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Chapter 3

POINT SETS

3.1. Open and Closed Sets

To study a Riemann integral, one needs to subdivide the interval of integration into a finite number of
subintervals. In Lebesgue’s approach, the interval is subdivided into more general sets called measurable
sets. In 1902, Lebesgue gave a definition of measure for point sets and used this to develop his integral.

Since then, measure theory and integration theory have both been generalized and modified. It is now
possible to introduce the Lebesgue integral with very little reference to measure theory, but focusing
directly on functions and their integrals instead.

We shall attempt here to give an account of this approach. The only concept from measure theory
that we shall need is that of sets of measure zero. In this chapter, we shall cover some basic results on
point sets for later use.

Definition. Suppose that S ⊆ R is given. A point x ∈ S is said to be an interior point of S if there
exists ε > 0 such that the open interval (x− ε, x+ ε) ⊆ S.

Definition. A set G ⊆ R is said to be open if every point of G is an interior point of G.

Remark. It is quite common to denote open sets by G after the German word “Gebiet”.

Example 3.1.1. The interval (0, 1) is open. For any given x ∈ (0, 1), we can choose ε = min{x, 1− x}.
Then ε ≤ x and ε ≤ 1− x, so that 0 ≤ x− ε < x+ ε ≤ 1, whence (x− ε, x+ ε) ⊆ (0, 1).

Example 3.1.2. The interval [0, 1] is not open, since clearly the point 0 is not an interior point of [0, 1].
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Example 3.1.3. The sets ∅ and R are both open.

We have the following two simple results.

THEOREM 3A. The union of any collection of open sets in R is open.

THEOREM 3B. The intersection of any finite collection of open sets in R is open.

Remark. Note that Theorem 3B cannot be extended to infinite collections. Note, for example, that
Gn = (−1/n, 1/n) is open for every n ∈ N. On the other hand,

∞⋂
n=1

Gn = {0}

is not open. The reader is advised to study the proof of Theorem 3B below and try to pinpoint where
the proof fails when the collection is infinite.

Proof of Theorem 3A. Suppose that G is a collection of open sets in R. Denote by U their union.
Suppose that x ∈ U . Then x ∈ G for some G ∈ G. Since G is open, it follows that x is an interior point
of G, and so there exists ε > 0 such that

(x− ε, x+ ε) ⊆ G ⊆ U.

It follows that x is an interior point of U . ©

Proof of Theorem 3B. Suppose that the open sets are G1, . . . , Gn. Denote by V their intersection.
Suppose that x ∈ V . Then x ∈ Gk for every k = 1, . . . , n. Since Gk is open, it follows that x is an
interior point of Gk, and so there exists εk > 0 such that

(x− εk, x+ εk) ⊆ Gk.

Now let ε = min{ε1, . . . , εn} > 0. Then for every k = 1, . . . , n, we have

(x− ε, x+ ε) ⊆ (x− εk, x+ εk) ⊆ Gk,

so that

(x− ε, x+ ε) ⊆ G1 ∩ . . . ∩Gn = V.

It follows that x is an interior point of V . ©

The following result gives a characterization of all open sets in R.

THEOREM 3C. Every open set G ∈ R is a countable union of pairwise disjoint open intervals in R.

Proof. For every x ∈ G, let Ix denote the largest open interval in R satisfying x ∈ Ix ⊆ G. Suppose
now that x, y ∈ G and Ix ∩ Iy 6= ∅. Then Ix ∪ Iy is also an open interval. Furthermore,

Ix ⊆ Ix ∪ Iy ⊆ G and Iy ⊆ Ix ∪ Iy ⊆ G.

From the definition of Ix and Iy, we must have Ix = Ix ∪ Iy and Iy = Ix ∪ Iy, so that Ix = Iy. We
therefore conclude that Ix and Iy are either disjoint or equal. It follows that G is a union of disjoint
open intervals in R. Write

G =
⋃
I∈C

I.
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It remains to show that the collection C is countable. Note that every interval I ∈ C contains a rational
number xI . We can now construct a bijective mapping φ : C → {xI : I ∈ C} by writing φ(I) = xI

for every I ∈ C; in other words, we identify each interval I with a rational number it contains. Clearly
{xI : I ∈ C} ⊆ Q, and so must be countable. It follows that C is countable. ©

Definition. Suppose that S ⊆ R is given. A point x ∈ R is said to be a limit point of S if it is the
limit of a sequence in S.

Definition. A set F ⊆ R is said to be closed if it contains all its limit points.

Remark. It is quite common to denote closed sets by F after the French word “fermé”.

Example 3.1.4. The interval (0, 1) is not closed. The sequence 1/n is in (0, 1), but its limit 0 is not.

Example 3.1.5. The interval [0, 1] is closed. If xn is a convergent sequence in [0, 1], then its limit x
must satisfy 0 ≤ x ≤ 1, so that x ∈ [0, 1].

Example 3.1.6. The sets ∅ and R are both closed. These are examples of sets which are both open and
closed.

We have the following useful result on open and closed sets.

THEOREM 3D. A set F ⊆ R is closed if and only if its complement F ′ = R \ F is open.

Proof. (⇒) Suppose that F is closed. For every x ∈ F ′, x is not a limit point of F , so that no sequence
in F converges to x. Hence there exists ε > 0 such that (x− ε, x+ ε)∩F = ∅, so that (x− ε, x+ ε) ⊆ F ′.

(⇐) Suppose that x 6∈ F . Then x ∈ F ′. Since F ′ is open, it follows that there exists ε > 0 such that
(x − ε, x + ε) ⊆ F ′, so that (x − ε, x + ε) ∩ F = ∅. Hence no sequence in F converges to x, and so x is
not a limit point of F . It now follows that F must contain all its limit points. ©

Using Theorem 3D, the following two results follow immediately from Theorems 3A and 3B respec-
tively.

THEOREM 3E. The intersection of any collection of closed sets in R is closed.

THEOREM 3F. The union of any finite collection of closed sets in R is closed.

Proof of Theorems 3E and 3F. Note simply De Morgan’s law, that

⋂
F∈F

F = R \

( ⋃
F∈F

(R \ F )

)

for any collection F of sets in R. ©

Our aim is to establish the following important result.
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THEOREM 3G. (CANTOR INTERSECTION THEOREM) Suppose that the sequence of sets Fn ⊆ R
satisfies the following conditions:
(a) For every n ∈ N, Fn 6= ∅.
(b) For every n ∈ N, Fn+1 ⊆ Fn.
(c) For every n ∈ N, Fn is closed.
(d) F1 is bounded.
Then the intersection

∞⋂
n=1

Fn

is closed and non-empty.

To prove Theorem 3G, we need some results on real sequences.

Definition. A sequence xn ∈ R is said to be increasing if xn+1 ≥ xn for every n ∈ N. A sequence
xn ∈ R is said to be decreasing if xn+1 ≤ xn for every n ∈ N. A sequence xn ∈ R is said to be monotonic
if it is increasing or decreasing.

THEOREM 3H. Consider a sequence xn ∈ R.
(a) Suppose that xn is increasing and bounded above. Then xn is convergent.
(b) Suppose that xn is decreasing and bounded below. Then xn is convergent.

Proof. We shall only prove (a), as the proof of (b) is similar. Since xn is bounded above, let

M = sup{xn : n ∈ N}.

We shall show that xn → M as n → ∞. Given any ε > 0, there exists N ∈ N such that xN > M − ε.
Since xn is increasing, it follows that for every n > N , we have

M − ε < xN ≤ xn ≤M < M + ε,

so that |xn −M | < ε. The result follows. ©

Definition. Consider a sequence xn ∈ R. Suppose that nk ∈ N for every k ∈ N. Suppose further that

1 ≤ n1 < n2 < n3 < . . . < nk < . . . .

Then the sequence xnk
is called a subsequence of the sequence xn.

Example 3.1.7. The sequence of all even natural numbers is a subsequence of the sequence of all natural
numbers. Here, note that xn = n for every n ∈ N and nk = 2k for every k ∈ N.

Example 3.1.8. The sequence 3, 5, 7, 11, . . . of all odd primes is a subsequence of the sequence 1, 3, 5, 7,
. . . of all odd natural numbers. Here xn = 2n − 1 for every n ∈ N. Also xn1 = 3 = x2, xn2 = 5 = x3,
xn3 = 7 = x4, and so on, so that n1 = 2, n2 = 3, n3 = 4, and so on.

THEOREM 3J. Any sequence xn ∈ R has a monotonic subsequence.

Proof. We shall call n ∈ N a “peak” point if xm ≤ xn for every m ≥ n. Then there are two cases:

(a) There are infinitely many peak points n1 < n2 < . . . < nk < . . . . Then clearly

xn1 ≥ xn2 ≥ . . . ≥ xnk
≥ . . . ,

and we have a decreasing subsequence.
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(b) There are finitely many or no peak points. In this case, let n1 = N +1 where N is the largest peak
point, or n1 = 1 if there are no peak points. Then n1 is not a peak point, so there exists n2 > n1 such
that xn2 > xn1 . Then n2 is not a peak point, so there exists n3 > n2 such that xn3 > xn2 . Proceeding
inductively, we conclude that there exists a sequence

n1 < n2 < . . . < nk < . . .

of natural numbers such that

xn1 < xn2 < . . . < xnk
< . . . ,

and we have an increasing subsequence. ©

THEOREM 3K. (BOLZANO-WEIERSTRASS THEOREM) Any bounded sequence xn ∈ R has a
convergent subsequence.

Proof. By Theorem 3J, the sequence xn has a monotonic subsequence. Clearly this subsequence is
bounded. The result now follows from Theorem 3H. ©

We can now prove the Cantor intersection theorem.

Proof of Theorem 3G. The set

F =
∞⋂

n=1

Fn

is closed, in view of Theorem 3E. It remains to find a point x ∈ F . For every n ∈ N, choose a point
xn ∈ Fn. The sequence xn is clearly bounded, so it follows from the Bolzano-Weierstrass theorem that
it has a convergent subsequence xnk

. Suppose that xnk
→ x as k →∞. To show that x ∈ F , it suffices

to show that x ∈ Fn for every n ∈ N. Note that in view of hypothesis (b), we have, for every n ∈ N, that

xn, xn+1, xn+2, . . . ∈ Fn.

It follows that x is a limit point of Fn. Since Fn is closed, it follows that x ∈ Fn. This completes the
proof of Theorem 3G. ©

3.2. Sets of Measure Zero

Our study of the Lebesgue integral will depend crucially on the notion of sets of measure zero in R.

Definition. A set S ⊆ R is said to have measure zero if, for every ε > 0, there exists a countable
collection C of open intervals I such that

S ⊆
⋃
I∈C

I and
∑
I∈C

µ(I) < ε,

where, for every I ∈ C, µ(I) denotes the length of the interval I. In other words, the set S can be
covered by a countable union of open intervals of arbitrarily small total length.

Remark. The argument in the remainder of this section depends on the use of a convergent series of
positive terms. For the sake of convenience, we have chosen the series

∞∑
n=1

1
2n

= 1.
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In fact, the argument will work with any convergent series of positive terms. We do not even need to
know its sum, except for the fact that it is finite and positive.

Example 3.2.1. We shall show that the set Q has measure zero. Note that Q is countable, so that we
can write

Q = {x1, x2, x3, . . .}.

Let ε > 0 be given. For every n ∈ N, let

In =
(
xn −

ε

2n+2
, xn +

ε

2n+2

)
.

Then clearly

Q ⊆
∞⋃

n=1

In and
∞∑

n=1

µ(In) =
ε

2

∞∑
n=1

1
2n

=
ε

2
< ε.

In fact, we have all but proved the following result.

THEOREM 3L. Every countable set in R has measure zero.

A similar idea enables us to prove the following result.

THEOREM 3M. A countable union of sets of measure zero in R has measure zero.

Proof. We shall show that a countably infinite union of sets of measure zero in R has measure zero.
The case of a finite union needs only minor modification. Suppose that for every n ∈ N, the set Sn ⊆ R
has measure zero. Given any ε > 0, there exists a countable collection Cn of open intervals I such that

Sn ⊆
⋃

I∈Cn

I and
∑
I∈Cn

µ(I) <
ε

2n
.

Let

C =
∞⋃

n=1

Cn.

Then C is countable by Theorem 1E. Clearly

∞⋃
n=1

Sn ⊆
∞⋃

n=1

⋃
I∈Cn

I =
⋃
I∈C

I and
∑
I∈C

µ(I) ≤
∞∑

n=1

∑
I∈Cn

µ(I) < ε

∞∑
n=1

1
2n

= ε.

The result follows. ©

Definition. A property P (x) is said to hold for almost all x ∈ S if P (x) fails to hold for at most a set
of measure zero in S.

3.3. Compact Sets

Definition. A set S ⊆ R is said to be compact if and only if, for every collection C of open intervals I
such that

S ⊆
⋃
I∈C

I,
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there exists a finite subcollection C0 ⊆ C such that

S ⊆
⋃

I∈C0

I.

In other words, every open covering of S can be achieved by a finite subcovering.

Our main task in this section is to establish the following important result.

THEOREM 3N. (HEINE-BOREL THEOREM) Suppose that F ⊆ R is bounded and closed. Then F
is compact.

Proof. We need to show that for every collection C of open intervals I such that

F ⊆
⋃
I∈C

I,

there exists a finite subcollection C0 ⊆ C such that

F ⊆
⋃

I∈C0

I.

We shall achieve this by first (a) reducing C to a countable subcollection C′ ⊆ C; and then (b) reducing
C′ to a finite subcollection C0 ⊆ C′.

(a) Let Q denote the collection of all open intervals in R with rational midpoints and lengths. Then
Q is countable (why?), so that we can write

Q = {J1, J2, J3, . . .}.

Suppose that x ∈ F . Then there exists I ∈ C such that x ∈ I. It is easy to see that we can find an
interval Jn(x) ∈ Q such that

x ∈ Jn(x) ⊆ I. (1)

Clearly

F ⊆
∞⋃

n=1
n=n(x) for some x∈F

Jn.

For every n ∈ N for which n = n(x) for some x ∈ F , we now find an interval In ∈ C for which Jn ⊆ In;
this is possible in view of (1). Then

F ⊆
∞⋃

n=1
n=n(x) for some x∈F

In.

(b) Suppose that

F ⊆
⋃

I∈C′

I.

The result is immediate if C′ is finite, so we assume, without loss of generality, that C′ is countably
infinite. We can therefore write

C′ = {I1, I2, I3, . . .},
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so that

F ⊆
∞⋃

k=1

Ik.

For every n ∈ N, the set

Gn =
n⋃

k=1

Ik

is open, in view of Theorem 3A. We shall show that there exists n ∈ N such that F ⊆ Gn. For every
n ∈ N, consider the set

Fn = F ∩ (R \Gn).

To complete the proof, it clearly suffices to show that Fn = ∅ for some n ∈ N. Suppose, on the contrary,
that Fn 6= ∅ for every n ∈ N. Note that for every n ∈ N, the set Fn is closed and bounded. Furthermore,
Fn+1 ⊆ Fn for every n ∈ N. It follows from the Cantor intersection theorem that

∞⋂
n=1

Fn 6= ∅.

Hence there exists x ∈ F such that x 6∈ Ik for every k ∈ N, clearly a contradiction. ©

Remark. Part (a) of Theorem 3N is sometimes known as the Lindelöf covering theorem.
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