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Chapter 3

POINT SETS

3.1. Open and Closed Sets

To study a Riemann integral, one needs to subdivide the interval of integration into a finite number of
subintervals. In Lebesgue’s approach, the interval is subdivided into more general sets called measurable

sets. In 1902, Lebesgue gave a definition of measure for point sets and used this to develop his integral.

Since then, measure theory and integration theory have both been generalized and modified. It is now
possible to introduce the Lebesgue integral with very little reference to measure theory, but focusing

directly on functions and their integrals instead.

We shall attempt here to give an account of this approach. The only concept from measure theory
that we shall need is that of sets of measure zero. In this chapter, we shall cover some basic results on

point sets for later use.

DEFINITION. Suppose that S C R is given. A point x € S is said to be an interior point of S if there

exists € > 0 such that the open interval (z — e,z +¢) C S.
DEFINITION. A set G C R is said to be open if every point of G is an interior point of G.
REMARK. It is quite common to denote open sets by G after the German word “Gebiet”.

EXAMPLE 3.1.1. The interval (0,1) is open. For any given « € (0,1), we can choose € = min{xz,1 — z}.
Then e <z and e <1—2x,sothat 0 <z —e < ax+e <1, whence (x —e,z+¢€) C (0,1).

ExXAMPLE 3.1.2. The interval [0, 1] is not open, since clearly the point 0 is not an interior point of [0, 1].
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EXAMPLE 3.1.3. The sets () and R are both open.

We have the following two simple results.
THEOREM 3A. The union of any collection of open sets in R is open.
THEOREM 3B. The intersection of any finite collection of open sets in R is open.

REMARK. Note that Theorem 3B cannot be extended to infinite collections. Note, for example, that
Gn = (—1/n,1/n) is open for every n € N. On the other hand,

ﬂ Gn = {0}

is not open. The reader is advised to study the proof of Theorem 3B below and try to pinpoint where
the proof fails when the collection is infinite.

PROOF OF THEOREM 3A. Suppose that G is a collection of open sets in R. Denote by U their union.
Suppose that x € U. Then x € G for some G € G. Since G is open, it follows that z is an interior point
of GG, and so there exists € > 0 such that

(r—ex+e) CGCU.
It follows that x is an interior point of U. O
PROOF OF THEOREM 3B. Suppose that the open sets are Gy, ...,G,. Denote by V their intersection.
Suppose that © € V. Then = € Gy, for every k = 1,...,n. Since G}, is open, it follows that z is an
interior point of Gy, and so there exists €, > 0 such that

(r — e, + ;) C Gy.
Now let € = min{e,...,e,} > 0. Then for every k =1,...,n, we have

(x—¢,x4+¢€) C(x—ep,x+er) C Gy,
so that
(r—e,x+e)CGIN...NG, =V.
It follows that z is an interior point of V. ()
The following result gives a characterization of all open sets in R.

THEOREM 3C. Every open set G € R is a countable union of pairwise disjoint open intervals in R.

PROOF. For every x € G, let I, denote the largest open interval in R satisfying € I, C G. Suppose
now that z,y € G and I, N1, # (). Then I, U I, is also an open interval. Furthermore,

I,CIL,ul,CG and I,CI,UIL CG.

From the definition of I, and I,, we must have I, = I, U I, and I, = I, U I, so that I, = I,. We
therefore conclude that I, and I, are either disjoint or equal. It follows that G is a union of disjoint
open intervals in R. Write

G=Jr

IeC
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It remains to show that the collection C is countable. Note that every interval I € C contains a rational
number x;. We can now construct a bijective mapping ¢ : C — {zy : I € C} by writing ¢(I) = x;
for every I € C; in other words, we identify each interval I with a rational number it contains. Clearly
{zy: T € C} C Q, and so must be countable. It follows that C is countable. O

DEFINITION. Suppose that S C R is given. A point € R is said to be a limit point of S if it is the
limit of a sequence in S.

DEFINITION. A set F' C R is said to be closed if it contains all its limit points.
REMARK. It is quite common to denote closed sets by F' after the French word “fermé”.
EXAMPLE 3.1.4. The interval (0,1) is not closed. The sequence 1/n is in (0,1), but its limit 0 is not.

EXAMPLE 3.1.5. The interval [0, 1] is closed. If z, is a convergent sequence in [0, 1], then its limit x
must satisfy 0 < z <1, so that z € [0, 1].

EXAMPLE 3.1.6. The sets § and R are both closed. These are examples of sets which are both open and
closed.

We have the following useful result on open and closed sets.
THEOREM 3D. A set F C R is closed if and only if its complement F' = R\ F is open.

PROOF. (=) Suppose that F is closed. For every 2 € F’, x is not a limit point of F', so that no sequence
in F converges to z. Hence there exists e > 0 such that (z —e,z+€)NF = (), so that (z —e,x+¢€) C F'.

(<) Suppose that © ¢ F. Then x € F’. Since F” is open, it follows that there exists € > 0 such that
(x —e,x+¢€) C F', sothat (x — e,x + €) N F = (). Hence no sequence in F converges to z, and so z is
not a limit point of F. It now follows that F' must contain all its limit points. O

Using Theorem 3D, the following two results follow immediately from Theorems 3A and 3B respec-
tively.

THEOREM 3E. The intersection of any collection of closed sets in R is closed.
THEOREM 3F. The union of any finite collection of closed sets in R is closed.

Proor oF THEOREMS 3E AND 3F. Note simply De Morgan’s law, that

N r-m (Ymin)

FeF FeF

for any collection F of sets in R. (O

Our aim is to establish the following important result.
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THEOREM 3G. (CANTOR INTERSECTION THEOREM) Suppose that the sequence of sets F,, C R
satisfies the following conditions:

(a) For everyn € N, F,, # 0.

(b) For everyn € N, F,,11 C F,.

(¢) For every n € N, F,, is closed.

(d) Fy is bounded.

Then the intersection

o0

5

n=1
is closed and non-empty.

To prove Theorem 3G, we need some results on real sequences.
DEFINITION. A sequence z,, € R is said to be increasing if z,41 > x, for every n € N. A sequence
zn € R is said to be decreasing if z,1 < z,, for every n € N. A sequence z,, € R is said to be monotonic
if it is increasing or decreasing.
THEOREM 3H. Consider a sequence z,, € R.
(a) Suppose that z,, is increasing and bounded above. Then z,, is convergent.
(b) Suppose that x,, is decreasing and bounded below. Then z,, is convergent.
PROOF. We shall only prove (a), as the proof of (b) is similar. Since z,, is bounded above, let
M = sup{xz,, : n € N}.

We shall show that x, — M as n — oco. Given any € > 0, there exists NV € N such that xy > M —e.
Since x,, is increasing, it follows that for every n > N, we have

M—-—e<axy<zp, <M< M+e,

so that |z, — M| < e. The result follows. O

DEFINITION. Consider a sequence x,, € R. Suppose that ny € N for every k € N. Suppose further that
1<m<na<ng<...<np<....

Then the sequence x,, is called a subsequence of the sequence z,,.

ExaAMPLE 3.1.7. The sequence of all even natural numbers is a subsequence of the sequence of all natural
numbers. Here, note that z,, = n for every n € N and ny = 2k for every k € N.

ExXAMPLE 3.1.8. The sequence 3,5,7,11,... of all odd primes is a subsequence of the sequence 1,3,5,7,
. of all odd natural numbers. Here z,, = 2n — 1 for every n € N. Also x,,, = 3 = x2, x,, = 5 = z3,
Tps = 7 = x4, and so on, so that ny =2, np = 3, n3 =4, and so on.
THEOREM 3J. Any sequence z,, € R has a monotonic subsequence.
PRrROOF. We shall call n € N a “peak” point if x,, < x,, for every m > n. Then there are two cases:
(a) There are infinitely many peak points n; < ng < ... < mng < .... Then clearly
Tpy 2 Tpy = ooe 2 Ty, = o nny

and we have a decreasing subsequence.
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(b) There are finitely many or no peak points. In this case, let ny = N 41 where N is the largest peak
point, or n; = 1 if there are no peak points. Then n; is not a peak point, so there exists no > ny such
that z,, > x,,. Then ny is not a peak point, so there exists n3 > ng such that z,, > x,,. Proceeding
inductively, we conclude that there exists a sequence

n<ne<..<ng<...
of natural numbers such that
Ty < Tpy < oo < Ty, < oeesy
and we have an increasing subsequence. ()

THEOREM 3K. (BOLZANO-WEIERSTRASS THEOREM) Any bounded sequence z, € R has a
convergent subsequence.

ProOOF. By Theorem 3J, the sequence z, has a monotonic subsequence. Clearly this subsequence is
bounded. The result now follows from Theorem 3H. O

We can now prove the Cantor intersection theorem.

Proor oF THEOREM 3G. The set

= F,

DX

n=1

is closed, in view of Theorem 3E. It remains to find a point € F. For every n € N, choose a point
T, € F,,. The sequence x,, is clearly bounded, so it follows from the Bolzano-Weierstrass theorem that
it has a convergent subsequence z,,. Suppose that z,, — = as k — oo. To show that z € F, it suffices
to show that x € F,, for every n € N. Note that in view of hypothesis (b), we have, for every n € N, that

TpyLn4l, Tnt2,--- € Fn

It follows that x is a limit point of F;,. Since F,, is closed, it follows that x € F,,. This completes the
proof of Theorem 3G. O

3.2. Sets of Measure Zero
Our study of the Lebesgue integral will depend crucially on the notion of sets of measure zero in R.

DEFINITION. A set S C R is said to have measure zero if, for every € > 0, there exists a countable
collection C of open intervals I such that

S C UI and Zu(1)<e,

IeC IecC

where, for every I € C, u(I) denotes the length of the interval I. In other words, the set S can be
covered by a countable union of open intervals of arbitrarily small total length.

REMARK. The argument in the remainder of this section depends on the use of a convergent series of
positive terms. For the sake of convenience, we have chosen the series

=1
Zz—n:l.

n=1
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In fact, the argument will work with any convergent series of positive terms. We do not even need to
know its sum, except for the fact that it is finite and positive.

ExAMPLE 3.2.1. We shall show that the set Q has measure zero. Note that Q is countable, so that we
can write

Q = {x1,22,23,...}.

Let € > 0 be given. For every n € N, let

Then clearly

> > € o= 1 €
QUIn and Zu([n)=§zz—n:§<e.
n=1 n=1 n=1

In fact, we have all but proved the following result.
THEOREM 3L. Every countable set in R has measure zero.
A similar idea enables us to prove the following result.
THEOREM 3M. A countable union of sets of measure zero in R has measure zero.
PRrROOF. We shall show that a countably infinite union of sets of measure zero in R has measure zero.

The case of a finite union needs only minor modification. Suppose that for every n € N, the set S, C R
has measure zero. Given any e > 0, there exists a countable collection C,, of open intervals I such that

Sp C U I and ZM(I)<2%.

IeCy, IeCy,

Let
= U C,
n=1
Then C is countable by Theorem 1E. Clearly

UsicUUr=Ur i Sunsd Sun<ed g

n=1 IecC IeC n=11¢eC, n=1

The result follows. O

DEFINITION. A property P(x) is said to hold for almost all x € S if P(z) fails to hold for at most a set
of measure zero in S.

3.3. Compact Sets

DEFINITION. A set S C R is said to be compact if and only if, for every collection C of open intervals I
such that

sclyr

IeC
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there exists a finite subcollection Cy C C such that

sc|Jr

IeCy

In other words, every open covering of S can be achieved by a finite subcovering.
Our main task in this section is to establish the following important result.

THEOREM 3N. (HEINE-BOREL THEOREM) Suppose that F' C R is bounded and closed. Then F
18 compact.

PROOF. We need to show that for every collection C of open intervals I such that

FC UI,

IeC

there exists a finite subcollection Cy C C such that

FgUI.

I€Co

We shall achieve this by first (a) reducing C to a countable subcollection C’ C C; and then (b) reducing
C’ to a finite subcollection Cy C C'.

(a) Let Q denote the collection of all open intervals in R with rational midpoints and lengths. Then
Q is countable (why?), so that we can write

Q = {Jl, Jz, J3, .. }

Suppose that x € F. Then there exists I € C such that x € I. It is easy to see that we can find an
interval J,,(,) € @ such that

Clearly

n=1
n=n(z) for some z€F

For every n € N for which n = n(z) for some x € F, we now find an interval I,, € C for which J,, C I;;
this is possible in view of (1). Then

FC G I,.
1

n=
n=n(z) for some z€F

(b) Suppose that

FC UI.

Iec’

The result is immediate if C’ is finite, so we assume, without loss of generality, that C’ is countably
infinite. We can therefore write

C/ = {117127133 .. '}7
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so that
FgU%
k=1
For every n € N; the set
Gn=J I
k=1

is open, in view of Theorem 3A. We shall show that there exists n € N such that F' C G,,. For every
n € N, consider the set

F,=Fn(R\G,).
To complete the proof, it clearly suffices to show that F,, = () for some n € N. Suppose, on the contrary,

that F,, # 0 for every n € N. Note that for every n € N, the set F,, is closed and bounded. Furthermore,
F,+1 C F, for every n € N. It follows from the Cantor intersection theorem that

() Fn # 0.
n=1

Hence there exists x € F' such that x & I, for every k € N, clearly a contradiction. ()

REMARK. Part (a) of Theorem 3N is sometimes known as the Lindeldf covering theorem.
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