector
space over Q, there exists a unique polynomial r(t) ∈ Q[t] with deg r(t) < n such that α = r(θ). The
elements α(i) = r(θ(i)), where i = 1, . . . , n, are called the K-conjugates of α, and the polynomial

fα(t) =
n∏

i=1

(
t− α(i)

)
=

n∏

i=1

(
t− r(θ(i))

)

is called the field polynomial of α over K.

Theorem 2.15. Suppose that α ∈ K = Q(θ), where [K : Q] = n. Then
(i) the field polynomial fα(t) ∈ Q[t], and is a power of the minimum polynomial pα(t) ∈ Q[t] of

α over Q;
(ii) the K-conjugates of α are the roots of pα(t) in C, each repeated n/m times, and where

m = deg pα(t) is a divisor of n;
(iii) the element α ∈ Q if and only if all its K-conjugates are identical; and
(iv) Q(α) = Q(θ) if and only if all the K-conjugates of α are distinct.

Proof. (i) It is easy to see that the coefficients of fα(t) are symmetric polynomials of the form
h(θ(1), . . . , θ(n)). By Theorem 1.8, these symmetric polynomials can be expressed as polynomials
where the variables are the elementary symmetric polynomials

(2.6) s1(θ(1), . . . , θ(n)), . . . , sn(θ(1), . . . , θ(n))

and the coefficients are in Q. Note that each of the terms in (2.6) is a coefficient of the minimum
polynomial p(t) of θ over Q, and is therefore an element of Q. It follows that fα(t) ∈ Q[t]. On the
other hand, it is easy to check that fα(α) = 0, and so pα(t) | fα(t) in Q[t]. We can therefore write

fα(t) = ps
α(t)h(t),

where pα(t) and h(t) are coprime in Q[t]. To complete the proof, it suffices to prove that h(t) is
identically equal to 1. Clearly h(t) is monic, so it suffices to prove that h(t) is constant. Suppose
on the contrary that h(t) is non-constant. Then at least one of the roots r(θ(i)) of fα(t) must also
be a root of h(t), and so the polynomial h(r(t)) vanishes when t = θ(i) for some i = 1, . . . , n. If
p(t) ∈ Q[t] is the minimum polynomial of θ over Q, then it is also the minimum polynomial of θ(i)

over Q, and so p(t) | h(r(t)) in Q[t]. It follows that h(r(t)) vanishes at θ(i) for every i = 1, . . . , n, so
that in particular, we have h(r(θ)) = h(α) = 0. This implies that pα(t) | h(t) in Q[t], contradicting
our assumption that pα(t) and h(t) are coprime in Q[t].

(ii) is an immediate consequence of (i).
(iii) If all the K-conjugates of α are the same, then fα(t) = (t−α)n, so that pα(t) = t−α, whence

α ∈ Q. Conversely, if α ∈ Q, then pα(t) = t−α, so that fα(t) = (t−α)n, whence all the K-conjugates
of α are the same.

(iv) Since α ∈ Q(θ), we must have Q ⊆ Q(α) ⊆ Q(θ). By Theorem 2.8, we have

[Q(θ) : Q] = [Q(θ) : Q(α)][Q(α) : Q].

In view of Theorem 2.14, we have Q(α) = Q(θ) if and only if m = n, if and only if pα(t) = fα(t), if
and only if all the K-conjugates of α are distinct. ©

Remarks. (i) Note that an important consequence of Theorem 2.15 is the fact that the values of
the K-conjugates α(1), . . . , α(n) are independent of the choice of θ such that K = Q(θ), provided that
α ∈ K.

(ii) Suppose that θ is the real cube root of 5. Then K = Q(θ) is a subfield of R. The conjugates
of θ are θ, ωθ and ω2θ, where ω is a non-real cube root of 1. Clearly ωθ and ω2θ are not elements
of K. Hence the conjugates of θ need not be in K. Similarly, if α ∈ K, then the K-conjugates of α
need not be in K.

2.5. Algebraic Integers

We have already seen two examples of “integers” within an algebraic number field, the rational
integers within Q and the gaussian integers within Q(i). Our task in this section is to give a reasonable
definition of “integers” within an algebraic number field.



2.5. ALGEBRAIC INTEGERS 15

Remark. Suppose that K = Q(θ) is an algebraic number field. It seems reasonable that the set
of integers within this algebraic number field should satisfy the following four conditions:

(i) The integers in K form a ring. In other words, if α and β are integers in K, then so are α + β,
α− β and αβ.

(ii) If α ∈ Q is an integer in K, then α ∈ Z. In other words, no rational number apart from the
rational integers can be integers in K.

(iii) If α ∈ K is an integer in K, then its K-conjugates should also be integers, though they do not
necessarily belong to K.

(iv) For every γ ∈ K, there exists m ∈ N such that mγ is an integer in K.

The following definition turns out to satisfy all these four requirements. A number α ∈ C is said
to be an algebraic integer if there exists a monic polynomial q(t) ∈ Z[t] such that q(α) = 0; in other
words, if α is a root of a monic polynomial with rational integer coefficients.

Clearly condition (iii) is automatically satisfied. It is also not difficult to show that condition (iv)
is satisfied. On the other hand, condition (ii) will follow from the result below.

Theorem 2.16. A number α ∈ C is an algebraic integer if and only if its minimum polynomial
over Q has coefficients in Z.

Proof. Let p(t) ∈ Q[t] be the minimum polynomial of α over Q. If p(t) ∈ Z[t], then α is an
algebraic integer. Conversely, if α is an algebraic integer, then there exists a monic polynomial
q(t) ∈ Z[t] such that q(α) = 0. On the other hand, we know that p(t) | q(t) in Q[t]. It follows from
Gauss’s lemma that there exists a non-zero λ ∈ Q such that λp(t) ∈ Z[t] and λp(t) | q(t) in Z[t].
Since both p(t) and q(t) are monic, we must have λ = 1. ©

Theorem 2.17. Suppose that K = Q(θ) is an algebraic number field. Then the algebraic integers
in K form a ring.

Proof. It is sufficient to show that if α and β are integers, then so are α + β, α− β and αβ. Let

α(1), . . . , α(m) and β(1), . . . , β(n)

denote respectively the conjugates of α and β, with the convention that α = α(1) and β = β(1).
Suppose that p(t) ∈ Q[t] is the minimum polynomial of α over Q.

To show that α + β is an algebraic integer, consider the polynomial

g(t) =
n∏

j=1

p(t− β(j)).

By Theorem 2.16, we have p(t) ∈ Z[t]. Hence the coefficients of g(t) are symmetric polynomials in
β(1), . . . , β(n) with coefficients in Z. It follows from Theorem 1.8 that g(t) ∈ Z[t]. On the other hand,
since p(t) is monic, it follows that g(t) is also monic. It is easy to check that g(α + β) = 0, and so
α + β is an algebraic integer.

The case for α− β is almost similar.
To show that αβ is an algebraic integer, consider the polynomial

h(t) =
n∏

j=1

(β(j))mp

(
t

β(j)

)
.

Similar arguments as above show that h(t) ∈ Z[t]. Note also that h(t) is monic and h(αβ) = 0. It
follows that αβ is an algebraic integer. ©

To complete this section, we now apply similar techniques to show that algebraic integers can be
characterized in terms of other algebraic integers.

Theorem 2.18. Suppose that α ∈ C is a root of a monic polynomial equation whose coefficients
are algebraic integers. Then α is an algebraic integer.

Proof. Suppose that α ∈ C is a root of the polynomial

q(t) = tn + γn−1t
n−1 + . . . + γ0,
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where γ0, . . . , γn−1 are algebraic numbers. For every j = 0, . . . , n− 1, denote the conjugates of γj by
γ(1)

j , . . . , γ
(mj)
j , and consider the monic polynomial

g(t) =
m0∏

i0=1

. . .

mn−1∏

in−1=1

(
tn + γ(in−1)

n−1 tn−1 + . . . + γ(i0)
0

)
.

Multiplying out, it is not difficult to see that each coefficient in g(t) is a sum of numbers of the form

∑

j1+...+js=k

∑

ij1

. . .
∑

ijs

γ
(ij1 )
j1

. . . γ
(ijs )
js

=
∑

j1+...+js=k

s∏

µ=1




∑

ijµ

γ
(ijµ )
jµ



 .

The usual arguments on symmetric polynomials give
∑

ijµ

γ
(ijµ )
jµ

∈ Q,

in view of Theorem 1.8. Hence all the coefficients in the polynomial g(t) are in Q. These coefficients
are also algebraic integers, in view of requirement (iii) and Theorem 2.17. It now follows from
requirement (ii) that g(t) ∈ Z[t]. Finally, note that q(t) is a factor of g(t), so we must have g(α) = 0.
©

2.6. Discriminants and Integral Bases

In this section, we establish a simple way of describing the ring of integers within an algebraic
number field. To achieve this, we first introduce the notion of the discriminant of a basis of an
algebraic number field.

Suppose that K = Q(θ) is an algebraic number field of degree n, and {α1, . . . , αn} is a basis of K

as a vector space over Q. For every j = 1, . . . , n, we let α(1)
j , . . . , α(n)

j denote the K-conjugates of αj ,
and define the discriminant of the basis {α1, . . . , αn} to be the quantity

∆[α1, . . . , αn] =

∣∣∣∣∣∣∣∣

α(1)
1 . . . α(1)

n

...
...

α(n)
1 . . . α(n)

n

∣∣∣∣∣∣∣∣

2

.

It is easy to see that the discriminant is well defined in the sense that its value does not depend on
the ordering of either the set {α1, . . . , αn} or the K-conjugates, provided that the K-conjugates are
dictated by the same ordering of the conjugates θ(1), . . . , θ(n) of θ.

Theorem 2.19. Suppose that K = Q(θ) is an algebraic number field of degree n. Suppose further
that {α1, . . . , αn} and {β1, . . . , βn} are bases of K as a vector space over Q. If for every k = 1, . . . , n,
we have

(2.7) βk =
n∑

j=1

cjkαj ,

where cjk ∈ Q for every j, k = 1, . . . , n, then

∆[β1, . . . , βn] =

∣∣∣∣∣∣∣

c11 . . . c1n
...

...
cn1 . . . cnn

∣∣∣∣∣∣∣

2

∆[α1, . . . , αn].

Proof. The result will follow on taking determinants and squaring if we can show that




β(1)
1 . . . β(1)

n

...
...

β(n)
1 . . . β(n)

n



 =





α(1)
1 . . . α(1)

n

...
...

α(n)
1 . . . α(n)

n








c11 . . . c1n
...

...
cn1 . . . cnn



 .

In other words, we need to show that for every i, k = 1, . . . , n, we have

(2.8) β(i)
k =

n∑

j=1

cjkα(i)
j .
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Recall that for every j = 1, . . . , n, there exists a unique polynomial rj(t) ∈ Q[t] with deg rj(t) < n
such that αj = rj(θ). Similarly, for every k = 1, . . . , n, there exists a unique polynomial sk(t) ∈ Q[t]
with deg sk(t) < n such that βk = sk(θ). It then follows from (2.7) that for every k = 1, . . . , n, we
must have

sk(t) =
n∑

j=1

cjkrj(t).

The identity (2.8) now follows on letting t = θ(i). ©

Let us now calculate the discriminant of the basis {1, θ, . . . , θn−1} of an algebraic number field
K = Q(θ), where [K : Q] = n. Using the fact that (θi)(j) = (θ(j))i for every i = 0, . . . , n − 1 and
j = 1, . . . , n, we have

∆[1, θ, . . . , θn−1] =

∣∣∣∣∣∣∣

1 θ(1) (θ(1))2 . . . (θ(1))n−1

...
...

...
...

1 θ(n) (θ(n))2 . . . (θ(n))n−1

∣∣∣∣∣∣∣

2

=
∏

1!i<j!n

(θ(i) − θ(j))2.

Here the discriminant is the square of a Vandermonde determinant. Note that since the conjugates of θ
are distinct, we must have ∆[1, θ, . . . , θn−1] #= 0. On the other hand, it is clear that ∆[1, θ, . . . , θn−1] is
symmetric with respect to the conjugates of θ. It follows from Theorem 1.8 that ∆[1, θ, . . . , θn−1] ∈ Q.
Also ∆[1, θ, . . . , θn−1] > 0 if all the conjugates of θ are real. We have therefore proved the following
result.

Theorem 2.20. Suppose that K = Q(θ) is an algebraic number field. Then the discriminant of
any basis of K is rational and non-zero. Furthermore, if all the conjugates of θ are real, then the
discriminant of any basis of K is positive.

Suppose that K = Q(θ) is an algebraic number field of degree n. Recall that K has a basis of n
elements as a vector space over Q. For example, the set {1, θ, . . . , θn−1} is such a basis.

The ring O of algebraic integers in K is an abelian group under addition. We say that a set
{α1, . . . , αs} ⊆ O is an integral basis, or Z-basis, of the ring O if every element α ∈ O is uniquely
representable in the form

α = b1α1 + . . . + bsαs,

where b1, . . . , bs ∈ Z.
Our aim here is to show that an integral basis for O exists and contains exactly n elements. The

first step in this direction is given by the following result on the discriminant of bases of the algebraic
number field K which consist entirely of algebraic integers.

Theorem 2.21. Suppose that K = Q(θ) is an algebraic number field of degree n. Suppose further
that {α1, . . . , αn} ⊆ O is a basis of K as a vector space over Q. Then ∆[α1, . . . , αn] ∈ Z \ {0}.

Proof. On the one hand, we have ∆[α1, . . . , αn] ∈ Q \ {0}, in view of Theorem 2.20. On the
other hand, α1, . . . , αn and all their K-conjugates are algebraic integers, in view of condition (iii)
concerning algebraic integers. It follows from Theorem 2.17 that ∆[α1, . . . , αn] is an algebraic integer.
The result now follows from condition (ii) concerning algebraic integers. ©

Theorem 2.21 enables us to use the Principle of induction to establish the existence of integral
bases.

Theorem 2.22. Suppose that K = Q(θ) is an algebraic number field of degree n. Then the ring O
of algebraic integers in K has an integral basis of n elements.

Proof. In view of condition (iv) concerning algebraic integers, we assume without loss of generality
that θ is an algebraic integer. Let S denote the set of all bases of K which consist entirely of algebraic
integers. Then {1, θ, . . . , θn−1} ∈ S, so that S is non-empty. As a consequence of Theorem 2.21, we
conclude that there exists a basis {ω1, . . . , ωn} ∈ S such that |∆[ω1, . . . , ωn]| is minimal. We prove
that {ω1, . . . , ωn} is an integral basis of O.
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Suppose on the contrary that {ω1, . . . , ωn} is not an integral basis of O. Then there exists α ∈ O
which is not representable as a linear combination of the elements of {ω1, . . . , ωn} with coefficients
in Z. On the other hand, since α ∈ K and {ω1, . . . , ωn} is a basis of K, we have a unique representation

α = b1ω1 + . . . + bnωn,

where b1, . . . , bn ∈ Q. Then at least one of the coefficients b1, . . . , bn does not belong to Z. We may
assume without loss of generality that b1 #∈ Z. Then b1 = b + r, where b ∈ Z and 0 < r < 1. Consider
now the basis {ν1, ω2, . . . , ωn} ∈ S, where ν1 = α − bω1 ∈ O. The change of basis matrix from the
basis {ω1, . . . , ωn} to the basis {ν1, ω2, . . . , ωn} is given by the upper triangular matrix





b1 − b b2 b3 b4 . . . bn

1 0 0 . . . 0
1 0 . . . 0

1
...

. . . 0
1





,

with determinant r. It follows from Theorem 2.19 that

∆[ν1, ω2, . . . , ωn] = r2∆[ω1, . . . , ωn],

contradicting the minimality of |∆[ω1, . . . , ωn]|. ©

2.7. Quadratic Number Fields

A quadratic number field is an algebraic number field K of degree 2. Then K = Q(θ), where θ is
a root of a quadratic polynomial irreducible over Q. In view of condition (iv) concerning algebraic
integers, we may assume that θ is an algebraic integer. Suppose that θ is a root of the polynomial
t2 + bt + c, where b, c ∈ Z. Then

θ =
−b ±

√
b2 − 4c

2
.

If we write b2−4c = s2d, where s, d ∈ Z and d is squarefree, then it is easy to see that Q(θ) = Q(
√

d).
We have therefore established the following result.

Theorem 2.23. Every quadratic number field is of the form Q(
√

d), where d ∈ Z is squarefree.

Consider a quadratic number field Q(
√

d), where d ∈ Z is squarefree. Our next task is to determine
all the algebraic integers in Q(

√
d).

It is easy to see that every number in Q(
√

d) is of the form

(2.9)
0 + m

√
d

n
,

where 0, m, n ∈ Z and n #= 0. We may further assume that 0, m, n are relatively prime and n ∈ N.
The number (2.9) is an algebraic integer if and only if it satisfies a quadratic equation of the form

t2 + bt + c = 0, where b, c ∈ Z; in other words, if

(0 + m
√

d)2 + bn(0 + m
√

d) + cn2 = 0.

This last equation is satisfied if and only if

(2.10) 02 + m2d + bn0 + cn2 = 0 and m(20 + bn) = 0.

The case m = 0 is trivial, for then (2.9) is an integer if and only if n | 0. We may therefore assume
that m #= 0, so that

(2.11) −20 = bn.

Substituting this into the first equation in (2.10), we obtain

m2d− 02 + cn2 = 0.

Let g = (0, n). Then g2 | m2d. Since d is squarefree, it follows that g | m. Since 0, m, n are relatively
prime, we must have g = 1, so that (0, n) = 1. It follows from (2.11) that n | 2, so that n = 1 or
n = 2.
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Suppose that n = 1. Then the equations in (2.10) are satisfied with b = −20 and c = 02 −m2d. It
remains to investigate the case when n = 2. Note that the number

(2.12)
0 + m

√
d

2
satisfies the quadratic equation

t2 − 0t +
02 −m2d

4
= 0,

and is therefore an algebraic integer if and only if (02 −m2d)/4 ∈ Z; in other words, if and only if
02 ≡ m2d mod 4. The condition (0, n) = 1 implies that 0 must be odd, so that 02 ≡ 1 mod 4. It
follows that the number (2.12) is an algebraic integer if and only if 0 is odd and m2d ≡ 1 mod 4. This
last congruence holds if and only if m is odd and d ≡ 1 mod 4.

We have therefore proved the following result.

Theorem 2.24. Suppose that d ∈ Z is squarefree, and O is the ring of integers in the quadratic
number field Q(

√
d).

(i) If d #≡ 1 mod 4, then {1,
√

d} is an integral basis of O.
(ii) If d ≡ 1 mod 4, then {1, 1

2 + 1
2

√
d} is an integral basis of O.

Remarks. (i) Note that in Q(i), the ring of integers is precisely the collection of all gaussian
integers.

(ii) It is easy to see that the quadratic fields Q(
√

d), where d ∈ Z, are pairwise distinct.

2.8. Cyclotomic Number Fields

The starting point for cyclotomic number fields is the irreducibility of the cyclotomic polynomial

(2.13) f(t) = tp−1 + tp−2 + . . . + t + 1

in Q[t] for any positive rational prime p. To see this, note that

f(t + 1) = tp−1 + p(tp−2 + . . .) + p,

and the irreducibility now follows immediately from Eisenstein’s criterion.
For any positive rational prime p, the p-th cyclotomic number field is the algebraic number field

Q(ζ), where ζ = e2πi/p is a primitive p-th root of unity. Clearly the polynomial (2.13) is the minimum
polynomial of ζ over Q, so that Q(ζ) is an algebraic number field of degree p−1. Also, the case p = 2
is trivial, since ζ = −1 in this case, and Q(−1) = Q. We therefore assume that p is an odd positive
rational prime.

An obvious choice for a basis of Q(ζ) as a vector space over Q is given by the set {1, ζ, . . . , ζp−2}.
Our aim in this section is to prove the following stronger result.

Theorem 2.25. Suppose that p is an odd positive rational prime, ζ = e2πi/p and O is the ring of
integers in the cyclotomic number field Q(ζ). Then the set {1, ζ, . . . , ζp−2} is an integral basis of O.

We begin by investigating the discriminant of our chosen basis.

Theorem 2.26. Under the hypotheses of Theorem 2.25, we have

∆[1, ζ, . . . , ζp−2] = (−1)
1
2 (p−1)pp−2.

Proof. As in the discussion before Theorem 2.20, we have

∆[1, ζ, . . . , ζp−2] =
∏

1!i<j!p−1

(ζi − ζj)2.

Clearly ζ, . . . , ζp−1 are the roots of the minimum polynomial (2.13), and

(2.14)
tp − 1
t− 1

= tp−1 + tp−2 + . . . + t + 1 =
p−1∏

j=1

(t− ζj).
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Differentiating formally with respect to t, letting t = ζi and noting that ζp = 1, we obtain

(2.15) − pζp−i

1− ζi
=

p−1∏

j=1
j $=i

(ζi − ζj).

Substituting t = 0 and t = 1 into (2.14), we obtain respectively

(2.16)
p−1∏

i=1

ζp−i =
p−1∏

j=1

ζj = 1 and
p−1∏

i=1

(1− ζi) = p,

so that
p−1∏

i=1

ζp−i

1− ζi
=

1
p
.

Combining this with (2.15), we obtain

pp−2 =
p−1∏

i=1

p−1∏

j=1
j $=i

(ζi − ζj) =




p−1∏

i=1

p−1∏

j=1
i<j

(ζi − ζj)








p−1∏

i=1

p−1∏

j=1
i>j

(ζi − ζj)





= (−1)
1
2 (p−1)(p−2)

∏

1!i<j!p−1

(ζi − ζj)2 = (−1)
1
2 (p−1)

∏

1!i<j!p−1

(ζi − ζj)2.

The result now follows on multiplying both sides by (−1) 1
2 (p−1). ©

We next appeal to the number λ = 1− ζ.

Theorem 2.27. Under the hypotheses of Theorem 2.25, and with λ = 1−ζ, the set {1, λ, . . . , λp−2}
is a basis of Q(ζ). Furthermore, we have

∆[1, λ, . . . , λp−2] = ∆[1, ζ, . . . , ζp−2].

Proof. Note that for every j = 0, . . . , p− 2, we have

λj = (1− ζ)j = 1− jζ + . . . + (−1)jζj .

It follows that the vector (1, λ, . . . , λp−2) is obtained from the vector (1, ζ, . . . , ζp−2) by multiplica-
tion by a triangular matrix with diagonal entries ±1. The determinant of this triangular matrix is
equal to ±1. The first assertion follows immediately, and the second assertion follows in view of
Theorem 2.19. ©

Our aim here is to show that the set {1, λ, . . . , λp−2} is an integral basis of O, the ring of integers
of Q(ζ). To do so, we need the following intermediate result.

Theorem 2.28. Under the hypotheses of Theorem 2.25, and with λ = 1 − ζ, every element of O
can be expressed in the form

(2.17)
a0 + a1λ + . . . + ap−2λp−2

pk
,

where a0, . . . , ap−2 ∈ Z and k ∈ Z is non-negative.

Proof. Let {ω1, . . . , ωp−1} be an integral basis of O. For every j = 0, . . . , p− 2, the number λj is
an algebraic integer. It follows that

(2.18) λj =
p−1∑

i=1

cijωi,

where cij ∈ Z for every i = 1, . . . , p − 1 and j = 0, . . . , p − 2. Let d denote the determinant of the
matrix (cij). Then it follows from Theorems 2.19, 2.26 and 2.27 that

(−1)
1
2 (p−1)pp−2 = d2∆[ω1, . . . , ωp−1].

On the other hand, ∆[ω1, . . . , ωp−1] ∈ Z \ {0} by Theorem 2.21. It follows that d = ±pk for some
non-negative integer k. Solving the system of equations (2.18) by Cramer’s rule, we see that each of
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ω1, . . . , ωp−1 can be expressed in the form (2.17). The result now follows, since {ω1, . . . , ωp−1} is an
integral basis of O. ©

Theorem 2.29. Under the hypotheses of Theorem 2.25, and with λ = 1−ζ, the set {1, λ, . . . , λp−2}
is an integral basis of O.

Proof. Suppose that the set {1, λ, . . . , λp−2} is not an integral basis of O. Then there exists an
algebraic integer of the form (2.17) where k is positive and p does not divide all the rational integers
a0, . . . , ap−2. It follows that there exists an algebraic integer of the form

a0 + a1λ + . . . + ap−2λp−2

p
,

where p does not divide all the rational integers a0, . . . , ap−2. Let m satisfy p ! am and p | ai for every
i = 0, . . . ,m− 1. Then

amλm + . . . + ap−2λp−2

p

is an algebraic integer. By (2.16) and noting that m ! p− 2, we have

p = (1− ζ) . . . (1− ζp−1) = (1− ζ)p−1u = λp−1u = λm+1v,

where u and v are algebraic integers. It follows that
amλm + . . . + ap−2λp−2

λm+1

is an algebraic integer, and therefore so is a/λ, where a = am.
We now show that if a ∈ Z and p ! a, then a/λ cannot be an algebraic integer. Let t = a/λ. Then

1 = ζp =
(
1− a

t

)p
,

so that tp − (t− a)p = 0. It follows that a/λ is a root of the polynomial

g(t) = ptp−1 + p(. . .) + ap−1.

Since p ! a, it follows from Eisenstein’s criterion that the polynomial tp−1g(1/t) is irreducible over Q,
and so g(t) is irreducible over Q. Since the monic polynomial p−1g(t) #∈ Z[t], it follows that a/λ is
not an algebraic integer. ©

Proof of Theorem 2.25. By Theorem 2.29, the set {1, λ, . . . , λp−2} forms an integral basis of O.
If we recall the proof of Theorem 2.22, then we see that the quantity

|∆[1, λ, . . . , λp−2]|
is minimal among all bases of Q(ζ) consisting only of algebraic integers. It follows from Theorem 2.27
that the quantity

|∆[1, ζ, . . . , ζp−2]|
is also minimal among all bases of Q(ζ) consisting only of algebraic integers. Hence {1, ζ, . . . , ζp−2}
is an integral basis of O. ©

2.9. Factorization

Suppose that K = Q(θ) is an algebraic number field, and O is the ring of algebraic integers in K.
Suppose that α, β ∈ O and α #= 0. Then we say that α divides β, denoted by α | β, if there exists

γ ∈ O such that β = αγ; in other words, we have a factorization β = αγ. In this case, we say that α
is a divisor of β.

Furthermore, we say that an algebraic integer u ∈ O is a unit if u | 1. We also say that two
algebraic integers α, β ∈ O are associates if α = uβ for some unit u ∈ O. Finally, we say that an
algebraic integer π ∈ O is a prime if π is not a unit and if any divisor of π is either a unit or an
associate of π.

As in the case for gaussian integers, we now define a norm on the algebraic integers in O. Suppose
that K = Q(θ) is of degree n over Q. For every α ∈ K, let α(1), . . . , α(n) denote the K-conjugates
of α. We define the norm of α by

N(α) = α(1) . . . α(n).
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Theorem 2.30. Suppose that K = Q(θ) is an algebraic number field, and O is the ring of algebraic
integers in K. Suppose further that α, β ∈ O. Then

(i) N(α) is a non-zero rational integer;
(ii) N(αβ) = N(α)N(β);
(iii) α is a unit in K if and only if N(α) = ±1; and
(iv) α is a prime in K if N(α) is a rational prime.

Proof. (i) The field polynomial fα(t) of α over K is a power of the minimum polynomial pα(t)
of α over Q. Since α ∈ O, we must have pα(t) ∈ Z[t], and so fα(t) ∈ Z[t]. But

fα(t) = (t− α(1)) . . . (t− α(n)).

Hence N(α) is simply (−1)n times the coefficient of the constant term in fα(t), and so must belong
to Z. On the other hand, the coefficient of the constant term in pα(t) must be non-zero, since pα(t)
is irreducible in Q[t]. It follows that the coefficient of the constant term in fα(t) must be non-zero.
Hence N(α) is non-zero.

(ii) Note that if α(1), . . . , α(n) and β(1), . . . , β(n) are respectively the K-conjugates of α and β, then
α(1)β(1), . . . , α(n)β(n) are the K-conjugates of αβ.

(iii) Suppose that N(α) = α(1) . . . α(n) = ±1. Since α(2) . . . α(n) is an algebraic integer and

α(2) . . . α(n) =
N(α)

α
∈ K,

it follows that α(2) . . . α(n) ∈ O, and so α | 1, whence α is a unit. Suppose now that α is a unit. Then
α | 1, so there exists β ∈ O such that αβ = 1. It follows from (ii) that

N(α)N(β) = N(αβ) = N(1) = 1,

and so N(α) | 1 in Z. It follows that N(α) = ±1.
(iv) Suppose that β | α. Then there exists γ ∈ O such that α = βγ. It now follows from (ii) that

N(α) = N(β)N(γ) in Z. Since N(α) is a rational prime, we must have N(β) = ±1 or N(γ) = ±1. It
follows from (iii) that β or γ is a unit. If γ is a unit, then β is an associate of α. ©

We leave it as an exercise for the reader to establish the following result.

Theorem 2.31. Suppose that K = Q(θ) is an algebraic number field, and O is the ring of algebraic
integers in K. Then every element in O, not zero or a unit, is representable as a product of primes
in O.

Remark. Note that we have not claimed uniqueness of factorization. Consider the quadratic
number field Q(

√
15). It follows from Theorem 2.24 that the ring of integers is given by Z[

√
15].

Here, it can be shown that the algebraic integer 10 has two essentially different factorizations

10 = 2× 5 = (5 +
√

15)(5−
√

15)

into primes in Z[
√

15]. This is the motivation for ideal theory which we study in Chapter 3.


