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Chapter 4

THE LEBESGUE INTEGRAL

4.1. Step Functions on an Interval

The first step in our definition of the Lebesgue integral concerns step functions. In this section, we
formulate a definition of the Lebesgue integral for step functions in terms of Riemann integrals, and
study some of its properties.

Definition. Suppose that A,B ∈ R and A < B. A function s : [A,B]→ R is called a step function on
[A,B] if there exist a dissection A = x0 < x1 < . . . < xn = B of [A,B] and numbers c1, . . . , cn ∈ R such
that for every k = 1, . . . , n, we have s(x) = ck for every x ∈ (xk−1, xk).

Remark. Note that we have not imposed any conditions on s(xk) for any k = 0, 1, . . . , n, except that
they are real-valued. This is in view of the fact that a Riemann integral is unchanged if we alter the
value of the function at a finite number of points.

For every k = 1, . . . , n, the integral∫ xk

xk−1

s(x) dx = ck(xk − xk−1)

in the sense of Riemann. Also the integral∫ B

A

s(x) dx =
n∑

k=1

ck(xk − xk−1) (1)

in the sense of Riemann, and is in fact independent of the choice of the dissection of [A,B], provided
that s(x) is constant in any open subinterval arising from the dissection.
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We now make a simple generalization.

Definition. Suppose that I ⊆ R is an interval. We say that a function s : I → R is a step function
on I, denoted by s ∈ S(I), if there exists a finite subinterval (A,B) ⊆ I such that s : [A,B] → R is a
step function on [A,B] and s(x) = 0 for every x ∈ I \ [A,B]. Furthermore, the integral∫

I

s(x) dx (2)

is defined by the integral of s over [A,B] given by (1).

Remarks. (1) Note that in the above definition, the function s : I → R may not be defined at x = A
and/or x = B. In this case, we may assign s(A) and s(B) arbitrary finite values, and note that (1) is
not affected by this process.

(2) Of course, the choice of the interval [A,B] may not be unique. However, in view of the requirement
that s(x) = 0 for every x ∈ I \ [A,B], it is not difficult to see that the value of the integral (2) is
independent of the choice of such [A,B].

The following theorem can be deduced directly from the definitions.

THEOREM 4A. Suppose that I ⊆ R is an interval, and that s, t ∈ S(I). Then

(a) s+ t ∈ S(I) and
∫

I

(s(x) + t(x)) dx =
∫

I

s(x) dx+
∫

I

t(x) dx;

(b) for every c ∈ R, cs ∈ S(I) and
∫

I

cs(x) dx = c

∫
I

s(x) dx; and

(c) if s(x) ≤ t(x) for every x ∈ I, then
∫

I

s(x) dx ≤
∫

I

t(x) dx.

Proof. (a) From the definition, there exist intervals (A1, B1) ⊆ I and (A2, B2) ⊆ I such that s and t
are step functions on [A1, B1] and [A2, B2] respectively,∫

I

s(x) dx =
∫ B1

A1

s(x) dx and
∫

I

t(x) dx =
∫ B2

A2

t(x) dx,

and that s(x) = 0 for every x ∈ I \ [A1, B1] and t(x) = 0 for every x ∈ I \ [A2, B2]. Furthermore, the
integrals ∫ B1

A1

s(x) dx and
∫ B2

A2

t(x) dx

are in the sense of Riemann. Now let A = min{A1, A2} and B = max{B1, B2}. Then

(A1, B1) ⊆ (A,B) ⊆ I and (A2, B2) ⊆ (A,B) ⊆ I.

Furthermore, it is easy to see that both s and t are step functions in [A,B], and that s(x) = t(x) = 0
for every x ∈ I \ [A,B]. Hence∫

I

s(x) dx =
∫ B

A

s(x) dx and
∫

I

t(x) dx =
∫ B

A

t(x) dx. (3)

Note also that the integrals ∫ B

A

s(x) dx and
∫ B

A

t(x) dx
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are in the sense of Riemann. On the other hand, it is easily checked that s + t is a step function on
[A,B], and that s(x) + t(x) = 0 for every x ∈ I \ [A,B]. By definition, we have∫

I

(s(x) + t(x)) dx =
∫ B

A

(s(x) + t(x)) dx. (4)

Note, however, that ∫ B

A

(s(x) + t(x)) dx =
∫ B

A

s(x) dx+
∫ B

A

t(x) dx, (5)

where the integrals in (5) are in the sense of Riemann. The result now follows on combining (3)–(5).

(b) From the definition, there exists an interval (A,B) ⊆ I such that s is a step function on [A,B],∫
I

s(x) dx =
∫ B

A

s(x) dx, (6)

and that s(x) = 0 for every x ∈ I \ [A,B]. Furthermore, the integral∫ B

A

s(x) dx

is in the sense of Riemann. It is easy to see that cs is a step function on [A,B], and that cs(x) = 0 for
every x ∈ I \ [A,B]. By definition, we have∫

I

cs(x) dx =
∫ B

A

cs(x) dx. (7)

Note, however, that ∫ B

A

cs(x) dx = c

∫ B

A

s(x) dx, (8)

where the integrals in (8) are in the sense of Riemann. The result now follows on combining (6)–(8).

(c) We follow the argument in part (a) and note, instead, that∫ B

A

s(x) dx ≤
∫ B

A

t(x) dx, (9)

where the integrals in (9) are in the sense of Riemann. The result now follows on combining (3) and (9).
©

THEOREM 4B. Suppose that the interval I ⊆ R can be written in the form I = I1 ∪ I2, where the
intervals I1 and I2 have no interior points in common. Suppose further that s ∈ S(I). Then∫

I

s(x) dx =
∫

I1

s(x) dx+
∫

I2

s(x) dx.

Proof. For j = 1, 2, let χj : I → R denote the characteristic function of the interval Ij . Then
s(x) = s(x)χ1(x) + s(x)χ2(x) for every x ∈ I, apart from possibly a finite number of exceptions (which
do not affect the values of the integrals). Note now that s(x)χj(x) is a step function on I1, I2 and I,
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and that s(x)χj(x) = 0 for every x ∈ I \ Ij . Furthermore, s(x)χj(x) = s(x) for every x ∈ Ij . It follows
that∫

I

s(x) dx =
∫

I

(s(x)χ1(x)+s(x)χ2(x)) dx =
∫

I

s(x)χ1(x) dx+
∫

I

s(x)χ2(x) dx =
∫

I1

s(x) dx+
∫

I2

s(x) dx

as required. ©

4.2. Upper Functions on an Interval

The second step in our definition of the Lebesgue integral concerns extending the definition of the
Lebesgue integral for step functions to a larger collection which we shall call the upper functions. In this
section, we formulate a definition of the Lebesgue integral for upper functions by studying sequences of
step functions, and study some of its properties.

Definition. Suppose that S ⊆ R. A sequence of functions fn : S → R is said to be increasing on S if
fn+1(x) ≥ fn(x) for every n ∈ N and every x ∈ S. A sequence of functions fn : S → R is said to be
decreasing on S if fn+1(x) ≤ fn(x) for every n ∈ N and every x ∈ S.

Definition. Suppose that u : I → R is a function defined on an interval I ⊆ R. Suppose further that
there exists a sequence of step functions sn ∈ S(I) satisfying the following conditions:
(a) The sequence sn : I → R is increasing on I.
(b) sn(x)→ u(x) as n→∞ for almost all x ∈ I.

(c) lim
n→∞

∫
I

sn(x) dx exists.

Then we say that the sequence of step functions sn ∈ S(I) generates u, and that u is an upper function
on I, denoted by u ∈ U(I). Furthermore, we define the integral of u over I by∫

I

u(x) dx = lim
n→∞

∫
I

sn(x) dx. (10)

The validity of the definition is justified by the following result.

THEOREM 4C. Suppose that I ⊆ R is an interval, and that u ∈ U(I). Suppose further that both
sequences sn ∈ S(I) and tn ∈ S(I) generate u. Then

lim
n→∞

∫
I

sn(x) dx = lim
n→∞

∫
I

tn(x) dx.

Theorem 4C is a simple consequence of the following result on step functions.

THEOREM 4D. Suppose that I ⊆ R is an interval. Suppose further that the sequence tn ∈ S(I)
satisfies the following conditions:
(a) The sequence tn : I → R is increasing on I.
(b) There exists a function u : I → R such that tn(x)→ u(x) as n→∞ for almost all x ∈ I.

(c) lim
n→∞

∫
I

tn(x) dx exists.

Then for any t ∈ S(I) satisfying t(x) ≤ u(x) for almost all x ∈ I, we have∫
I

t(x) dx ≤ lim
n→∞

∫
I

tn(x) dx.
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Proof of Theorem 4C. Note that the sequence of step functions tn : I → R satisfies hypotheses (a)
and (c) of Theorem 4D. Furthermore, since this sequence generates u, it follows that hypothesis (b) of
Theorem 4D is satisfied. On the other hand, for every m ∈ N, it is easy to see that sn(x) ≤ u(x) for
almost all x ∈ I. It now follows from Theorem 4D that for every m ∈ N, we have∫

I

sm(x) dx ≤ lim
n→∞

∫
I

tn(x) dx,

and so on letting m→∞, we have

lim
m→∞

∫
I

sm(x) dx ≤ lim
n→∞

∫
I

tn(x) dx

(note here that m and n are “dummy” variables). Reversing the roles of the two sequences, the opposite
inequality

lim
n→∞

∫
I

tn(x) dx ≤ lim
m→∞

∫
I

sm(x) dx

can be established by a similar argument. The result follows immediately. ©

The main part of the proof of Theorem 4D can be summarized by the following result.

THEOREM 4E. Suppose that I ⊆ R is an interval. Suppose further that the sequence sn ∈ S(I)
satisfies the following conditions:
(a) The sequence sn : I → R is decreasing on I.
(b) sn(x) ≥ 0 for every n ∈ N and every x ∈ I.
(c) sn(x)→ 0 as n→∞ for almost all x ∈ I.
Then

lim
n→∞

∫
I

sn(x) dx = 0.

Proof. Since s1 ∈ S(I), there exists (A,B) ⊆ I such that s1(x) = 0 for every x ∈ I \ [A,B]. For every
n ∈ N and every x ∈ I, we clearly have 0 ≤ sn(x) ≤ s1(x), and so sn(x) = 0 for every x ∈ I \ [A,B].
Since sn ∈ S(I), it is a step function on [A,B], and∫

I

sn(x) dx =
∫ B

A

sn(x) dx, (11)

where the integral on the right hand side is in the sense of Riemann. Furthermore, there exists a
dissection ∆n of [A,B] such that sn(x) is constant in any open subinterval arising from ∆n. Let

D =
∞⋃

n=1

∆n

represent the collection of all dissection points. Since ∆n is a finite set for every n ∈ N, it follows that
D is countable, and so has measure 0. Next, let

E = {x ∈ I : sn(x) 6→ 0 as n→∞}

denote the set of exceptional points of non-convergence. By (c), E also has measure 0, so that the set

F = D ∪ E
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has measure 0. Let ε > 0 be given and fixed. Then there exists a countable collection of open intervals
Fk, where k ∈ K, of total length less than ε, such that

F ⊆
⋃

k∈K

Fk.

Suppose now that y ∈ [A,B] \ F . On the one hand, since y 6∈ E , it follows that sn(y)→ 0 as n→∞, so
that there exists N = N(y) such that sN (y) < ε. On the other hand, since y 6∈ D, it follows that there
is an open interval I(y) such that y ∈ I(y) and sN (x) is constant in I(y), so that sN (x) < ε for every
x ∈ I(y). Clearly the open intervals I(y), as y runs over [A,B] \F , together with the open intervals Fk,
where k ∈ K, form an open covering of [A,B]. Since [A,B] is compact, there is a finite subcovering

[A,B] ⊆

(
p⋃

i=1

I(yi)

)
∪

 q⋃
j=1

Fj

 .

Let N0 = max{N(y1), . . . , N(yp)}. In view of (a), we clearly have

sn(x) < ε for every n > N0 and x ∈
p⋃

i=1

I(yi). (12)

Write

T1 =
q⋃

j=1

Fj and T2 = [A,B] \ T1,

and note that both can be written as finite unions of disjoint intervals. For every n ∈ N, since sn(x) = 0
outside [A,B], it follows that ∫ B

A

sn(x) dx =
∫
T1
sn(x) dx+

∫
T2
sn(x) dx, (13)

where all the integrals are in the sense of Riemann. We now estimate each of the integrals on the right
hand side of (13). To estimate the integral over T1, let M denote an upper bound of s1(x) on [A,B].
Then sn(x) ≤ M for every x ∈ T1 (why?). On the other hand, note that the intervals Fk have total
length less than ε. Hence ∫

T1
sn(x) dx ≤Mε. (14)

To estimate the integral over T2, note that

T2 ⊆
p⋃

i=1

I(yi).

It follows from (12) that sn(x) < ε for every n > N0 and x ∈ T2. On the other hand, note that
T2 ⊆ [A,B]. Hence for every n > N0, ∫

T2
sn(x) dx ≤ ε(B −A). (15)

Combining (11) and (13)–(15), we conclude that for every n > N0,∫
I

sn(x) dx ≤ (M +B −A)ε.

The result follows. ©
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Proof of Theorem 4D. For every n ∈ N and every x ∈ I, write sn(x) = max{t(x)− tn(x), 0}. Clearly
sn(x) ≥ 0 for every x ∈ I. Since t, tn ∈ S(I), it follows that sn ∈ S(I). Since the sequence tn is
increasing on I, it follows that the sequence sn is decreasing on I. Finally, since tn(x)→ u(x) as n→∞
for almost all x ∈ I, it follows that sn(x) → max{t(x) − u(x), 0} for almost all x ∈ I. It now follows
from Theorem 4E that

lim
n→∞

∫
I

sn(x) dx = 0. (16)

On the other hand, clearly sn(x) ≥ t(x)− tn(x) for every n ∈ N and x ∈ I. It follows from Theorem 4A
that ∫

I

sn(x) dx ≥
∫

I

t(x) dx−
∫

I

tn(x) dx. (17)

The result now follows on letting n→∞ in (17) and combining with (16). ©

Corresponding to Theorem 4A, we have the following result.

THEOREM 4F. Suppose that I ⊆ R is an interval, and that u, v ∈ U(I). Then

(a) u+ v ∈ U(I) and
∫

I

(u(x) + v(x)) dx =
∫

I

u(x) dx+
∫

I

v(x) dx;

(b) for every non-negative c ∈ R, cu ∈ U(I) and
∫

I

cu(x) dx = c

∫
I

u(x) dx;

(c) if u(x) ≤ v(x) for almost all x ∈ I, then
∫

I

u(x) dx ≤
∫

I

v(x) dx; and

(d) if u(x) = v(x) for almost all x ∈ I, then
∫

I

u(x) dx =
∫

I

v(x) dx.

Proof. Since u, v ∈ U(I), there exist increasing sequences sn ∈ S(I) and tn ∈ S(I) of step functions
such that sn(x)→ u(x) and tn(x)→ v(x) as n→∞ for almost all x ∈ I, and that∫

I

u(x) dx = lim
n→∞

∫
I

sn(x) dx and
∫

I

v(x) dx = lim
n→∞

∫
I

tn(x) dx. (18)

It follows that sn +tn and csn for any c ≥ 0 are increasing sequences of step functions on I. Furthermore,
sn(x) + tn(x)→ u(x) + v(x) and csn(x)→ cu(x) as n→∞ for almost all x ∈ I. By definition, we have∫

I

(u(x) + v(x)) dx = lim
n→∞

∫
I

(sn(x) + tn(x)) dx and
∫

I

cu(x) dx = lim
n→∞

∫
I

csn(x) dx, (19)

provided that the limits exist. In view of Theorem 4A, we have, for every n ∈ N, that∫
I

(sn(x) + tn(x)) dx =
∫

I

sn(x) dx+
∫

I

tn(x) dx and
∫

I

csn(x) dx = c

∫
I

sn(x) dx. (20)

(a) and (b) now follow on letting n→∞ in (20) and combining with (18) and (19). To prove (c), note
that for every m ∈ N, we have

sm(x) ≤ u(x) ≤ v(x) = lim
n→∞

tn(x)

for almost all x ∈ I. It follows from Theorem 4D that∫
I

sm(x) dx ≤ lim
n→∞

∫
I

tn(x) dx =
∫

I

v(x) dx.
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(c) now follows on letting m→∞. To prove (d), note that we clearly have u(x) ≤ v(x) and v(x) ≤ u(x)
for almost all x ∈ I. It follows from (c) that∫

I

u(x) dx ≤
∫

I

v(x) dx and
∫

I

v(x) dx ≤
∫

I

u(x) dx.

Equality therefore must hold. ©

Definition. Suppose that S ⊆ R. For functions f : S → R and g : S → R, we define the maximum and
minimum functions max{f, g} : S → R and min{f, g} : S → R by writing

max{f, g}(x) = max{f(x), g(x)} and min{f, g}(x) = min{f(x), g(x)}

for every x ∈ S.

THEOREM 4G. Suppose that I ⊆ R is an interval, and that u, v ∈ U(I). Then so are max{u, v} and
min{u, v}.

Proof. Since u, v ∈ U(I), there exist increasing sequences sn ∈ S(I) and tn ∈ S(I) of step functions
such that sn(x) → u(x) and tn(x) → v(x) as n → ∞ for almost all x ∈ I. It is easy to see that
an = max{sn, tn} and bn = min{sn, tn} are increasing sequences of step functions on I, and that
an(x) → max{u, v}(x) and bn(x) → min{u, v}(x) as n → ∞ for almost all x ∈ I. It remains to show
that both sequences ∫

I

an(x) dx and
∫

I

bn(x) dx

are convergent. To establish the convergence of the sequence∫
I

bn(x) dx, (21)

note that it is increasing. On the other hand, for every n ∈ N, we have bn(x) ≤ sn(x) ≤ u(x) for almost
all x ∈ I. It follows from Theorem 4F(c) that∫

I

bn(x) dx ≤
∫

I

u(x) dx,

so that (21) is bounded above. Finally, it is not difficult to check that for every n ∈ N, we have
an + bn = sn + tn, so that an = sn + tn − bn. It follows from Theorem 4A that∫

I

an(x) dx =
∫

I

sn(x) dx+
∫

I

tn(x) dx−
∫

I

bn(x) dx. (22)

The convergence of the left hand side of (22) follows immediately from the convergence of the right hand
side. ©

Corresponding to Theorem 4B, we have the following result.

THEOREM 4H. Suppose that the interval I ⊆ R can be written in the form I = I1 ∪ I2, where the
intervals I1 and I2 have no interior points in common. Suppose further that u ∈ U(I), and that u(x) ≥ 0
for almost all x ∈ I. Then u ∈ U(I1) and u ∈ U(I2), and∫

I

u(x) dx =
∫

I1

u(x) dx+
∫

I2

u(x) dx.

This is complemented by the following result.
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THEOREM 4J. Suppose that the interval I ⊆ R can be written in the form I = I1 ∪ I2, where the
intervals I1 and I2 have no interior points in common. Suppose further that u1 ∈ U(I1) and u2 ∈ U(I2).
Define the function u : I → R by

u(x) =
{
u1(x) if x ∈ I1,
u2(x) if x ∈ I \ I1.

Then u ∈ U(I), and ∫
I

u(x) dx =
∫

I1

u1(x) dx+
∫

I2

u2(x) dx.

Proof of Theorem 4H. Since u ∈ U(I), there exists an increasing sequence sn ∈ S(I) of step functions
such that sn(x) → u(x) as n → ∞ for almost all x ∈ I. Since u(x) ≥ 0 for almost all x ∈ I, it is easy
to see that s+

n = max{sn, 0} is an increasing sequence of step functions on I, and that s+
n (x) → u(x)

for almost all x ∈ I. It follows that for every subinterval J ⊆ I, s+
n is an increasing sequence of step

functions on J , and s+
n (x)→ u(x) for almost all x ∈ J . To show that u ∈ U(J), it remains to show that

the sequence ∫
J

s+
n (x) dx (23)

is convergent. This follows easily on noting that the sequence (23) is increasing, and that∫
J

s+
n (x) dx ≤

∫
I

s+
n (x) dx ≤

∫
I

u(x) dx,

so that it is bounded above. This proves that u ∈ U(I1) and u ∈ U(I2). To complete the proof, note
that for every n ∈ N, we have ∫

I

s+
n (x) dx =

∫
I1

s+
n (x) dx+

∫
I2

s+
n (x) dx,

in view of Theorem 4B. The result now follows on letting n→∞. ©

Proof of Theorem 4J. Since u1 ∈ U(I1), there exists an increasing sequence sn of step functions on
I1 such that sn(x)→ u1(x) as n→∞ for almost all x ∈ I1. Since u2 ∈ U(I2), there exists an increasing
sequence tn of step functions on I2 such that tn(x)→ u2(x) as n→∞ for almost all x ∈ I2. For every
n ∈ N, define the function an : I → R by writing

an(x) =
{
sn(x) if x ∈ I1,
tn(x) if x ∈ I \ I1.

It is easy to see that an is an increasing sequence of step functions on I, and that an(x) → u(x) as
n → ∞ for almost all x ∈ I. This proves that u ∈ U(I). To complete the proof, note that for every
n ∈ N, we have ∫

I

an(x) dx =
∫

I1

sn(x) dx+
∫

I2

tn(x) dx,

noting that an(x) = tn(x) for almost all x ∈ I2. The result now follows on letting n→∞. ©

4.3. Lebesgue Integrable Functions on an Interval

The final step in our definition of the Lebesgue integral concerns extending the definition of the Lebesgue
integral for upper functions to a larger collection which we shall call the Lebesgue integrable functions.
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Definition. Suppose that f : I → R is a function defined on an interval I ⊆ R. Suppose further that
there exist upper functions u : I → R and v : I → R on I such that f(x) = u(x) − v(x) for all x ∈ I.
Then we say that f is a Lebesgue integrable function on I, denoted by f ∈ L(I). We also say that f is
Lebesgue integrable over I, and define the integral of f over I by∫

I

f(x) dx =
∫

I

u(x) dx−
∫

I

v(x) dx.

The validity of the definition is justified by the following simple result. The proof is left as an exercise.

THEOREM 4K. Suppose that I ⊆ R is an interval. Suppose further that u1, v1, u2, v2 ∈ U(I), and
that u1(x)− v1(x) = u2(x)− v2(x) for every x ∈ I. Then∫

I

u1(x) dx−
∫

I

v1(x) dx =
∫

I

u2(x) dx−
∫

I

v2(x) dx.

Corresponding to Theorems 4A and 4F, we have the following result. The proof is left as an exercise.

THEOREM 4L. Suppose that I ⊆ R is an interval, and that f, g ∈ L(I). Then

(a) f + g ∈ L(I) and
∫

I

(f(x) + g(x)) dx =
∫

I

f(x) dx+
∫

I

g(x) dx;

(b) for every c ∈ R, cf ∈ L(I) and
∫

I

cf(x) dx = c

∫
I

f(x) dx;

(c) if f(x) ≥ 0 for almost all x ∈ I, then
∫

I

f(x) dx ≥ 0;

(d) if f(x) ≥ g(x) for almost all x ∈ I, then
∫

I

f(x) dx ≥
∫

I

g(x) dx; and

(e) if f(x) = g(x) for almost all x ∈ I, then
∫

I

f(x) dx =
∫

I

g(x) dx.

We now investigate some further properties of the Lebesgue integral.

THEOREM 4M. Suppose that I ⊆ R is an interval, and that f ∈ L(I). Then so are f+ = max{f, 0},
f− = max{−f, 0} and |f |. Furthermore,∣∣∣∣∫

I

f(x) dx
∣∣∣∣ ≤ ∫

I

|f(x)|dx. (24)

Proof. There exist u, v ∈ U(I) such that f(x) = u(x)− v(x) for all x ∈ I. Then

f+ = max{u− v, 0} = max{u, v} − v.

By Theorem 4G, max{u, v} ∈ U(I). It follows that f+ ∈ L(I). By Theorem 4L(a)(b), we also have
f− = f+ − f ∈ L(I) and |f | = f+ + f− ∈ L(I). On the other hand, we have −|f(x)| ≤ f(x) ≤ |f(x)|
for every x ∈ I. The inequality (24) now follows from Theorem 4L(d). ©

THEOREM 4N. Suppose that I ⊆ R is an interval, and that f, g ∈ L(I). Then so are max{f, g},
min{f, g}.

Proof. Note that

max{f, g} =
f + g + |f − g|

2
and min{f, g} =

f + g − |f − g|
2

.

The result now follows from Theorem 4L(a)(b). ©
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Corresponding to Theorems 4H and 4J, we have the following two results. The proofs are left as
exercises.

THEOREM 4P. Suppose that the interval I ⊆ R can be written in the form I = I1 ∪ I2, where the
intervals I1 and I2 have no interior points in common. Suppose further that f ∈ L(I). Then f ∈ L(I1)
and f ∈ L(I2), and ∫

I

f(x) dx =
∫

I1

f(x) dx+
∫

I2

f(x) dx.

THEOREM 4Q. Suppose that the interval I ⊆ R can be written in the form I = I1 ∪ I2, where the
intervals I1 and I2 have no interior points in common. Suppose further that f1 ∈ L(I1) and f2 ∈ L(I2).
Define the function f : I → R by

f(x) =
{
f1(x) if x ∈ I1,
f2(x) if x ∈ I \ I1.

Then f ∈ L(I), and ∫
I

f(x) dx =
∫

I1

f1(x) dx+
∫

I2

f2(x) dx.

We conclude this section by proving the following two results which are qualitative statements con-
cerning the approximation of a Lebesgue integrable function by an upper function and by a step function
respectively.

THEOREM 4R. Suppose that I ⊆ R is an interval, and that f ∈ L(I). Then for every ε > 0, there
exist u, v ∈ U(I) satisfying the following conditions:
(a) f(x) = u(x)− v(x) for every x ∈ I;
(b) v(x) ≥ 0 for almost all x ∈ I; and

(c)
∫

I

v(x) dx < ε.

Proof. There exist u1, v1 ∈ U(I) such that f = u1 − v1 on I. Suppose that v1 is generated by the
sequence of step functions tn ∈ S(I). Since∫

I

v1(x) dx = lim
n→∞

∫
I

tn(x) dx,

it follows that there exists N ∈ N such that

0 ≤
∫

I

(v1(x)− tN (x)) dx =
∣∣∣∣∫

I

v1(x) dx−
∫

I

tN (x) dx
∣∣∣∣ < ε.

Let u = u1 − tN and v = v1 − tN on I. Then it is easy to see that u, v ∈ U(I). Also (a) and (c) follow
immediately. To show (b), note that the sequence tn is increasing, and that tn(x) → v1(x) as n → ∞
for almost all x ∈ I. ©

THEOREM 4S. Suppose that I ⊆ R is an interval, and that f ∈ L(I). Then for every ε > 0, there
exist s ∈ S(I) and g ∈ L(I) satisfying the following conditions:
(a) f(x) = s(x) + g(x) for every x ∈ I;and

(b)
∫

I

|g(x)|dx < ε.
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Proof. By Theorem 4R, there exist u, v ∈ U(I) such that f = u− v on I, v(x) ≥ 0 for almost all x ∈ I,
and

0 ≤
∫

I

v(x) dx <
ε

2
. (25)

Suppose that u is generated by the sequence of step functions sn ∈ S(I). Since∫
I

u(x) dx = lim
n→∞

∫
I

sn(x) dx,

it follows that there exists N ∈ N such that

0 ≤
∫

I

(u(x)− sN (x)) dx =
∣∣∣∣∫

I

u(x) dx−
∫

I

sN (x) dx
∣∣∣∣ < ε

2
. (26)

Let s = sN and g = u − (v + sN ) on I. Clearly s ∈ S(I) and g = L(I). Also (a) follows immediately.
On the other hand, we have

|g(x)| ≤ |u(x)− sN (x)|+ |v(x)| = (u(x)− sN (x)) + v(x)

for almost all x ∈ I. It follows from Theorem 4L, (25) and (26) that∫
I

|g(x)|dx ≤
∫

I

(u(x)− sN (x) + v(x)) dx =
∫

I

(u(x)− sN (x)) dx+
∫

I

v(x) dx < ε.

This gives (b). ©

4.4. Sets of Measure Zero

In this section, we shall show that the behaviour of a Lebesgue integrable function on a set of measure
zero does not affect the integral. More precisely, we prove the following result.

THEOREM 4T. Suppose that I ⊆ R is an interval, and that f ∈ L(I). Suppose further that the
function g : I → R is such that f(x) = g(x) for almost all x ∈ I. Then g ∈ L(I), and∫

I

f(x) dx =
∫

I

g(x) dx.

Example 4.4.1. Consider the function g : [0, 1]→ R, defined by

g(x) =
{ 0 if x is rational,

1 if x is irrational.

Let f(x) = 1 for every x ∈ [0, 1]. Then f ∈ L([0, 1]), and∫
[0,1]

f(x) dx = 1.

Note next that the set of rational numbers in [0, 1] is a set of measure zero. It follows from Theorem 4T
that g ∈ L([0, 1]), and ∫

[0,1]

g(x) dx = 1.

Recall, however, that the function g is not Riemann integrable over [0, 1].
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The proof of Theorem 4T depends on the following intermediate result.

THEOREM 4U. Suppose that I ⊆ R is an interval. Suppose further that the function f : I → R is
such that f(x) = 0 for almost all x ∈ I. Then f ∈ L(I), and∫

I

f(x) dx = 0.

Proof. Let sn : I → R satisfy sn(x) = 0 for all x ∈ I. Then sn is an increasing sequence of step
functions which converges to 0 everywhere in I. It follows that sn(x) = f(x) for almost all x ∈ I.
Furthermore, it is clear that

lim
n→∞

∫
I

sn(x) dx = 0.

It follows that f ∈ U(I), and ∫
I

f(x) dx = lim
n→∞

∫
I

sn(x) dx = 0

as required. ©

Proof of Theorem 4T. In view of Theorem 4U, we have g − f ∈ L(I), and∫
I

(g(x)− f(x)) dx = 0.

Note next that g = f + (g − f), and the result follows from Theorem 4L(a). ©

4.5. Relationship with Riemann Integration

We conclude this chapter by showing that Lebesgue integration is indeed a generalization of Riemann
integration. We prove the following result. Suppose that A,B ∈ R and A < B throughout this section.

THEOREM 4V. Suppose that the function f : [A,B] → R is bounded. Suppose further that f is
Riemann integrable over [A,B].
(a) Then the set D of discontinuities of f in [A,B] has measure zero.
(b) Furthermore, f ∈ U([A,B]), and the Lebesgue integral of f over [A,B] is equal to the Riemann

integral of f over [A,B].

Remarks. (1) In fact, it can be shown that for any bounded function f : [A,B]→ R, the condition (a)
is equivalent to the condition that f is Riemann integrable over [A,B].

(2) Note that if f is Riemann integrable over [A,B], then it is an upper function on [A,B]. We shall
show in the proof that the step functions generating f arise from some lower Riemann sums.

Proof of Theorem 4V. (a) For every x ∈ [A,B], write

ω(x) = lim
h→0+

sup
y∈[A,B]∩(x−h,x+h)

|f(y)− f(x)|.

It can be shown that ω(x0) = 0 if and only if f is continuous at x0. It follows that we can write

D =
∞⋃

k=1

Dk,
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where, for every k ∈ N,

Dk =
{
x ∈ [A,B] : ω(x) ≥ 1

k

}
.

Suppose on the contrary that D does not have measure zero. Then by Theorem 3M, there exists k0 ∈ N
such that Dk0 does not have measure zero, so that there exists ε0 > 0 such that every countable collection
of open intervals covering Dk0 has a sum of lengths at least ε0. Suppose that

∆ : A = x0 < x1 < x2 < . . . < xn = B

is a dissection of the interval [A,B]. Then

S(f,∆)− s(f,∆) =
n∑

i=1

(xi − xi−1)

(
sup

x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x)

)
.

Write

S(f,∆)− s(f,∆) = T1 + T2 ≥ T1, (27)

where

T1 =
n∑

i=1
(xi−1,xi)∩Dk0 6=∅

(xi − xi−1)

(
sup

x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x)

)
(28)

and

T2 =
n∑

i=1
(xi−1,xi)∩Dk0=∅

(xi − xi−1)

(
sup

x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x)

)
.

Note that the open intervals in T1 cover Dk0 , with the possible exception of a finite number of points
(which has total measure zero). It follows that the total length of the intervals in T1 is at least ε0. In
other words,

n∑
i=1

(xi−1,xi)∩Dk0 6=∅

(xi − xi−1) ≥ ε0. (29)

On the other hand,

sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) ≥ 1
k0

(30)

whenever (xi−1, xi) ∩ Dk0 6= ∅. Combining (28)–(30), we conclude that

T1 ≥
ε0
k0
. (31)

It now follows from (27) and (31) that

S(f,∆)− s(f,∆) ≥ ε0
k0
. (32)

Note finally that (32) holds for every dissection ∆ of [A,B]. It follows that f is not Riemann integrable
over [A,B].
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(b) For every n ∈ N, consider the dissection

∆n : A = x0 < x1 < x2 < . . . < x2n = B

of the interval [A,B] into 2n equal subintervals of length (B −A)/2n, and note that the subintervals of
∆n+1 can be obtained by bisecting the subintervals of ∆n. For every i = 1, . . . , 2n, let

mi = inf{f(x) : x ∈ [xi−1, xi]}, (33)

and define a step function sn : [A,B]→ R by

sn(x) =
{
mi if x ∈ (xi−1, xi],
m1 if x = x0.

(34)

It is easy to check (the reader is advised to draw a picture) that

sn(x) ≤ f(x) (35)

for every x ∈ [A,B], and that the sequence sn is increasing on [A,B]. To show that f ∈ U([A,B]), it
remains to show that sn(x)→ f(x) as n→∞ for almost all x ∈ [A,B], and that the sequence∫

[A,B]

sn(x) dx = s(f,∆n) (36)

is convergent. Since the set of discontinuities of f in [A,B] has measure zero, to show that sn(x)→ f(x)
as n→∞ for almost all x ∈ [A,B], it suffices to show that sn(x0)→ f(x0) as n→∞ at every point x0

of continuity of f . Suppose now that f is continuous at x0. Then given any ε > 0, there exists δ > 0
such that

f(x0)− ε < f(x) < f(x0) + ε for every x ∈ (x0 − δ, x0 + δ).

Let

m(δ) = inf{f(x) : x ∈ (x0 − δ, x0 + δ)}. (37)

Then f(x0)− ε ≤ m(δ), and so

f(x0) ≤ m(δ) + ε. (38)

On the other hand, there clearly exists N ∈ N large enough such that an interval [xi−1, xi] in the
dissection ∆N contains x0 and lies inside (x0 − δ, x0 + δ); in other words,

x0 ∈ [xi−1, xi] ⊂ (x0 − δ, x0 + δ) (39)

(the reader is advised to draw a picture). Then, in view of (33)–(35) and (37)–(39), we have

SN (x0) ≤ f(x0) ≤ m(δ) + ε ≤ mi + ε = SN (x0) + ε. (40)

Since the sequence sn is increasing on [A,B], it follows from (35) and (40) that for every n > N , we
have

sn(x0) ≤ f(x0) ≤ SN (x0) + ε ≤ Sn(x0) + ε.

Hence |sn(x0)− f(x0)| < ε for every n > N , whence sn(x0) → f(x0) as n → ∞. Finally, note that the
sequence (36) is increasing and bounded above. Clearly it converges to the Riemann integral of f over
[A,B]. ©
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