INTRODUCTION TO
LEBESGUE INTEGRATION

W W L CHEN

(© W W L Chen, 1983, 2008.
This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990.
It is available free to all individuals, on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied, with or without permission from the author.
However, this document may not be kept on any information storage and retrieval system without permission

from the author, unless such system is not accessible to any individuals other than its owners.

Chapter 1

THE REAL NUMBERS AND COUNTABILITY

1.1. Introduction

We shall only give a brief introduction of the basic properties of the real numbers, and denote the set of
all real numbers by R.

The first set of properties of R is generally known as the Field axioms. We offer no proof of these
properties, and simply accept them as given.

FIELD AXIOMS.

(A1) For every a,b € R, we have a+b € R.

(A2) For every a,b,c € R, we have a + (b+c¢) = (a +b) + c.

(A3) For every a € R, we have a + 0 = a.

(A4) For every a € R, there exists —a € R such that a + (—a) = 0.
(A5) For every a,b € R, we have a +b="0b+a.

(M1) For every a,b € R, we have ab € R.

(M2) For every a,b,c € R, we have a(bc) = (ab)c.

(M3) For every a € R, we have al = a.

(M}) For every a € R such that a # 0, there exists a=' € R such that aa™ = 1.
(M5) For every a,b € R, we have ab = ba.

(D) For every a,b,c € R, we have a(b+ ¢) = ab+ ac.

REMARK. The properties (A1)—(A5) concern the operation addition, while the properties (M1)—(M5)
concern the operation multiplication. In the terminology of group theory, we say that the set R forms
an abelian group under addition, and that the set of all non-zero real numbers forms an abelian group
under multiplication. We also say that the set R forms a field under addition and multiplication.
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The set of all real numbers also possesses an ordering relation, so we have the Order Axioms.

ORDER AXIOMS.
(O1) For every a,b € R, exactly one of a < b, a =5, a > b holds.
(02) For every a,b,c € R satisfying a > b and b > ¢, we have a > c.
(03) For every a,b,c € R satisfying a > b, we have a + ¢ > b+ c.
(04) For every a,b,c € R satisfying a > b and ¢ > 0, we have ac > be.

An important subset of the set R of all real numbers is the set
N=1{1,2,3,..}

of all natural numbers. However, this definition does not bring out some of the main properties of the
set N in a natural way. The following more complicated definition is therefore sometimes preferred.

DEFINITION. The set N of all natural numbers is defined by the following four conditions:
(N1) 1eN.
(N2) If n € N, then the number n + 1, called the successor of n, also belongs to N.
(N3) Every n € N other than 1 is the successor of some number in N.

(WO) Every non-empty subset of N has a least element.

REMARK. The condition (WO) is called the Well-ordering principle.

To explain the significance of each of these four requirements, note that the conditions (N1) and
(N2) together imply that N contains 1,2,3,.... However, these two conditions alone are insufficient to
exclude from N numbers such as 5.5. Now, if N contained 5.5, then by condition (N3), N must also
contain 4.5,3.5,2.5,1.5,0.5,—-0.5,—1.5,—-2.5,..., and so would not have a least element. We therefore
exclude this possibility by stipulating that N has a least element. This is achieved by the condition
(WO).

It can be shown that the condition (WO) implies the Principle of induction. The following two forms
of the Principle of induction are particularly useful.

PRINCIPLE OF INDUCTION (WEAK FORM). Suppose that the statement p(.) satisfies the
following conditions:

(PIW1) p(1) is true; and

(PIW2) p(n+ 1) is true whenever p(n) is true.

Then p(n) is true for every n € N.

PRINCIPLE OF INDUCTION (STRONG FORM). Suppose that the statement p(.) satisfies the
following conditions:

(PIS1) p(1) is true; and

(PIS2) p(n+ 1) is true whenever p(m) is true for all m < n.
Then p(n) is true for every n € N.

1.2. Completeness of the Real Numbers
The set Z of all integers is an extension of the set N of all natural numbers to include 0 and all numbers
of the form —n, where n € N. The set Q of all rational numbers is the set of all real numbers of the

form pg~!, where p € Z and ¢ € N.

We see that the Field axioms and Order axioms hold good if the set R is replaced by the set Q. On
the other hand, the set Q is incomplete. A good illustration is the following result.
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THEOREM 1A. No rational number x € Q satisfies £2 = 2.

PROOF. Suppose that pg~! has square 2, where p € Z and ¢ € N. We may assume, without loss of
generality, that p and ¢ have no common factors apart from +1. Then p? = 2¢? is even, so that p is
even. We can write p = 2r, where r € Z. Then ¢? = 2r? is even, so that ¢ is even, contradicting that
assumption that p and ¢ have no common factors apart from £1. O

It follows that the real number we know as v/2 does not belong to Q. We shall now discuss a property
that distinguishes the set R from the set Q.

DEFINITION. A non-empty set S of real numbers is said to be bounded above if there exists a number
K € R such that z < K for every x € S. The number K is called an upper bound of the set S. A
non-empty set S of real numbers is said to be bounded below if there exists a number k € R such that
x > k for every x € S. The number k is called a lower bound of the set S. Furthermore, a non-empty
set S of real numbers is said to be bounded if it is bounded above and below.

EXAMPLE 1.2.1. The set N is bounded below but not bounded above. See Section 1.3 for further
discussion.

EXAMPLE 1.2.2. The set Q is neither bounded above nor bounded below.
EXAMPLE 1.2.3. The set {z € R: —1 < & < 1} is bounded.

The axiom that distinguishes the set R from the set Q is the Completeness axiom. It can be stated
in many equivalent forms. Here we state it as the Axiom of bound.

AXIOM OF BOUND (UPPER BOUND). Suppose that S is a non-empty set of real numbers and
S is bounded above. Then there is a number M € R such that

(B1) M s an upper bound of S; and

(B2) given any € > 0, there exists s € S such that s > M — e.

REMARK. Note that (B2) essentially says that any real number less than M cannot be an upper bound
of S. In other words, M is the least upper bound of S. Note the important point here that the number
M is a real number.

The axiom can be stated in the obvious alternative form below.

AXIOM OF BOUND (LOWER BOUND). Suppose that S is a non-empty set of real numbers and
S is bounded below. Then there is a number m € R such that

(b1) m is a lower bound of S; and

(b2) given any € > 0, there exists s € S such that s < m + €.

DEFINITION. The real number M satisfying (B1) and (B2) is called the supremum (or least upper bound)
of S and denoted by M = sup S. The real number m satisfying (b1) and (b2) is called the infimum (or
greatest lower bound) of S and denoted by m = inf S.
DEFINITION. Any number in R\ Q is called an irrational number.

We now show that /2 is a real number.
THEOREM 1B. There is a positive real number M satisfying M? = 2.
PROOF. Let S = {x € R: 22 < 2}. Since 0 € S, the set S is non-empty. On the other hand, it is easy to
see that 2 is an upper bound of S; for if 2 > 2, then 2 > 4. Hence S is bounded above. By the Axiom

of bound, S has a supremum M € R. Clearly M > 0, since 1 € S. It remains to show that M? = 2.
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Suppose on the contrary that M?2 # 2. Then by Axiom (O1), we must have M? < 2 or M? > 2. Suppose
first of all that M? < 2. Then

2 — M?
(M+e)?=M+2Me+e < M*+(2M +1)e <2 if 0<€<min{1’2M+1}’

contradicting that M is an upper bound of S. Suppose next that M? > 2, then

M2 -2

(M —€)*> = M? —2Me + €2 > M? — 2Me > 2 if 0<e< S

contradicting that M is the least upper bound of S. We must therefore have M? = 2. O

REMARK. The above argument can be adapted to prove the following more general result: Suppose that
n €N, c € R and ¢ > 0. Then the equation ™ = ¢ has a unique solution for z € R and = > 0.

1.3. Consequences of the Completeness Axiom
In this section, we shall prove two simple consequences of the Completeness axiom. The first of these
shows that there are arbitrarily large natural numbers, while the second shows that rational numbers

and irrational numbers are everywhere along the real line.

THEOREM 1C. (ARCHIMEDEAN PROPERTY) For every x € R, there exists n € N such that
n>x.

PROOF. Suppose that x € R, and suppose on the contrary that n < x for every n € N. Then z is an
upper bound of N, so that N is bounded above. By the Axiom of bound, the set N has a supremum, M
say. Then
M>n for every n =1,2,3,....
In particular, dropping the case n = 1, we have
M>n for every n =2,3,4,....
Now every n = 2,3,4,... can be written as k + 1, where k = 1,2, 3, ... respectively. Hence
M>k+1 for every k =1,2,3,...,
so that
M-1>k for every Kk =1,2,3,...;

in other words, M — 1 is an upper bound of N. This contradicts the assumption that M is the supremum

of N. O
We are now in a position to prove the following important result.

THEOREM 1D. The rational and irrational numbers are dense in R. More precisely, between any two
distinct real numbers, there exist a rational number and an irrational number.

PROOF. Suppose that z,y € R and = < y.

(a) We shall show that there exists r € Q such that < r < y. Suppose first of all that > 0. By the
Archimedean property, there exists ¢ € N such that ¢ > 1/(y — ), so that ¢(y — ) > 1. Consider the

Chapter 1 : The Real Numbers and Countability page 4 of 7




Introduction to Lebesgue Integration © W W L Chen, 1983, 2008

positive real number gx. By the Archimedean property, there exists n € N such that n > qz. It follows
that S = {n € N:n > gz} is a non-empty set of natural numbers, and so has a least element p, in view
of (WO). We now claim that p — 1 < gz. To see this, note that if p = 1, then p — 1 = 0 < gz. On the
other hand, if p # 1, then p — 1 > gx would contradict the definition of p. It now follows that
gr<p=(p-1)+1<qgr+qly—2)=aqy,

so that

x<£<y.
q

Suppose now that £ < 0. Then by the Archimedean property, there exists k € N such that & > —x, so
that £+ « > 0. Then there exists s € Q such that x + k < s < y + k, so that

r<s—k<uy.
Clearly r = s — k € Q.

(b) We shall now show that there exists z € R\ Q such that < z < y. By (a), there exist ry,72 € Q
such that z < r; < ry < y. The number

To —T1

V2

Z=1T1+

is clearly irrational and satisfies r1 < z < ry. O

1.4. Countability

In this account, we treat intuitively the distinction between finite and infinite sets. A set is finite if it
contains a finite number of elements. To treat infinite sets, our starting point is the set N of all natural
numbers, an example of an infinite set.

DEFINITION. A set X is said to be countably infinite if there exists a bijective mapping from X to N. A
set X is said to be countable if it is finite or countably infinite.

REMARK. Suppose that X is countably infinite. Then we can write
X = {1‘1,{1}2, T3, .. }
Here we understand that there is a bijective mapping ¢ : X — N where ¢(x,,) = n for every n € N.

THEOREM 1E. A countable union of countable sets is countable.

PROOF. Let I be a countable index set, where for each i € I, the set X; is countable. Either (a) I is
finite; or (b) I is countably infinite. We shall only consider (b), since (a) needs only minor modification.
Since I is countably infinite, there exists a bijective mapping from I to N. We may therefore assume,
without loss of generality, that I = N. For each n € N, since X, is countable, we may write

Xn = {anh an2,An3, - - '}’a

with the convention that if X, is finite, then the sequence a1, an3, a,3, ... is constant from some point
onwards. Hence we have a doubly infinite array

a1l a2 ais
a21 A2z (23
asz1p asz Ga33
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of elements of the set

X = UXn.

neN

We now list these elements in the order indicated by
. o— >oe «— >
e
e
e
e

but discarding duplicates. If X is infinite, the above clearly gives rise to a bijection from X to N. O

EXAMPLE 1.4.1. The set Z is countable; simply note that Z = NU {0} u{-1,-2,-3,...}.
THEOREM 1F. The set Q is countable.

PROOF. Any = € Q can be written in the form p/q, where p € Z and ¢ € N. For every n € N, the set
Qn = {p/n:p € Z} is countable (why?). Clearly

Q: UQn

neN

The result follows from Theorem 1E. O

Suppose that two sets X; and X are both countably infinite. Since both can be mapped to N
bijectively, it follows that each can be mapped to the other bijectively. In this case, we say that the two
sets X1 and Xy have the same cardinality. Cardinality can be considered as a way of measuring size. If
there exists a one-to-one mapping from X; to X5 and no one-to-one mapping from X5 to X7, then we
say that X5 has greater cardinality than X;. For example, N and Q have the same cardinality. We shall
now show that R has greater cardinality than Q.

We shall first of all need an intermediate result.
THEOREM 1G. Any subset of a countable set is countable.

PROOF. Let X be a countable set. If X is finite, then the result is trivial. We therefore assume that X
is countably infinite, so that we can write

X = {xl,xg,.’l}?,,...}.

Let Y be a subset of X. If Y is finite, then the result is trivial. If Y is countably infinite, then we can
write

Y = {znlaznza Tngy .- -}7
where
ny =min{n e N:z, € Y},
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and where, for every p > 2,

np =min{n >n,_1 1z, € Y}.
The result follows. O
THEOREM 1H. The set R is not countable.

PROOF. In view of Theorem 1G, it suffices to show that [0, 1) is not countable. Suppose on the contrary
that [0,1) is countable. Then we can write

[0,1) :{Z’l,I‘Q,JZg,...}. (1)
For each n € N, we express x,, in decimal notation in the form
Tn = - In1Tn2Tn3 - - -,

where for each k € N, the digit x,;, € {0,1,2,...,9}. Note that this expression may not be unique, but
it does not matter, as we simply choose one. We now have

1 = . 11212213 - - -,
T = 2122223 ...,

T3 = 31232233 - - -,

Let y = .y1y2y3 - . ., where for each n € N, y,, € {0,1,2,...,9} and y,, = zppn +5 (mod 10). Then clearly
y # xp, for any n € N. But y,, € [0,1), contradicting (1). O

Note that the set R\ Q of all irrational numbers is not countable. It follows that in the sense of
cardinality, there are far more irrational numbers than rational numbers.
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