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4.1. Fractional Ideals

Suppose that K is an algebraic number field, with ring of integers O. A subset g of K is a fractional
ideal in K if the following two conditions are satisfied:

(i) If α, β ∈ g, then λα + µβ ∈ g for every λ, µ ∈ O.
(ii) There exists m ∈ N such that mα ∈ O for every α ∈ g.

Note that ideals in K are also fractional ideals in K, so that this is a generalization of the notion of
ideals in K.

Theorem 4.1. Every fractional ideal g in an algebraic number field K is of the form

g = 〈α1, . . . , αs〉, α1, . . . , αs ∈ g.

In other words, g is the range of values of a linear form λ1α1 + . . . + λsαs, where λ1, . . . , λs ∈ O, the
ring of integers in K, and α1, . . . , αs ∈ g.

Proof. Let m ∈ N be chosen to satisfy (ii) above. Then the set a = {mα : α ∈ g} is an ideal in
K. Let a = 〈γ1, . . . , γs〉. Clearly g = 〈γ1/m, . . . , γs/m〉. ©

If g = 〈α1, . . . , αs〉, then we say that the fractional ideal g is generated by α1, . . . , αs. We also
say that a fractional ideal in an algebraic number field K is principal if it is generated by a single
element.

We can also define Z-basis for fractional ideals in an algebraic number field in the obvious way. In
the notation of the proof of Theorem 4.1, if {γ1, . . . , γs} is a Z-basis for a, then {γ1/m, . . . , γs/m} is
obviously a Z-basis for g.

Suppose that g = 〈α1, . . . , αs〉 and h = 〈β1, . . . , βt〉 are fractional ideals in an algebraic number
field K. Then the fractional ideal

gh = 〈α1β1, . . . , αiβj , . . . , αsβt〉
is called the product of g and h.

It is obvious that every non-zero fractional ideal g in an algebraic number field K can be made
into an ideal in K by multiplication by a suitable ideal 〈m〉, where m ∈ N. Consequently, in view
of Theorem 3.5, g can be made into a principal ideal in K. The result below follows in analogy to
Theorem 3.6(i).

Theorem 4.2. Suppose that g, h and k are fractional ideals in an algebraic number field K. Suppose
further that gh = gk and g %= 〈0〉. Then h = k.

Theorem 4.3. Suppose that g and h are fractional ideals in an algebraic number field K. Suppose
further that g %= 〈0〉. Then there exists a unique fractional ideal r such that gr = h.

We call the fractional ideal r in Theorem 4.3 the quotient of h and g, and write r = h/g.

37



38 4. CLASS GROUP AND CLASS NUMBER

Proof of Theorem 4.3. We choose a non-zero ideal a in K such that ag = 〈m〉, where m ∈ N,
is principal. If ah = 〈ρ1, . . . , ρt〉, let r = 〈ρ1/m, . . . , ρt/m〉. Then ah = 〈m〉r = agr, so that h = gr by
Theorem 4.2. To show uniqueness, note that if h = gs for some fractional ideal s in K, then gr = gs,
and so r = s by Theorem 4.2. ©

A consequence of the above is that every fractional ideal in an algebraic number field K can be
expressed as the quotient of two relatively prime ideals in K.

Suppose that g and h are fractional ideals in an algebraic number field K. We say that g divides h,
denoted by g | h, if h/g is an ideal in K.

Suppose that g is a fractional ideal in an algebraic number field K. Suppose further that g = a/b,
where a and b are relatively prime ideals in K. We define the norm of g, denoted by N(g), by
N(g) = N(a)/N(b). It is clear that this remains valid even when a and b are not relatively prime.
Note also that N(gh) = N(g)N(h) for all fractional ideals g and h in K. It is also not difficult to
establish the following analogue of Theorem 3.20.

Theorem 4.4. Suppose that g is a non-zero fractional ideal in an algebraic number field K, and
that {α1, . . . , αn} is a Z-basis for g. Then

N(g) =
∣∣∣∣
∆[α1, . . . , αn]

∆

∣∣∣∣

1
2

,

where ∆ is the discriminant of K.

4.2. Some Geometric Input

Whereas everything up to now has depended on the concept of divisibility and algebraic processes,
the concept of magnitude now plays a crucial rôle in the further development of algebraic number
theory. We next establish a result related to Minkowski’s work on the geometry of numbers.

Theorem 4.5 (Minkowski’s theorem on linear forms). Suppose that

Fi(x) =
n∑

j=1

aijxj ,

where i = 1, . . . , n and x = (x1, . . . , xn), are linear forms with real coefficients aij and with non-zero
determinant D = |(aij)|. Suppose further that c1, . . . , cn are positive numbers such that c1 . . . cn ! |D|.
Then there exists x ∈ Zn, different from 0 = (0, . . . , 0), such that for every i = 1, . . . , n, we have

(4.1) |Fi(x)| " ci.

Proof. We establish he result by contradiction.
(i) Consider a parallelotope

P(0) = {x ∈ Rn : |Fi(x)| " 1
2ci, i = 1, . . . , n},

centred at 0. For b = (b1, . . . , bn) ∈ Zn, let

(4.2) P(b) = {x ∈ Rn : |Fi(x− b)| " 1
2ci, i = 1, . . . , n}.

Note that P(b) is obtained from P(0) through a translation by a vector b. Suppose, on the contrary,
that no x ∈ Zn such that x %= 0 satisfies (4.1) simultaneously for every i = 1, . . . , n. We claim
that no two parallelotopes of the form (4.2), where b ∈ Zn, have a point in common. Indeed, if
x ∈ P(b′) ∩ P(b′′), then it follows from

− 1
2ci " Fi(x− b′) " 1

2ci and − 1
2ci " Fi(x− b′′) " 1

2ci

that |Fi(b′−b′′)| " ci for every i = 1, . . . , n. Consequently, b′−b′′ satisfies (4.1) simultaneously for
every i = 1, . . . , n.

(ii) Let V denote the n-dimensional volume of P(0), and hence of P(b) for every b ∈ Zn. We
next show that V " 1. Let c > 0 be a constant such that P(0) ⊆ [−c, c]n. Consider a set of
the form [−L, L]n, where L ∈ N is “large” compared to c. The number of integer lattice points
b ∈ Zn ∩ [−L, L]n is precisely (2L + 1)n. Also, the total n-dimensional volume of P(b) over these
values of b does not exceed the volume of [−L− c, L + c]n. In other words, we must have

(4.3) (2L + 1)nV " (2L + 2c)n.
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The inequality V " 1 follows immediately on dividing both sides of (4.3) by Ln and letting L →∞.
(iii) We next express V in terms of the determinant D and c1, . . . , cn. We have

V =
∫

. . .

∫

Fi(x)! 1
2 ci

i=1,...,n

dx1 . . .dxn =
1
|D|

∫
. . .

∫

|yi|! 1
2 ci

i=1,...,n

dy1 . . .dyn =
c1 . . . cn

|D| .

It now follows that c1 . . . cn " |D|.
(iv) To obtain a contradiction, we need to deduce that c1 . . . cn < |D|. To achieve this, we apply

continuity arguments. Suppose that no x ∈ Zn such that x %= 0 satisfies (4.1) simultaneously for
every i = 1, . . . , n. By continuity, there exist εi > 0, i = 1, . . . , n, such that no x ∈ Zn such that x %= 0
satisfies |Fi(x)| " ci + εi simultaneously for every i = 1, . . . , n. Hence (c1 + ε1) . . . (cn + εn) " |D|.
This gives c1 . . . cn < |D|, and we have the required contradiction. ©

We use a somewhat modified version of this result.

Theorem 4.6. Suppose that the linear forms

(4.4) Fi(x) =
n∑

j=1

aijxj ,

where i = 1, . . . , n and x = (x1, . . . , xn), and positive numbers c1, . . . , cn satisfy the following four
conditions:

(i) The coefficients aij are complex and the determinant D = |(aij)| is non-zero.
(ii) If one of the linear forms is not real, then its complex conjugate, i.e. the linear form obtained

by replacing every coefficient by its complex conjugate, also occurs among the collection.
(iii) If the linear forms Fα(x) abd Fβ(x) are complex conjugates, then cα = cβ.
(iv) We have c1 . . . cn ! |D|.

Then there exists x ∈ Zn, different from 0 = (0, . . . , 0), such that |Fi(x)| " ci for every i = 1, . . . , n.

Proof. We construct real linear forms from the system (4.4), where i = 1, . . . , n. If Fi(x) is a real
linear form, then we write Gi(x) = Fi(x), and let di = ci. If Fα(x) is not real, let Fβ(x) denote its
complex conjugate, and we write

Gα(x) =
Fα(x) + Fβ(x)

2
and Gβ(x) =

Fα(x)− Fβ(x)
2i

,

and let dα = dβ = cα/
√

2. The system of real linear forms Gi(x), where i = 1, . . . , n, now has
determinant D′ satisfying |D′| = 2−t|D|, where t denotes the number of pairs of complex conjugate
forms Fi(x). Clearly d1 . . . dn ! |D′|. It now follows from Theorem 4.5 that there exists x ∈ Zn,
different from 0 = (0, . . . , 0), such that |Gi(x)| " di for every i = 1, . . . , n. Clearly, if Fα(x) is not
real, with conjugate form Fβ(x), we have

|Fα(x)|2 = |Gα(x)|2 + |Gβ(x)|2 " d2
α + d2

β = c2
α.

The result follows. ©

4.3. Ideal Classes

Suppose that K is an algebraic number field. Two fractional ideals a and b in K are said to be
equivalent, denoted by a ∼ b, if there is a principal fractional ideal 〈w〉 %= 〈0〉 such that a = 〈w〉b.

We immediately have the following result.

Theorem 4.7. Suppose that a, b and c are non-zero fractional ideals in an algebraic number field K.
Then

(i) a ∼ a;
(ii) if a ∼ b, then b ∼ a;
(iii) if a ∼ b and b ∼ c, then a ∼ c;
(iv) if a ∼ b, then ac ∼ bc; and
(v) if ac ∼ bc and c %= 〈0〉, then a ∼ b.
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Conditions (i)–(iii) above imply that the equivalence of non-zero fractional ideals in an algebraic
number field is an equivalence relation. The equivalence classes are called the ideal classes. Further-
more, all non-zero principal fractional ideals are equivalent to each other. They form the principal
class.

On the other hand, it follows from conditions (iv) and (v) above that the equivalence classes, or
ideal classes, can be made into an abelian group in the following way: If [a] and [b] denote respectively
the idral classes containing the fractional ideals a and b, then [a][b] = [ab]. This abelian group is
called the class group of the algebraic number field K. The unit element is clearly the principal class.

Remark. The passage from ideals to ideal classes is the analogue of the passage from integers to
residue classes with respect to a given modulus. The collection of all non-zero fractional ideals in an
algebraic number field K forms an infinite abelian group F under multiplication. Clearly F contains
the subgroup P of all non-zero principal fractional ideals in K. The class group of K is in fact the
factor group F/P, whose elements are the different cosets consisting of fractional ideals in K which
differ only by an element of P, i.e. a non-zero principal fractional ideal in K.

The class number h of an algebraic number field K is the order of the class group of K.
Our main task in this section is to establish the following important result.

Theorem 4.8. Suppose that K is an algebraic number field. Then every ideal class of K contains
an (integral) ideal a such that

(4.5) N(a) " |∆| 12 ,

where ∆ is the discriminant of K. Furthermore, the class number H of K is finite.

Proof. For any ideal class A of K, let b be an (integral) ideal in the ideal class A−1, and let
{β1, . . . βn} be a Z-basis of b. For every j = 1, . . . , n, denote by β(1)

j , . . . , β(n)
j the K-conjugates of βj ,

with the convention that βj = β(1)
j . Then by Theorem 4.6, there exists x = (x1, . . . , xn) ∈ Zn such

that x %= 0 and

|w(i)| =

∣∣∣∣∣∣

n∑

j=1

β(i)
j xj

∣∣∣∣∣∣
" |∆[β1, . . . βn]| 1

2n

simultaneously for every i = 1, . . . , n. It follows from Theorem 3.20 that the number

w = β1x1 + . . . + βnxn

satisfies

(4.6) |N(w)| = |w(1) . . . w(n)| " |∆[β1, . . . , βn]| 12 = N(b)|∆| 12 .

Clearly w ∈ b, so that 〈w〉 ⊆ b and so b | 〈w〉. It follows that 〈w〉 = ab for some non-zero ideal a
in K. Clearly ab ∼ 〈1〉, so that a ∈ A. By Theorem 3.22, we have N(a)N(b) = N(〈w〉) = |N(w)|, so
it follows from (4.6) that N(a) " |∆| 12 , proving the first assertion. To complete the proof, recall first
Theorem 3.25(iii), that there are only finitely many ideals in K of a given norm. Since these norms
are natural numbers, there are only finitely many ideals a in K that satisfy (4.5). Hence the number
h of distinct ideal classes in K is finite. ©

4.4. Consequences of the Finiteness of the Class Number

A little basic group theory enables us to establish the following result.

Theorem 4.9. Suppose that K is an algebraic number field with class number h, and that a is an
ideal in K. Then

(i) ah is principal; and
(ii) a is principal if aq is principal for some natural number q prime to h.

Proof. (i) Since h is the order of the class group of K, we have [a]h = [O], where O is the ring
of integers in K and [O] denotes the principal class. Hence [ah] = [O], so that ah ∼ O, and so ah is
principal.

(ii) There exist u, v ∈ Z such that qu + hv = 1. If aq is principal, then [a]q = [O], so that

[a] = [a]qu+hv = ([a]q)u([a]h)v = [O]u[O]v = [O],
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and so a is principal. ©

The last result in this chapter is a precise description of the brief discussion in Section 3.1.

Theorem 4.10. Suppose that K is an algebraic number field, with ring of integers O. Suppose also
that A denotes the ring of all algebraic integers. For every non-zero ideal a in K, there exists κ ∈ A
such that if O′ is the ring of integers of the extended algebraic number field K(κ), then

(i) O′〈κ〉 = O′a;
(ii) O′〈κ〉 ∩O = a; and
(iii) A〈κ〉 ∩K = a.

Furthermore, κ is unique to within units in A.

Proof. By Theorem 4.9(i), the ideal ah is principal. Suppose that ah = 〈w〉, where w ∈ O. Let κ
be a root of the polynomial th − w. Then κ ∈ A by Theorem 2.18, and so κ ∈ O′ also. Hence O′κ is
an ideal in K(κ). Note now that viewed within K(κ), we have

(O′〈κ〉)h = O′〈κ〉h = O′〈w〉 = O′ah = (O′a)h.

The assertion (i) now follows from uniqueness of factorization in K(κ).
On the other hand, assertion (ii) clearly follows from assertion (iii), so we now prove the latter. The

inclusion a ⊆ A〈κ〉 ∩K is obvious. To prove the opposite inclusion, suppose now that α ∈ A〈κ〉 ∩K.
Since α ∈ A〈κ〉, there exists λ ∈ A such that α = λκ, so that αh = λhκh = λhw. In particular, we
have λh = αh/w ∈ K, so that λh ∈ A ∩K = O. Note also that α ∈ A ∩K = O. To summarize, we
have

αh = λhw, α, λh, w ∈ O.

Taking ideals in O, we obtain

〈α〉h = 〈λh〉〈w〉 = 〈λh〉ah.

It follows immediately from uniqueness of factorization in O that 〈λh〉 = bh for some ideal b in O, so
that 〈α〉h = bhah, and so 〈α〉 = ba. Hence α ∈ a, and this completes the proof of assertion (iii).

Finally, suppose that γ ∈ A and the ring of integers O′′ of the extended algebraic number field K(γ)
satisfy conditions analogous to (i), (ii) and (iii) above. In view of Theorem 3.15, write a = 〈α, β〉,
where α, β ∈ O. Then O′′〈γ〉 = O′′〈α, β〉, and so γ = λα + µβ for some λ, µ ∈ O′′ ⊆ A. But then
from (iii), we have α = ξκ and β = ηκ for some ξ, η ∈ A. Hence we have γ = λξκ + µηκ, and so κ | γ
in A. Interchanging the roles of κ and γ, we have γ | κ in A. Hence κ and γ are associates in A. ©


