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3.1. Introduction

Let us examine the ring of integers in the algebraic number field Q(+/15). This is simply Z[v/15] by
Theorem 2.24. Consider, in particular, the two factorizations of the algebraic integer 10 into products
of primes, given by

10=2-5=(5+V15)(5 — V15).

Clearly we do not have uniqueness of factorization into products of primes in this algebraic number
field.

The numbers v/5 and /3 are not in the algebraic number field Q(+/15), but let us introduce these
numbers into the argument nevertheless. Then

54+V15=v5(V5++3) and 5— 15 =5(v/5—V3),
and note that
2=(V5+V3)(V5—-V3).

Hence the two factorizations of the algebraic integer 10 are obtained by grouping the terms in the
“factorization”

10 = V5V5(V5 + V3)(V5 — V3)

in two different ways. It therefore appears that in the algebraic number field Q(v/15), the primes
are not necessarily the “building blocks”. It seems necessary to enlarge the field Q(\/ﬁ) to perhaps
Q(\/ﬁ, \/5) in order to include “ideal numbers” such as v/5 + /3.

Our hope is then the following: Suppose that there is no uniqueness of factorization of algebraic
integers into products of primes in an algebraic number field K. Is it then possible to extend K to
an algebraic number field L such that the algebraic integers in K factorize in some unique way into
products of algebraic integers in L? But then how do we attempt to find such an algebraic number
field L, if it exists? Or, returning to our example, what numbers should we add to Q(v/15)?

Let K be a given algebraic number field. Suppose that £ is a “common factor” to two relatively
prime algebraic integers in K. Let a denote the set of all algebraic integers in K that are “divisible”
by £. If a, B € a, then clearly Aa+ uf3 € a for all algebraic integers A and p in K. But this is precisely
the definition of an ideal in the ring of integers O of the algebraic number field K.

Let us consider an ideal a in an algebraic number field K. Suppose that we can find an algebraic
integer £, not necessarily in K, such that a is the set of all algebraic integers in K which are “divisible”
by &, and that & is in some sense unique, then we have characterized the missing algebraic integers in
K by means of ideals. In this case, the problem of factorization of algebraic integers then becomes
the problem of factorization of ideals. Our aim is to show that there is a satisfactory solution to the
latter. This is known as Kummer theory.
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24 3. IDEAL THEORY

REMARKS. (i) The origin of Kummer theory goes back to the famous Fermat’s last theorem, that
for all natural numbers n > 2, the diophantine equation

has no solutions in non-zero integers z, y and z.

(ii) The problem can be simplified somewhat. First of all, we may restrict the solutions to pairwise
coprime non-zero integers x, y and z. Secondly, it clearly suffices to study the problem when the
exponent n is equal to 4 or is an odd prime.

(iii) When n = 2, the solutions of the equation 2% + y? = 2? with pairwise coprime integers x, y
and z are given parametrically by

tr=7r2—s% 4y=2s, =+z=1r>+s>
or with x and y interchanged, where r and s are coprime integers and exactly one of them is odd.
Clearly it is sufficient to consider positive x, y and z, and not all three of them can be odd. Since
they are pairwise coprime, exactly one of them is even. This cannot be z, for otherwise

2=22+y?=2%2=0mod 4.
We may therefore assume that y is even, and that x and z are odd. In this case,
(3.1) v =22 -2t =(z+z)(z—x),

where y, z — x and z + x are all even and positive. Writing y = 2u, z + x = 2v and z — & = 2w, we
then have u? = vw. It is not difficult to see that v and w are coprime, so factorizing u, v and w into
prime factors, it is easily seen that both v and w are squares. Let v = 72 and w = s?. Then r and s
are coprime, and
z:v+w:r2+82, r=v—w=r?—s°
Furthermore, since both x and z are odd, precisely one of  and s is odd. Finally, it follows from
(3.1) that y? = (r® + s2)2 — (r? — 52)2 = 47?52, so that y = 2rs.
(iv) The case n = 4 of the problem can now be handled relatively easily by showing that the

equation

ot gyt =22
has no solutions in non-zero integers =, y and z. Suppose on the contrary that such a solution exists.
We may assume that z, y and z are all positive, and that z is minimal among all such solutions. Then
x, y and z are coprime. In view of (iii) above, there exist coprime r and s, precisely one of which is
even and such that

2?2 =7 —s% P =2s, z=r>+s°%

Furthermore, z and z are odd and y is even. Clearly

w2+ 5% = 7"2,
where z and s are coprime. In view of (iii) above, there exist coprime a and b, precisely one of which
is even and such that

r=a>—-b% s=2ab, r=da®+0b°
Substitution gives y? = 4ab(a? + b?). On writing y = 2k, we have
k* = ab(a® + b?).
It is not difficult to see that a, b and a? + b? are pairwise coprime. Hence there exist u, v and w such
that @ = u?, b = v? and a? 4+ b?> = w?, so that
ut + 0t = w?

Now w < a? + b? = r < z, contradicting the minimality of z.
(v) Summarizing the above, it now follows that Fermat’s last theorem is reduced to showing that
the diophantine equation

(3.2) P +yP = 2P
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for any fixed odd prime p has no solutions in pairwise coprime non-zero integers x, y and z. Suppose
on the contrary that such a solution to the equation (3.2) exists. Writing ¢ = e2™/P for a primitive
p-th root of unity, we obtain

(3.3) (@+y)@+Cy)... (z+ " y) = 2",
and factorization takes place in the cyclotomic number field Q(¢). If z and y are coprime, then the
factors on the left hand side of (3.3) have no common factors, and so “must” each be a p-th power.
However, this last step assumes uniqueness of factorization in a subtle way!

(vi) In Chapter 5, we establish a special case of Fermat’s last theorem due to Kummer — for primes
p which are “regular”.

(vii) The proof of Fermat’s last theorem in 1994 is due to Wiles with assistence from Taylor.

3.2. Ideals in an Algebraic Number Field

Let K be an algebraic number field, with ring of integers . A subset a of O is an ideal in K if
the following condition is satisfied: If a, 5 € a, then Ao + S € a for every A\, u € O.

We denote by (0) = {0} the zero ideal.

The following result can be considered a generalization of Theorem 2.22.

THEOREM 3.1. Suppose that K is an algebraic number field of degree n, with ring of integers O.
Then every non-zero ideal a in K has a Z-basis {a1,...,cn}.

ProOOF. We first of all show that if a has a Z-basis {a1, ..., a,}, then we must have r = n. Clearly
r < n. On the other hand, let {f1,...,0,} be an integral basis for O. If « € a is non-zero, then
afy,...,afl, € a and are linearly independent over Q, and hence also over Z. It follows that we
must have » = n. It remains to prove that a has a Z-basis. To do this, we imitate the proof of
Theorem 2.22. Let £ be the set of all bases of K whose elements are all in a. Then £ # (), for
{af1,...,ap8,} € L. By Theorem 2.21, Alay,...,ay] € Z\ {0} for every element {a1,...,a,} € L,
and so there exists {aq,...,a,} € £ for which |Afai,...,ay]| is minimal. This is a Z-basis for a by
similar arguments as in the proof of Theorem 2.22, and noting that by + ... + byau, € a for every
bi,....,bp €Z. O

Before we study some basic properties of ideals, we need to make a few definitions. Throughout,
K denotes an algebraic number field, with ring of integers O.

An ideal a in K is said to be generated by a, ..., as, denoted by a = (aq,...,as), if a consists of
all sums of the form A\jaq + ...+ Asaq, where Aq,...,\; € O.
Clearly, if {a1,...,a,} is a Z-basis for a, then a = (o, ..., o).

An ideal a in K is said to be principal if a is generated by a single element; in other words, if
a = {a} for some o € O.

Let a = {ay,...,a5) and b = (01,..., ) be ideals in K. By the product ab, we mean the ideal
<051ﬁ1, ey Oéiﬂj7 e ,Oésﬂt>.

Suppose that a and b are ideals in K. Then we say that a divides b, denoted by a | b, if there
exists an ideal ¢ such that b = ac. In this case, we also say that a is a factor of b.

THEOREM 3.2. Suppose that K is an algebraic number field. Then the following statements hold:
(i) If a and b are ideals in K satisfying a | b, then b C a.
(ii) A non-zero rational integer belongs to alt most a finite number of ideals in K.

(iii) Every non-zero ideal in K contains a non-zero rational integer.
(iv) A non-zero ideal in K has only a finite number of divisors.

PrOOF. (i) If a | b, then b = ac for some ideal ¢ in K. Let a = (a1,...,as) and ¢ = {(y1,..., 7).
Then every 8 € b is of the form

s t s t
B= 3 Njaiv; =Y [ Do | i

i=1 j=1 i=1 \j=1

where A\;; € O forevery i =1,...,sand j =1,...,t. Hence § € a, since clearly

t
Zx\iﬂjeD, 1=1,...,s.

Jj=1
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(ii) Suppose that a is a non-zero rational integer which belongs to an ideal a. We may assume,
without loss of generality, that a > 0. Let {w1,...,w,} be an integral basis for O. Then every o € O
can be written in the form o = ciwy + ... 4+ ¢ywy, where ¢1,...,¢, € Z. For every i = 1,...,n, we
can write ¢; = aq; + r;, where ¢;,r; € Z and 0 < r; < a. Then

a=(aq +r1)wr + ...+ (agn + ) wn = alqrwi + ... + guwn) + (r1ws + ... + Tpwp).

Clearly v = qiw1 + ...+ quwn, € O and § = riwy + ...+ rpw, € B, where B is a finite set. Suppose
now that a = (aq,...,as). Since a € a, we can write

a={aq,..., a5, a).
Using the above observation, we can write
a=(ay1 + f1,...,a7 + Bs,a),
where v1,...,vs € O and f1,...,8s € B. Clearly a = (f1,..., s, a), and so the conclusion follows.

(iii) Let o € a be non-zero, and let a®, ... a(™ be the K-conjugates of a, with the convention
that @ = o). Then a® ... a(™ is an algebraic integer and
N
a? o = ﬁ) e K.
e

Hence a® ... a(™ € O. Tt now follows that N(a) = aa® ...a™ ¢ a.
(iv) Let a € a be non-zero. By part (iii), N(a) € a. It follows from part (i) that N(«) belongs to
any divisor of a. The conclusion now follows from part (ii). O

To establish a theory of factorization, we make the following two definitions.

An ideal a in K is said to be maximal if a # O and satisfies the following condition: If b is an ideal
in K satisfying a C b C O, then b = a or b = O; in other words, there are no ideals in K strictly
between a and 9.

An ideal a in K is said to be prime if a # O and satisfies the following condition: If b and ¢ are
ideals in K satisfying bec C a, then b C a or ¢ C a.

THEOREM 3.3. Ewvery mazimal ideal in an algebraic number field K is prime.

PROOF. Suppose that a is maximal, and that b and ¢ are ideals in K satisfying bc C a. Suppose
further that b ¢ a. We need to show that ¢ C a. Since b Z a, there exists § € b such that
B¢ a Leta=(al,...,a). Then a G (ai,...,ay,f) € O. Since a is maximal, it follows that
(aq,...,a5,8) = O, and so there exist A1,..., A5, u € O such that

1l=MXag+...+ Asas + us.
Hence for every v € ¢, we have
v =71=(yA)ar +... 4+ (YAs)as + u(B7).
Since YA1, ..., YA, p € O and aq, ..., as, 07 € a, it follows that vy € a. O
Our aim in the next two sections is to give two proofs of the following important result.

THEOREM 3.4 (Unique factorization theorem). Suppose that K is an algebraic number field, with
ring of integers O. Suppose further that a is an ideal in K such that a # (0) and a # O. Then a can
be written as a product of prime ideals in K, uniquely up to the order of factors.

In Section 3.3, we give a classical proof based on the ideas of Hurwitz. In Section 3.4, we then give
a modern proof based on the ideas of Noether. We emphasize that Section 3.4 does not depend on
any result in Section 3.3 not established also within Section 3.4.

3.3. The Classical Proof of the Unique Factorization Theorem

The crucial step in the classical proof of the Unique factorization theorem is summarized by the
following result.

THEOREM 3.5. Suppose that K is an algebraic number field. Then for any non-zero ideal a in K,
there exists a non-zero ideal b in K such that ab = (a) for some a € Z.

An immediate consequence is the following result.
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THEOREM 3.6. Suppose that a, b and ¢ are ideals in an algebraic number field K. Then the following
statements hold:
(i) If ab = ac and a # (0), then b = c.
(ii) If 6 Ca, then a | b.

PROOF. By Theorem 3.5, there exists an ideal d in K such that ad = (a) for some a € Z.

(i) We have abd = acd, so that {(a)b = (a)c. The conclusion follows easily.

(ii) Since b C a, we have bd C ad. Let bd = (B1,...,5m). Then for every ¢ = 1,...,m, we have
B; € ad = (a), and so B; = A;a for some A; € O. It follows that b0 = (a) (A1, ..., Am) = ad(A1, ..., A\m),
and so b = a{Ay,..., \p), in view of part (i). O

We postpone the proof of Theorem 3.5 to the latter part of this section. To deduce Theorem 3.4,
we also need the following result.

THEOREM 3.7. Suppose that K is an algebraic number field. Then every ideal a in K such that
a £ 9 is contained in a maximal ideal in K.

PROOF. We assume that a is non-zero. Then it follows from Theorem 3.2(iv) that a has only a
finite number of divisors. Clearly any divisor b of a which is different from O has fewer divisors
than a. Among the divisors of a which are different from £, let p be one with the smallest number
of divisors. We now claim that p is maximal in K. Suppose not. Then there exists an ideal q in K
such that p S q G O. It then follows from Theorem 3.6(ii) that q | p, and so must have fewer divisors

than p. O

PROOF OF THEOREM 3.4. Let a be an ideal in K such that a # (0) and a # O.

We first of all exhibit a factorization of a into a product of maximal ideals. This is trivial if a is
maximal. If a is not maximal, then it follows from Theorem 3.7 that a C p; for some maximal ideal
p1 in K. It then follows from Theorem 3.6(ii) that p; | a, so that a = pya; for some ideal a; in K. If
a; is maximal, then we stop; otherwise we repeat the process with a replaced by ay, so that a; = poas,
where ps and ag are ideals in K and po is maximal. If a; is maximal, then we stop; otherwise we
repeat the process again, and so on. This process must stop, in view of Theorem 3.2(iv) and the

observation that a; ; as ; .... We can therefore conclude that a = p;...p,, a product of maximal
ideals in K. Furthermore, the ideals pq,...,p, are prime, in view of Theorem 3.3.

To prove uniqueness of factorization, suppose that

a:P1---Pr:CI1---qsv

where pq,...,p, are maximal, and hence prime, ideals in K and where ¢;,...,qs are prime ideals
in K. Clearly q1 | p1...pr. It therefore follows from Theorem 3.2(i) that p;...p, C gq;. Since q;
is prime, there exists some j = 1,...,r such that p; C q;. Renumbering pi,...,p, if necessary, we

may assume that p; C q;. Since p; is maximal and q; is prime, we must then have p; = q;. It then
follows from Theorem 3.6(i) that p2...p, = q2...qs. Repeating this argument, we clearly have r = s
and uniqueness of factorization. ()

REMARK. Note that in the proof of Theorem 3.4, we have not used the fact that the ideals qq, ..., g
are maximal, only that they are prime. However, we have used the fact that the ideals pq,...,p, are
maximal. This is clearly possible, since we have first established that the ideal a has a factorization
into a product of maximal ideals. What we have not studied so far is whether a prime ideal is also
maximal. In fact, we can deduce this fact from the proof of Theorem 3.4. Note that if p is a prime
ideal in K, then p = p; ...p,, where py, ..., p, are maximal, and hence prime, ideals in K. Uniqueness
of factorization then gives r = 1 and p = p; is maximal.

Our proof of Theorem 3.5 is based on the following generalization of Gauss’s lemma given in
Theorem 1.6.

THEOREM 3.8. Suppose that p(t) = apt? +...+ag and q(t) = B4t9+ ...+ [y are polynomials such
that o, B, # 0 and all coefficients are algebraic integers, and that r(t) = p(t)q(t) = v t" + ... +v0. If
d is an algebraic integer such that v /d is an algebraic integer for every k =0,...,r, then a;(3;/0 is
also an algebraic integer for everyi=20,...,p and j =0,...,q.

To establish this generalization, we need the following intermediate result.
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THEOREM 3.9. Suppose that f(t) = out™ + ...+ do is a polynomial such that 6,, # 0 and all
coefficients are algebraic integers.
(i) If f(p) =0, then every coefficient of the polynomial f(t)/(t — p) is an algebraic integer.
(i) If f(t) = dm(t — p1)...(t — pm), then for every k = 1,...,m, Smp1...px i an algebraic
integer.

PRrROOF. (i) Clearly d,,p is an algebraic integer by Theorem 2.18 — why? The result is obvious

in the case m = 1, so suppose that it is true for all polynomials of degree less than m. Now
g(t) = f(t) — 5ut™ 1(t — p) is of degree less than m, and g(p) = 0. By the induction hypothesis,
t
o) _ SO 5
t—p t—p

is a polynomial all of whose coefficients are algebraic integers. Clearly this is also the case for

@)/t = p).

(i) This follows by repeated application of part (i). O
ProOOF OoF THEOREM 3.8. Let us suppose that
pt) =apt—v1)...(t—vp) and q(t) =Bt —wi)...(t — wy).
Then the coefficients of the polynomial

r(t a3
% = %(t—Vl)...(t—yp)(t—wl)...(t—wq)
are algebraic integers, and so by Theorem 3.9(ii), every product of the form
(3.4) Oépfq Vmy -+ Vm,Wny -« Wn
is an algebraic integer. On the other hand, «; /¢y, and ;/8, are elementary symmetric functions in
v1,ldots, v, and in wy, ..., w, respectively. It follows that
@i _ apfy @i B
) 0 ap By

is a sum of terms of the form (3.4), hence an algebraic integer. O

PROOF OF THEOREM 3.5. Let a = {(aq,...,as). Foreach j = 1,...,s, let agl),...,oé") denote

the K-conjugates of a;; with ol = a;. Foreachi=1,...,n,let fi(t) = agi)t—i—. . :i—oz@ts, and write

J
F(t) = fi(t)... fa(t) = chtk-
k
Now each coefficient ¢; is a sum of products of algebraic integers ozy), symmetric with respect to
permutation of the variable i. Application of Theorem 1.8 shows that each ¢ is a rational integer.
Furthermore, F'(t) = f1(t)h(t), where h(t) = fa(t) ... fn(t) has coefficients which are algebraic integers
in K. Suppose that h(t) = fi1t + ...+ B,t™. Now let a be the greatest common divisor of all the ¢y,
and let b = (01,...,0m). We show that ab = (a). By Theorem 3.8, a;3;/a is an algebraic integer for
everyi=1,...,sand j = 1,...,m. Since ab = (a1 51,...,;3;,...,sBm), we must have ab C (a).
To show that (a) C ab, note that there exist rational integers xj such that

a = Z TECk.
k
Now each ¢y, is of the form

E Aijrai By,
1,

where A, € {0,1}. Hence a is of the form

Z (Z xk)\ijk> a;f;,
ij \ k
so that a € ab. The result follows. O
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3.4. The Modern Proof of the Unique Factorization Theorem
We proceed in a sequence of steps.

THEOREM 3.10. Suppose that a is an ideal in an algebraic number field K such that whenever
8,7 €O and By € a, we have 3 € a or v € a. Then a is mazximal in K.

PROOF. Let b be an ideal in K such that a ; b. We must show that b = ©. To do this, it is
sufficient to show that 1 € b. Recall Theorem 3.2(iii), that a contains a positive rational integer a.
Then, as in the proof of Theorem 3.2(ii), every element of O can be written in the form avy+ 3, where
v € 9 and § € B, where B is a finite set. Let o € b such that a € a. Then for every j € N, we have

o = ay; + B,
where v; € O and 3; € B. Hence o/ — a; € B, and can only have finitely many different values. It

follows that there exist k,¢ € N such that k£ > ¢ and

of —avy, = o — ay.

Note that af(a*~* — 1) = a¥ — af = a(yx — Y¢) € @, so that by the hypothesis on a, either af € a or
af=t —1 € a. Clearly of ¢ a, for otherwise o € a. Hence o* ¢ —1 € a C b. Since o € b, we conclude
that a* ¢ € b,andso 1 € b. O

THEOREM 3.11. Suppose that a is an ideal in an algebraic number field K such that a # (0) and
a # 9. Then there exist mazximal ideals py,...,p, in K such that p1...p, C a and a C p; for every
1=1,...,7.

PrROOF. If a is maximal, then there is nothing to prove. If a is not maximal, then it follows from
Theorem 3.10 that there exist 5,7 € O such that 8 € a, vy € a and By € a. If a = (ay,...,qs),
let b = {ai1,...,a,,0) and ¢ = (@1,...,a5,7). Then a C b, a C ¢ and bc C a. We now repeat this
procedure with b and ¢. By Theorem 3.2, a has only a finite number of divisors, and so is contained
in at most a finite number of ideals in K. Our procedure must therefore end, so that we end up with
maximal ideals. (O

For an algebraic number field K with ring of integers 9, and for every ideal a of K, we define
al={ye K:yaC DO}

THEOREM 3.12. Suppose that p is a mazimal ideal in an algebraic number field K. Then p—!
contains a number which is not an algebraic integer.

PRrROOF. Let a € p, with a # 0. By Theorem 3.11, we can choose a minimal natural number r
subject to the existence of maximal ideals py,...,p, in K such that p;...p, C (a) C p. Now p is
prime by Theorem 3.3, so that p; C p for some i = 1,..., 7. Without loss of generality, assume that
p1 C p. Since p; is maximal, we must have p; = p. By the minimality of r, we have pa...p, Z ().
It follows that there exists 8 € pa...p, \ (o). But Bp C {a), so that fa~tp C O and so Ba~! € p~ L.
Since 8 ¢ {a), we must have Sa=t ¢ O. O

Let A and B be sets. By the product AB, we mean the set of all finite sums of products a3, where
a € A and B € B. Note that this coincides with the definition of the product of two ideals in an
algebraic number field.

THEOREM 3.13. Suppose that p is a mazimal ideal in an algebraic number field K. Thenpp~! = O.

PROOF. Let a = pp~!. Then a is an ideal in K — why? Since 1 € p~!, we have p C a C O.
Since p is maximal in K, we must have a = O or a = p. Suppose on the contrary that a = p. Let
{wi,...,w,} be a Z-basis for p, and let a € p~! such that a ¢ O, in view of Theorem 3.12. Clearly for

each i =1,...,n, the product aw; € a = p, so that aw; = a;1w1 + ...+ ajnwn, where a;1,...,a;, € Z.
Then the system of simultaneous linear equations
(a11 — Oé)t1+ 1112t2 + ...+ alntn = O,

021t1+ (a22 — Oé)tg + ...+ agntn = O,

an1ti+ Apato + ...+ (CLnn — Oé)tn =0,
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has a non-trivial solution (w1, ...,wy), so that the determinant
a1l — « ai12 . QA1n
a921 a9 — O ... A92n
=0.
an1 An2 cee Qpp — @

It follows that « satisfies a monic polynomial equation with integral coefficients, and so is an algebraic
integer. This is a contradiction. Hence we must have a = £, and this completes the proof. (O

PROOF OF THEOREM 3.4. Let a be an ideal in an algebraic number field K such that a # (0) and
a#£90.

We first of all show that a can be written as a product of maximal ideals. By Theorem 3.11, there
exist maximal ideals pi,...p, in K, with minimal r, such that p;...p, C a and a C p; for every
i=1,...,r. We now proceed by induction on r. If r = 1, then a = p; and the proof is complete.
Suppose now that every ideal in K that satisfies Theorem 3.11 with fewer than r maximal ideals
is a product of maximal ideals. Since py...p, C a, we have py...p,—1 C ap, ' by Theorem 3.13.
Since a C p,, it is not difficult to see that ap, ! is an ideal in K. By the induction hypothesis, we
have ap, ! = q1...qx, where qi,...,q; are maximal ideals in K. By Theorem 3.13 again, we have
a=4dq...qxp,, and the result follows.

The uniqueness of factorization is now established in precisely the same way as in Section 3.3,
noting that every maximal ideal in K is prime. ()

3.5. Consequences of the Unique Factorization Theorem
Suppose that a and b are two ideals in an algebraic number field K. Then an ideal g in K is said
to be a greatest common divisor of a and b if
(i) g|aand g | b; and
(ii) if ¢’ is an ideal in K such that g’ | @ and ¢’ | b, then ¢’ | g.
In view of the result below, we write g = (a, b).

THEOREM 3.14. Suppose that a and b are two ideals in an algebraic number field K and not both
zero. Then (a,b) exists and is unique.

PROOF. Suppose that a = (aq,...,a,) and b = (B1,...,0s). Let us write

g:<a17"'aa7‘aﬁ17"'7ﬂs>-

We claim that g = (a,b). Clearly we have a C g and b C g, so that g | a and g | b by Theorem 3.6(ii).
Suppose now that g’ is an ideal in K such that g’ | a and g’ | 6. Then a C g’ and b C ¢ by
Theorem 3.2(i), so that g C g’, whence g’ | g by Theorem 3.6(ii). O

Recall that any ideal in an algebraic number field can be generated by a finite number of elements,
for instance, those in a Z-basis. We now show that, in fact, two generators will suffice.

THEOREM 3.15. Suppose that K is an algebraic number field. Suppose further that a is a non-zero
ideal in K, and that 0 # 3 € a. Then there exists « € a such that a = («, ).

We deduce this from the following intermediate result.

THEOREM 3.16. Suppose that a and b are non-zero ideals in an algebraic number field K, with ring
of integers O. Then there exists o € a such that ({(a)a=t,b) = O.

Note that if a € a, then (a) C a, so that a | (o). It follows that (a)a~! is the ideal r satisfying
ar = ().
PROOF OF THEOREM 3.15. Let b = (8)a~!. By Theorem 3.16, there exists @ € a such that

((a)a=1,(B)at) = O. Let ¢ and ? be ideals in K such that (o) = ac and () = ad. Then (c,0) = O,
so that ({(«), (8)) = a. This gives (o, 3) = a — see the proof of Theorem 3.14. O

PROOF OF THEOREM 3.16. Let pq,...,p, be the distinct prime ideals dividing b. Since every
prime ideal that divides b must also divide at least one of py,...,p,, it is sufficient to choose a € a
such that (aa=!,p;) = O for every i = 1,...,r. Since each p; is prime in K, it is also maximal in K.
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Hence it suffices to choose a € a such that aa™! # p; for every i = 1,...,r. In other words, it suffices
to choose a € a\ ap; for every ¢ = 1,...,r. For r = 1, this is trivial, for ap; ; a by uniqueness of
factorization. Suppose now that r > 1. For every i = 1,...,r, let

a;=apr...pi—1Pi+1.-.Pr.

Again a;p; g a;, so that there exists «; € a; \ a;p; for every ¢ = 1,...,r. Clearly «; € a for every
t=1,...,7r,s0 that « = a1 +...4+a, € a. On the other hand, for every i = 1,...,r, we have a & ap;,
for otherwise, noting that a;; € a; C ap; for every j # ¢, we would have

=0 — 01 — ... — Q1 — Qg1 — ... — Qp € 0ap;,
a contradiction. ()

We round off this section by establishing a result on the relationship between factorization of
elements and factorization of ideals.

THEOREM 3.17. Suppose that K is an algebraic number field, with ring of integers . Then
factorization of elements of O into primes is unique to within order and units if and only if every
ideal in K is principal.

We need the following intermediate result.

THEOREM 3.18. Suppose that K is an algebraic number field, with ring of integers . Suppose
further that ~y is a prime in 9.

(i) If every ideal in K is principal, then (7y) is prime.
(i) If factorization of elements of O into primes is unique to within order and units, then ()
18 prime.

PROOF. (i) Suppose that (7) = b1by, where by and bs are ideals in K. Since by and by are both
principal, there exist 81, 82 € O such that by = (81) and ba = (B2). Then (5152) = (v), so that 5102
and v are associates. Hence one of 31 or (35 is a unit, so that by = O or by = O.

(ii) We first of all show that if v | af, then v | @ or v | 8. If v | af3, then there exists § € O
such that v = af8. We now factorize each of «, § and § into a product of primes. Uniqueness of
factorization then gives the conclusion that the representation of a6 as a product of primes contains
an associate of . This must have come from the factorization of a or that of [, establishing our
claim. To show that () is prime, suppose that a and b are ideals in K such that ab C (vy) and
a ¢ (). We must then show that b C (7). Since a ¢ (7), there exists a; € a such that oy & (v), so
that vt @;. By Theorem 3.15, we have a = (a1, ) for some as € a. Let b = (81,...,8;s). Then

ab = <O[1ﬁ1, ey 041,85, 01261, ey a2ﬁ5> - <’y>
It follows that v | @1 3; and thus v | 3; for every j =1,...,s. Hence b C (v). O

PROOF OF THEOREM 3.17. (<) Assume first of all that every ideal in K is principal. Suppose
that « is an element of O, not zero or a unit, and has factorization in primes

a="71...Y =01...0s.

In view of Theorem 3.18(i), this gives rise to a factorization of («) into prime ideals

(@) = (1) () = (1) - (s)-

Uniqueness of factorization of ideals gives r = s and, after a suitable rearrangement, (vy;) = (J;) for
every i = 1,...,r. Hence the primes ~; and ¢; are associates for every i =1,...,7.

(=) Suppose now that factorization of elements in O into primes is unique to within order and
units. To prove that every ideal in K is principal, it clearly suffices to prove that every prime ideal
in K is principal. Let p be a prime ideal in K. By Theorem 3.2(iii), there exists a non-zero rational
integer N € p. Let N =1 ...7s, where 71,...,7s are primes in 9. Then (N) = (1) ... {(ys) Cp. It
follows that p | () for some v in ©. By Theorem 3.18(ii), the ideal () is prime. It follows from the
uniqueness of factorization of ideals that p = (7), so that p is principal. O
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3.6. Norm of an Ideal

Throughout this section, K is an algebraic number field, with ring of integers ©, and a is an ideal
in K.

We say that two numbers «, 8 € O are congruent modulo a, written a = S mod a, if « — 5 € a. It
is not difficult to show that congruence modulo a is an equivalence relation on 9. The equivalence
classes that arise are called residue classes modulo a.

THEOREM 3.19. Suppose that a is a mon-zero ideal in an algebraic number field K. Then the
number of distinct residue classes modulo a is finite.

PRrROOF. We use ideas in the proof of Theorem 3.2. Let a € a be a non-zero rational integer. Since
(a) C a, it follows that for every u,v € O that satisfy 4 = v mod (a), we must have u = v mod a.
Hence the number of distinct residue classes modulo a cannot exceed the number of distinct residue
classes modulo {a). On the other hand, every o € O can be written in the form a = ay + 3, where
v € O and 8 € B, where B is a finite set. It follows that the number of distinct residue classes
modulo (a) is finite. O

By the norm of an ideal a in an algebraic number field K, denoted by N(a), we mean the number
of distinct residue classes modulo a. Note that if O is the ring of integers in K, then N(a) = [O/al.

By a complete set of residues modulo a, we mean a set of N(a) elements in £ which are pairwise
incongruent modulo a, so that every element in £ is congruent to precisely one of these modulo a.

THEOREM 3.20. Suppose that a is a non-zero ideal in an algebraic number field K, and that
{a1,...,an} is a Z-basis for a. Then

[N

N(a) =

)

A[alv s 7an}
A

where A is the discriminant of K, i.e. the discriminat of any integral basis of the ring of integers .

To establish Theorem 3.20, we first of all exhibit the existence of a Z-basis for a of a particular
kind.

THEOREM 3.21. Suppose that {w1,...,wn} s an integral basis for the ring of integers O of an
algebraic number field K. Then every non-zero ideal a of K has a Z-basis {a1,...,a,} of the form

Q] = a11W1,

Qo = A21W1 + G22wW2,

Qp = Gp1Wi + Apaw2 + ... + AppWn,
where the coefficients a;; € Z and ay; > 0 for every i =1,...,n.

PRrROOF. Clearly aw; € a for every non-zero rational integer a € a and every ¢ = 1,...,n. Let an
integer m satisfying 1 < m < n be fixed. Clearly the set

(3.5) {awi1 + ...+ amwm €a:ar,...,am € Z, ay >0}

is non-empty, since a contains a non-zero rational integer a, and so aw,, and —aw,, are in a. Let a,,
be the element in the set (3.5) with minimal a,,, and write

Dy, = A 1W1 + - - - + G Win -

We claim that the set {a,...,a,} has the required properties. Note, first of all, that {aq,...,an}
is a basis for K, since the determinant

a11
az1 a2

£ 0.

an1 Aap2 coe Qpp
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We now show that {aq,...,a,} is a Z-basis for a. Let o € a. Then there exists by, ...,b, € Z such
that a = biw; + ... + by,w,. Consider the number b,,. There exist integers h,, and r, such that
bp, = apnhp + 1y and 0 < 7, < apy. Then there exist bY, ..., b/, _; € Z such that

a— hpo, =blw +...+ b;l_lwn_l + rpwy, € a.
If r,, > 0, then 7, < a,, contradicts the minimality of a,,. It follows that r, = 0, and so
a—hpay =bjwy + ...+ bl _jw,_1.
Repeating this procedure, we conclude that there exist h,_1,b7,...,b!!_5 € Z such that
a—hpoy —hp 10,1 =blw; + ...+ b _qw, .

And so on. After finitely many repetitions of this procedure, we conclude that « can be expressed as
a linear combination of ajy, ..., a, with rational integer coefficients. This expression is unique, since
{ai,...,a,} is a basis for K. O

Proor or THEOREM 3.20. Note that a consequence of the proof of Theorem 3.1 is that the
discriminant of any Z-basis for a is the same, so that we may take {aq,...,an} to be defined in
Theorem 3.21. Then by Theorem 2.19,

a1
az1  G22
A[ah 7an] = A[wla 7wn]7
An1 an2 e Apn
so that Alay, ..., a,] = (a11 ... an,)?A. To complete the proof, it is therefore sufficient to show that

N(a) = aqy ... Gny; in other words, that the number of distinct residue classes modulo a is a11 ... anyp.
We achieve this by showing that the numbers riwi + ... + rpw,, where r; € Z and 0 < r; < a4 for
every i = 1,...,n, form a complete set of residues modulo a. We therefore need to show that (i) they
are pairwise incongruent modulo a; and (ii) every element in O is congruent to one of these numbers
modulo a.

(i) Suppose that

/ / 1 1
rwi+ ...+ rw, =rjwi + ...+ ryw, mod a,

!/ 1 .
where 0 < r, 7/ < a;; for every i =1,...,n. Then

(ry—=rDwi + ...+ (], — rwy € a.

!/
n

1

We may assume, without loss of generality, that r/, > r//. Then 0 < r/, — r!! < apy, and so r], = r/!

in view of the minimality of a,. Thus

(ry—rNwr +...+(rh_y =7 _wn_1 € a.

Repetition of this argument gives r; = r/ for every i = 1,...,n.

(ii) Every number a € 9 is of the form o = byjw; +. ..+ b,w,, where the coefficients by, ..., b, € Z.
Let b, = annhpn + rn, where hy,, 7, € Z and 0 < 1, < anp. Then there exist b),...,b,_; € Z such
that

a— hpoy =bjwy + ...+ bl _jwp_1 + Trwn.
Repeating this procedure, we conclude that there exist hq,..., h, € Z such that
a—hpay — ... — hiag =rqwy + ... + rpwa,
where 0 < r; < ay; for every i =1,...,n. Clearly a = riw; + ... + rwy, mod a. O
It is now easy to deduce the following result.

THEOREM 3.22. Suppose that K is an algebraic number field, and that the ideal a = {a) # (0) is
principal in K. Then N(a) = |[N(a)|.
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PROOF. Let {w1,...,w,} be a Z-basis for O. Then clearly {aws,...,aw,} is a Z-basis for a = («).
By Theorem 3.20,
N(g) = |Alowss s awn [ _ (@ Y W a0 o)
Alwr, ... wy) ()]

J
as required. ()

A useful property of the norm is the following.

THEOREM 3.23. Suppose that a and b are non-zero ideals in an algebraic number field K. Then
N(ab) = N(a)N(b).

To establish this, we need the following result on congruences.

THEOREM 3.24. Suppose that a is a non-zero ideal in an algebraic number field K, and o, € O,
the ring of integers in K.
(i) Suppose further that ({«),a) = O. Then the congruence a& = 3 mod a has a solution & € O
which is unique modulo a.
(ii) Suppose further that ({«),a) = 0. Then the congruence o€ = 8 mod a has a solution £ € O
if and only if 3 € 0. If there is a solution, then it is unique modulo 9~ 'a.

PROOF. (i) Let {&1,...,&n(a)} be a complete set of residues modulo a. Since ({(a), a) = O, the set

{aky,..., afN(a)} is also a complete set of residues modulo a. To see this, note that if a§; = a&; mod a,
then a(& — &) € a, so that a | (a)(& —&;). The condition ({c),a) = O then ensures that a | (& —&;),
so that § — ¢&; € a, whence & = §; mod a. From the set {a&,...,afy()}, clearly precisely one

element is congruent to S modulo a.

(ii) Suppose first of all that a& = S mod a. Then af — 3 € a C ?. Since 0 = ({a),a), we must
have 0 | (@), so that a € 9, and so a& € 0, whence § € 0. Next, suppose that 3 € 2. Recall that
0 = (a,ai,...,as), where (a,...,as) = a. It follows that there exists af € (a) and A € a such
that 8 = a& + \. Clearly we have a =  mod a. Finally suppose that af’ = af” = # mod a. Then
a| (a){¢ —¢&")y. If a =0a; and () = day, where a; and ag are ideals in K, then ay | ag(¢’ — £").
Since (a1, az) = O, we must have a; | (¢’ — &), and so ¢ =& mod a;. O

PROOF OF THEOREM 3.23. By Theorem 3.16, there exists v € a such that ({(y)a=!,b) = O, so
that ((y),ab) = a. Let {a1,...,an(@)} and {B1,...,Bne)} be complete sets of residues modulo a
and b respectively. We claim that the numbers a; +v0;, where i =1,...,N(a) and j =1,..., N(b),
form a complete set of residues modulo ab. We therefore have to show that (i) these numbers are
pairwise incongruent modulo ab; and (ii) every integer in K is congruent to one of these numbers
modulo ab. The proof will then be complete since a complete set of residues modulo ab has precisely
N(ab) elements.

(i) Let o/, a” € {ou,...,an(@} and 3,8” € {B1,..., BN }- Suppose that

o +~8 =" + 6" mod ab.

Then clearly o/ ++v6' = o' +v4” mod a. Since v € a, we must have o/ = o mod a, and so o’ = .
Then 73" = v6” mod ab, so that ab | (v){(3 — 5”). Write (v) = ac. Then b | (8" — 5”). Since
(c, ) = O, it follows that b | (5’ — 3”), and so 8’ = 3" mod b, whence ' = 3".

(ii) Let « be an integer in K. Choose o; = o mod a. Then the congruence v§ = a — «; mod ab
has a solution ¢ by Theorem 3.24(ii). Moreover, £ can be chosen uniquely modulo a~tab, so that ¢
is one of the 3;. Clearly a = a; +v8+ j mod ab. O

We complete this chapter by making a few simple deductions from earlier results.

THEOREM 3.25. Suppose that K is an algebraic number field.
(i) If a is an ideal in K and N(a) is prime, then a is a prime ideal.
(ii) If a is a non-zero ideal in K, then N(a) € a.
(iii) There are only a finite number of ideals in K of a given norm.
(iv) If a is a prime ideal in K, then a contains exactly one rational prime p, and N(a) = p™ for
some natural number m < n = [K : Q).
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PROOF. (i) This is obvious from Theorem 3.23.
(i) If {a1, ..., an(q)} is a complete set of residues modulo a, then so is the set {1 +1, ..., an)+1}.
Then

ar+...+ayn@) = (a1 +1)+...+ (an(@) + 1) mod a.

The result follows immediately.

(iii) Note that the norm is a non-zero rational integer and quote Theorem 3.2(ii).

(iv) Note that N(a) # 1, since a # O. It follows that N(a) = pi™ ...p"r, where p1,...,p, are
rational primes and mq,...,m, € N. Since N(a) € a, we have a | (p1)™ ... (p,)™. We therefore
conclude that a | {p) for some rational prime p. Suppose now that p’ and p” are distinct rational
primes and p’,p” € a. Since there exists rational integers u and v such that 1 = up’ + vp” € a, it
follows that a = O, a contradiction. Hence a contains precisely one rational prime p. Since (p) C a,
we must have N(a) | N((p)) = p", and the last assertion follows. O



