INTRODUCTION TO LEBESGUE INTEGRATION

W W L CHEN

© W W L Chen, 1977, 2008.

This chapter was first written in 1977 while the author was an undergraduate at Imperial College, University of London.

It is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied, with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system without permission from the author, unless such system is not accessible to any individuals other than its owners.

Chapter 4

THE LEBESGUE INTEGRAL

4.1. Step Functions on an Interval

The first step in our definition of the Lebesgue integral concerns step functions. In this section, we formulate a definition of the Lebesgue integral for step functions in terms of Riemann integrals, and study some of its properties.

DEFINITION. Suppose that $A, B \in \mathbb{R}$ and A < B. A function $s : [A, B] \to \mathbb{R}$ is called a step function on [A, B] if there exist a dissection $A = x_0 < x_1 < \ldots < x_n = B$ of [A, B] and numbers $c_1, \ldots, c_n \in \mathbb{R}$ such that for every $k = 1, \ldots, n$, we have $s(x) = c_k$ for every $x \in (x_{k-1}, x_k)$.

REMARK. Note that we have not imposed any conditions on $s(x_k)$ for any k = 0, 1, ..., n, except that they are real-valued. This is in view of the fact that a Riemann integral is unchanged if we alter the value of the function at a finite number of points.

For every $k = 1, \ldots, n$, the integral

$$\int_{x_{k-1}}^{x_k} s(x) \, \mathrm{d}x = c_k (x_k - x_{k-1})$$

in the sense of Riemann. Also the integral

$$\int_{A}^{B} s(x) dx = \sum_{k=1}^{n} c_k (x_k - x_{k-1})$$
 (1)

in the sense of Riemann, and is in fact independent of the choice of the dissection of [A, B], provided that s(x) is constant in any open subinterval arising from the dissection.

Chapter 4: The Lebesgue Integral

We now make a simple generalization.

DEFINITION. Suppose that $I \subseteq \mathbb{R}$ is an interval. We say that a function $s: I \to \mathbb{R}$ is a step function on I, denoted by $s \in \mathcal{S}(I)$, if there exists a finite subinterval $(A, B) \subseteq I$ such that $s: [A, B] \to \mathbb{R}$ is a step function on [A, B] and s(x) = 0 for every $x \in I \setminus [A, B]$. Furthermore, the integral

$$\int_{I} s(x) \, \mathrm{d}x \tag{2}$$

is defined by the integral of s over [A, B] given by (1).

REMARKS. (1) Note that in the above definition, the function $s: I \to \mathbb{R}$ may not be defined at x = A and/or x = B. In this case, we may assign s(A) and s(B) arbitrary finite values, and note that (1) is not affected by this process.

(2) Of course, the choice of the interval [A, B] may not be unique. However, in view of the requirement that s(x) = 0 for every $x \in I \setminus [A, B]$, it is not difficult to see that the value of the integral (2) is independent of the choice of such [A, B].

The following theorem can be deduced directly from the definitions.

THEOREM 4A. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $s, t \in \mathcal{S}(I)$. Then

(a)
$$s+t \in \mathcal{S}(I)$$
 and $\int_I (s(x)+t(x)) dx = \int_I s(x) dx + \int_I t(x) dx$;

(b) for every
$$c \in \mathbb{R}$$
, $cs \in \mathcal{S}(I)$ and $\int_I cs(x) dx = c \int_I s(x) dx$; and

(c) if
$$s(x) \le t(x)$$
 for every $x \in I$, then $\int_I s(x) dx \le \int_I t(x) dx$.

PROOF. (a) From the definition, there exist intervals $(A_1, B_1) \subseteq I$ and $(A_2, B_2) \subseteq I$ such that s and t are step functions on $[A_1, B_1]$ and $[A_2, B_2]$ respectively,

$$\int_I s(x) \, \mathrm{d}x = \int_{A_1}^{B_1} s(x) \, \mathrm{d}x \qquad \text{and} \qquad \int_I t(x) \, \mathrm{d}x = \int_{A_2}^{B_2} t(x) \, \mathrm{d}x,$$

and that s(x) = 0 for every $x \in I \setminus [A_1, B_1]$ and t(x) = 0 for every $x \in I \setminus [A_2, B_2]$. Furthermore, the integrals

$$\int_{A_1}^{B_1} s(x) \, \mathrm{d}x \qquad \text{and} \qquad \int_{A_2}^{B_2} t(x) \, \mathrm{d}x$$

are in the sense of Riemann. Now let $A = \min\{A_1, A_2\}$ and $B = \max\{B_1, B_2\}$. Then

$$(A_1, B_1) \subseteq (A, B) \subseteq I$$
 and $(A_2, B_2) \subseteq (A, B) \subseteq I$.

Furthermore, it is easy to see that both s and t are step functions in [A, B], and that s(x) = t(x) = 0 for every $x \in I \setminus [A, B]$. Hence

$$\int_{I} s(x) dx = \int_{A}^{B} s(x) dx \quad \text{and} \quad \int_{I} t(x) dx = \int_{A}^{B} t(x) dx. \tag{3}$$

Note also that the integrals

$$\int_{A}^{B} s(x) dx \quad \text{and} \quad \int_{A}^{B} t(x) dx$$

are in the sense of Riemann. On the other hand, it is easily checked that s+t is a step function on [A, B], and that s(x) + t(x) = 0 for every $x \in I \setminus [A, B]$. By definition, we have

$$\int_{I} (s(x) + t(x)) dx = \int_{A}^{B} (s(x) + t(x)) dx.$$
 (4)

Note, however, that

$$\int_{A}^{B} (s(x) + t(x)) dx = \int_{A}^{B} s(x) dx + \int_{A}^{B} t(x) dx,$$
 (5)

where the integrals in (5) are in the sense of Riemann. The result now follows on combining (3)–(5).

(b) From the definition, there exists an interval $(A, B) \subseteq I$ such that s is a step function on [A, B],

$$\int_{I} s(x) \, \mathrm{d}x = \int_{A}^{B} s(x) \, \mathrm{d}x,\tag{6}$$

and that s(x) = 0 for every $x \in I \setminus [A, B]$. Furthermore, the integral

$$\int_{A}^{B} s(x) \, \mathrm{d}x$$

is in the sense of Riemann. It is easy to see that cs is a step function on [A, B], and that cs(x) = 0 for every $x \in I \setminus [A, B]$. By definition, we have

$$\int_{I} cs(x) dx = \int_{A}^{B} cs(x) dx.$$
(7)

Note, however, that

$$\int_{A}^{B} cs(x) dx = c \int_{A}^{B} s(x) dx,$$
(8)

where the integrals in (8) are in the sense of Riemann. The result now follows on combining (6)–(8).

(c) We follow the argument in part (a) and note, instead, that

$$\int_{A}^{B} s(x) \, \mathrm{d}x \le \int_{A}^{B} t(x) \, \mathrm{d}x,\tag{9}$$

where the integrals in (9) are in the sense of Riemann. The result now follows on combining (3) and (9).

THEOREM 4B. Suppose that the interval $I \subseteq \mathbb{R}$ can be written in the form $I = I_1 \cup I_2$, where the intervals I_1 and I_2 have no interior points in common. Suppose further that $s \in \mathcal{S}(I)$. Then

$$\int_{I} s(x) \, dx = \int_{I_{1}} s(x) \, dx + \int_{I_{2}} s(x) \, dx.$$

PROOF. For j=1,2, let $\chi_j:I\to\mathbb{R}$ denote the characteristic function of the interval I_j . Then $s(x)=s(x)\chi_1(x)+s(x)\chi_2(x)$ for every $x\in I$, apart from possibly a finite number of exceptions (which do not affect the values of the integrals). Note now that $s(x)\chi_j(x)$ is a step function on I_1 , I_2 and I,

and that $s(x)\chi_j(x) = 0$ for every $x \in I \setminus I_j$. Furthermore, $s(x)\chi_j(x) = s(x)$ for every $x \in I_j$. It follows that

$$\int_I s(x) \, \mathrm{d}x = \int_I (s(x)\chi_1(x) + s(x)\chi_2(x)) \, \mathrm{d}x = \int_I s(x)\chi_1(x) \, \mathrm{d}x + \int_I s(x)\chi_2(x) \, \mathrm{d}x = \int_{I_1} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_1} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_1} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{I_2} s(x) \, \mathrm{d}x + \int_{I_2} s(x) \, \mathrm{d}x = \int_{$$

as required. ()

4.2. Upper Functions on an Interval

The second step in our definition of the Lebesgue integral concerns extending the definition of the Lebesgue integral for step functions to a larger collection which we shall call the upper functions. In this section, we formulate a definition of the Lebesgue integral for upper functions by studying sequences of step functions, and study some of its properties.

DEFINITION. Suppose that $S \subseteq \mathbb{R}$. A sequence of functions $f_n : S \to \mathbb{R}$ is said to be increasing on S if $f_{n+1}(x) \geq f_n(x)$ for every $n \in \mathbb{N}$ and every $x \in S$. A sequence of functions $f_n : S \to \mathbb{R}$ is said to be decreasing on S if $f_{n+1}(x) \leq f_n(x)$ for every $n \in \mathbb{N}$ and every $x \in S$.

DEFINITION. Suppose that $u: I \to \mathbb{R}$ is a function defined on an interval $I \subseteq \mathbb{R}$. Suppose further that there exists a sequence of step functions $s_n \in \mathcal{S}(I)$ satisfying the following conditions:

- (a) The sequence $s_n: I \to \mathbb{R}$ is increasing on I.
- (b) $s_n(x) \to u(x)$ as $n \to \infty$ for almost all $x \in I$.
- (c) $\lim_{n\to\infty} \int_I s_n(x) dx$ exists.

Then we say that the sequence of step functions $s_n \in \mathcal{S}(I)$ generates u, and that u is an upper function on I, denoted by $u \in \mathcal{U}(I)$. Furthermore, we define the integral of u over I by

$$\int_{I} u(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{I} s_n(x) \, \mathrm{d}x. \tag{10}$$

The validity of the definition is justified by the following result.

THEOREM 4C. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $u \in \mathcal{U}(I)$. Suppose further that both sequences $s_n \in \mathcal{S}(I)$ and $t_n \in \mathcal{S}(I)$ generate u. Then

$$\lim_{n \to \infty} \int_I s_n(x) dx = \lim_{n \to \infty} \int_I t_n(x) dx.$$

Theorem 4C is a simple consequence of the following result on step functions.

THEOREM 4D. Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that the sequence $t_n \in \mathcal{S}(I)$ satisfies the following conditions:

- (a) The sequence $t_n: I \to \mathbb{R}$ is increasing on I.
- (b) There exists a function $u: I \to \mathbb{R}$ such that $t_n(x) \to u(x)$ as $n \to \infty$ for almost all $x \in I$.
- (c) $\lim_{n\to\infty} \int_I t_n(x) dx$ exists.

Then for any $t \in \mathcal{S}(I)$ satisfying $t(x) \leq u(x)$ for almost all $x \in I$, we have

$$\int_{I} t(x) \, \mathrm{d}x \le \lim_{n \to \infty} \int_{I} t_n(x) \, \mathrm{d}x.$$

PROOF OF THEOREM 4C. Note that the sequence of step functions $t_n: I \to \mathbb{R}$ satisfies hypotheses (a) and (c) of Theorem 4D. Furthermore, since this sequence generates u, it follows that hypothesis (b) of Theorem 4D is satisfied. On the other hand, for every $m \in \mathbb{N}$, it is easy to see that $s_n(x) \leq u(x)$ for almost all $x \in I$. It now follows from Theorem 4D that for every $m \in \mathbb{N}$, we have

$$\int_{I} s_{m}(x) \, \mathrm{d}x \le \lim_{n \to \infty} \int_{I} t_{n}(x) \, \mathrm{d}x,$$

and so on letting $m \to \infty$, we have

$$\lim_{m \to \infty} \int_{I} s_m(x) \, \mathrm{d}x \le \lim_{n \to \infty} \int_{I} t_n(x) \, \mathrm{d}x$$

(note here that m and n are "dummy" variables). Reversing the roles of the two sequences, the opposite inequality

$$\lim_{n \to \infty} \int_I t_n(x) \, \mathrm{d}x \le \lim_{m \to \infty} \int_I s_m(x) \, \mathrm{d}x$$

can be established by a similar argument. The result follows immediately. \bigcirc

The main part of the proof of Theorem 4D can be summarized by the following result.

THEOREM 4E. Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that the sequence $s_n \in \mathcal{S}(I)$ satisfies the following conditions:

- (a) The sequence $s_n: I \to \mathbb{R}$ is decreasing on I.
- (b) $s_n(x) \ge 0$ for every $n \in \mathbb{N}$ and every $x \in I$.
- (c) $s_n(x) \to 0$ as $n \to \infty$ for almost all $x \in I$. Then

$$\lim_{n \to \infty} \int_I s_n(x) \, \mathrm{d}x = 0.$$

PROOF. Since $s_1 \in \mathcal{S}(I)$, there exists $(A, B) \subseteq I$ such that $s_1(x) = 0$ for every $x \in I \setminus [A, B]$. For every $n \in \mathbb{N}$ and every $x \in I$, we clearly have $0 \le s_n(x) \le s_1(x)$, and so $s_n(x) = 0$ for every $x \in I \setminus [A, B]$. Since $s_n \in \mathcal{S}(I)$, it is a step function on [A, B], and

$$\int_{I} s_n(x) dx = \int_{A}^{B} s_n(x) dx,$$
(11)

where the integral on the right hand side is in the sense of Riemann. Furthermore, there exists a dissection Δ_n of [A, B] such that $s_n(x)$ is constant in any open subinterval arising from Δ_n . Let

$$\mathcal{D} = \bigcup_{n=1}^{\infty} \Delta_n$$

represent the collection of all dissection points. Since Δ_n is a finite set for every $n \in \mathbb{N}$, it follows that \mathcal{D} is countable, and so has measure 0. Next, let

$$\mathcal{E} = \{ x \in I : s_n(x) \not\to 0 \text{ as } n \to \infty \}$$

denote the set of exceptional points of non-convergence. By (c), \mathcal{E} also has measure 0, so that the set

$$\mathcal{F}=\mathcal{D}\cup\mathcal{E}$$

has measure 0. Let $\epsilon > 0$ be given and fixed. Then there exists a countable collection of open intervals \mathcal{F}_k , where $k \in \mathcal{K}$, of total length less than ϵ , such that

$$\mathcal{F} \subseteq \bigcup_{k \in \mathcal{K}} \mathcal{F}_k$$
.

Suppose now that $y \in [A, B] \setminus \mathcal{F}$. On the one hand, since $y \notin \mathcal{E}$, it follows that $s_n(y) \to 0$ as $n \to \infty$, so that there exists N = N(y) such that $s_N(y) < \epsilon$. On the other hand, since $y \notin \mathcal{D}$, it follows that there is an open interval $\mathcal{I}(y)$ such that $y \in \mathcal{I}(y)$ and $s_N(x)$ is constant in $\mathcal{I}(y)$, so that $s_N(x) < \epsilon$ for every $x \in \mathcal{I}(y)$. Clearly the open intervals $\mathcal{I}(y)$, as y runs over $[A, B] \setminus \mathcal{F}$, together with the open intervals \mathcal{F}_k , where $k \in \mathcal{K}$, form an open covering of [A, B]. Since [A, B] is compact, there is a finite subcovering

$$[A,B] \subseteq \left(\bigcup_{i=1}^p \mathcal{I}(y_i)\right) \cup \left(\bigcup_{j=1}^q \mathcal{F}_j\right).$$

Let $N_0 = \max\{N(y_1), \dots, N(y_p)\}$. In view of (a), we clearly have

$$s_n(x) < \epsilon$$
 for every $n > N_0$ and $x \in \bigcup_{i=1}^p \mathcal{I}(y_i)$. (12)

Write

$$\mathcal{T}_1 = \bigcup_{j=1}^q \mathcal{F}_j$$
 and $\mathcal{T}_2 = [A, B] \setminus \mathcal{T}_1$,

and note that both can be written as finite unions of disjoint intervals. For every $n \in \mathbb{N}$, since $s_n(x) = 0$ outside [A, B], it follows that

$$\int_{A}^{B} s_n(x) dx = \int_{\mathcal{T}_1} s_n(x) dx + \int_{\mathcal{T}_2} s_n(x) dx,$$
(13)

where all the integrals are in the sense of Riemann. We now estimate each of the integrals on the right hand side of (13). To estimate the integral over \mathcal{T}_1 , let M denote an upper bound of $s_1(x)$ on [A, B]. Then $s_n(x) \leq M$ for every $x \in \mathcal{T}_1$ (why?). On the other hand, note that the intervals \mathcal{F}_k have total length less than ϵ . Hence

$$\int_{\mathcal{T}_1} s_n(x) \, \mathrm{d}x \le M\epsilon. \tag{14}$$

To estimate the integral over \mathcal{T}_2 , note that

$$\mathcal{T}_2 \subseteq \bigcup_{i=1}^p \mathcal{I}(y_i).$$

It follows from (12) that $s_n(x) < \epsilon$ for every $n > N_0$ and $x \in \mathcal{T}_2$. On the other hand, note that $\mathcal{T}_2 \subseteq [A, B]$. Hence for every $n > N_0$,

$$\int_{\mathcal{T}_2} s_n(x) \, \mathrm{d}x \le \epsilon (B - A). \tag{15}$$

Combining (11) and (13)–(15), we conclude that for every $n > N_0$,

$$\int_{I} s_n(x) \, \mathrm{d}x \le (M + B - A)\epsilon.$$

The result follows. \bigcirc

PROOF OF THEOREM 4D. For every $n \in \mathbb{N}$ and every $x \in I$, write $s_n(x) = \max\{t(x) - t_n(x), 0\}$. Clearly $s_n(x) \geq 0$ for every $x \in I$. Since $t, t_n \in \mathcal{S}(I)$, it follows that $s_n \in \mathcal{S}(I)$. Since the sequence t_n is increasing on I, it follows that the sequence s_n is decreasing on I. Finally, since $t_n(x) \to u(x)$ as $n \to \infty$ for almost all $x \in I$, it follows that $s_n(x) \to \max\{t(x) - u(x), 0\}$ for almost all $x \in I$. It now follows from Theorem 4E that

$$\lim_{n \to \infty} \int_{I} s_n(x) \, \mathrm{d}x = 0. \tag{16}$$

On the other hand, clearly $s_n(x) \ge t(x) - t_n(x)$ for every $n \in \mathbb{N}$ and $x \in I$. It follows from Theorem 4A that

$$\int_{I} s_n(x) \, \mathrm{d}x \ge \int_{I} t(x) \, \mathrm{d}x - \int_{I} t_n(x) \, \mathrm{d}x. \tag{17}$$

The result now follows on letting $n \to \infty$ in (17) and combining with (16). \bigcirc

Corresponding to Theorem 4A, we have the following result.

THEOREM 4F. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $u, v \in \mathcal{U}(I)$. Then

(a)
$$u + v \in \mathcal{U}(I)$$
 and $\int_{I} (u(x) + v(x)) dx = \int_{I} u(x) dx + \int_{I} v(x) dx$;

(b) for every non-negative
$$c \in \mathbb{R}$$
, $cu \in \mathcal{U}(I)$ and $\int_I cu(x) dx = c \int_I u(x) dx$;

(c) if
$$u(x) \le v(x)$$
 for almost all $x \in I$, then $\int_I u(x) dx \le \int_I v(x) dx$; and

(d) if
$$u(x) = v(x)$$
 for almost all $x \in I$, then $\int_I u(x) dx = \int_I v(x) dx$.

PROOF. Since $u, v \in \mathcal{U}(I)$, there exist increasing sequences $s_n \in \mathcal{S}(I)$ and $t_n \in \mathcal{S}(I)$ of step functions such that $s_n(x) \to u(x)$ and $t_n(x) \to v(x)$ as $n \to \infty$ for almost all $x \in I$, and that

$$\int_{I} u(x) dx = \lim_{n \to \infty} \int_{I} s_n(x) dx \quad \text{and} \quad \int_{I} v(x) dx = \lim_{n \to \infty} \int_{I} t_n(x) dx.$$
 (18)

It follows that $s_n + t_n$ and cs_n for any $c \ge 0$ are increasing sequences of step functions on I. Furthermore, $s_n(x) + t_n(x) \to u(x) + v(x)$ and $cs_n(x) \to cu(x)$ as $n \to \infty$ for almost all $x \in I$. By definition, we have

$$\int_{I} (u(x) + v(x)) dx = \lim_{n \to \infty} \int_{I} (s_n(x) + t_n(x)) dx \quad \text{and} \quad \int_{I} cu(x) dx = \lim_{n \to \infty} \int_{I} cs_n(x) dx, \quad (19)$$

provided that the limits exist. In view of Theorem 4A, we have, for every $n \in \mathbb{N}$, that

$$\int_{I} (s_n(x) + t_n(x)) dx = \int_{I} s_n(x) dx + \int_{I} t_n(x) dx \quad \text{and} \quad \int_{I} cs_n(x) dx = c \int_{I} s_n(x) dx. \quad (20)$$

(a) and (b) now follow on letting $n \to \infty$ in (20) and combining with (18) and (19). To prove (c), note that for every $m \in \mathbb{N}$, we have

$$s_m(x) \le u(x) \le v(x) = \lim_{n \to \infty} t_n(x)$$

for almost all $x \in I$. It follows from Theorem 4D that

$$\int_{I} s_{m}(x) dx \le \lim_{n \to \infty} \int_{I} t_{n}(x) dx = \int_{I} v(x) dx.$$

(c) now follows on letting $m \to \infty$. To prove (d), note that we clearly have $u(x) \le v(x)$ and $v(x) \le u(x)$ for almost all $x \in I$. It follows from (c) that

$$\int_{I} u(x) \, \mathrm{d}x \le \int_{I} v(x) \, \mathrm{d}x \qquad \text{and} \qquad \int_{I} v(x) \, \mathrm{d}x \le \int_{I} u(x) \, \mathrm{d}x.$$

Equality therefore must hold. \bigcirc

DEFINITION. Suppose that $S \subseteq \mathbb{R}$. For functions $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$, we define the maximum and minimum functions $\max\{f,g\}: S \to \mathbb{R}$ and $\min\{f,g\}: S \to \mathbb{R}$ by writing

$$\max\{f, g\}(x) = \max\{f(x), g(x)\}\$$
 and $\min\{f, g\}(x) = \min\{f(x), g(x)\}\$

for every $x \in S$.

THEOREM 4G. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $u, v \in \mathcal{U}(I)$. Then so are $\max\{u, v\}$ and $\min\{u, v\}$.

PROOF. Since $u, v \in \mathcal{U}(I)$, there exist increasing sequences $s_n \in \mathcal{S}(I)$ and $t_n \in \mathcal{S}(I)$ of step functions such that $s_n(x) \to u(x)$ and $t_n(x) \to v(x)$ as $n \to \infty$ for almost all $x \in I$. It is easy to see that $a_n = \max\{s_n, t_n\}$ and $b_n = \min\{s_n, t_n\}$ are increasing sequences of step functions on I, and that $a_n(x) \to \max\{u, v\}(x)$ and $b_n(x) \to \min\{u, v\}(x)$ as $n \to \infty$ for almost all $x \in I$. It remains to show that both sequences

$$\int_I a_n(x) dx$$
 and $\int_I b_n(x) dx$

are convergent. To establish the convergence of the sequence

$$\int_{I} b_n(x) \, \mathrm{d}x,\tag{21}$$

note that it is increasing. On the other hand, for every $n \in \mathbb{N}$, we have $b_n(x) \leq s_n(x) \leq u(x)$ for almost all $x \in I$. It follows from Theorem 4F(c) that

$$\int_{I} b_n(x) \, \mathrm{d}x \le \int_{I} u(x) \, \mathrm{d}x,$$

so that (21) is bounded above. Finally, it is not difficult to check that for every $n \in \mathbb{N}$, we have $a_n + b_n = s_n + t_n$, so that $a_n = s_n + t_n - b_n$. It follows from Theorem 4A that

$$\int_{I} a_n(x) dx = \int_{I} s_n(x) dx + \int_{I} t_n(x) dx - \int_{I} b_n(x) dx.$$
 (22)

The convergence of the left hand side of (22) follows immediately from the convergence of the right hand side. \bigcirc

Corresponding to Theorem 4B, we have the following result.

THEOREM 4H. Suppose that the interval $I \subseteq \mathbb{R}$ can be written in the form $I = I_1 \cup I_2$, where the intervals I_1 and I_2 have no interior points in common. Suppose further that $u \in \mathcal{U}(I)$, and that $u(x) \geq 0$ for almost all $x \in I$. Then $u \in \mathcal{U}(I_1)$ and $u \in \mathcal{U}(I_2)$, and

$$\int_{I} u(x) dx = \int_{I_1} u(x) dx + \int_{I_2} u(x) dx.$$

This is complemented by the following result.

THEOREM 4J. Suppose that the interval $I \subseteq \mathbb{R}$ can be written in the form $I = I_1 \cup I_2$, where the intervals I_1 and I_2 have no interior points in common. Suppose further that $u_1 \in \mathcal{U}(I_1)$ and $u_2 \in \mathcal{U}(I_2)$. Define the function $u: I \to \mathbb{R}$ by

$$u(x) = \begin{cases} u_1(x) & \text{if } x \in I_1, \\ u_2(x) & \text{if } x \in I \setminus I_1. \end{cases}$$

Then $u \in \mathcal{U}(I)$, and

$$\int_{I} u(x) \, \mathrm{d}x = \int_{I_1} u_1(x) \, \mathrm{d}x + \int_{I_2} u_2(x) \, \mathrm{d}x.$$

PROOF OF THEOREM 4H. Since $u \in \mathcal{U}(I)$, there exists an increasing sequence $s_n \in \mathcal{S}(I)$ of step functions such that $s_n(x) \to u(x)$ as $n \to \infty$ for almost all $x \in I$. Since $u(x) \ge 0$ for almost all $x \in I$, it is easy to see that $s_n^+ = \max\{s_n, 0\}$ is an increasing sequence of step functions on I, and that $s_n^+(x) \to u(x)$ for almost all $x \in I$. It follows that for every subinterval $J \subseteq I$, s_n^+ is an increasing sequence of step functions on J, and $s_n^+(x) \to u(x)$ for almost all $x \in J$. To show that $u \in \mathcal{U}(J)$, it remains to show that the sequence

$$\int_{J} s_{n}^{+}(x) \, \mathrm{d}x \tag{23}$$

is convergent. This follows easily on noting that the sequence (23) is increasing, and that

$$\int_{J} s_n^+(x) \, \mathrm{d}x \le \int_{I} s_n^+(x) \, \mathrm{d}x \le \int_{I} u(x) \, \mathrm{d}x,$$

so that it is bounded above. This proves that $u \in \mathcal{U}(I_1)$ and $u \in \mathcal{U}(I_2)$. To complete the proof, note that for every $n \in \mathbb{N}$, we have

$$\int_{I} s_{n}^{+}(x) dx = \int_{I_{1}} s_{n}^{+}(x) dx + \int_{I_{2}} s_{n}^{+}(x) dx,$$

in view of Theorem 4B. The result now follows on letting $n \to \infty$. \bigcirc

PROOF OF THEOREM 4J. Since $u_1 \in \mathcal{U}(I_1)$, there exists an increasing sequence s_n of step functions on I_1 such that $s_n(x) \to u_1(x)$ as $n \to \infty$ for almost all $x \in I_1$. Since $u_2 \in \mathcal{U}(I_2)$, there exists an increasing sequence t_n of step functions on I_2 such that $t_n(x) \to u_2(x)$ as $n \to \infty$ for almost all $x \in I_2$. For every $n \in \mathbb{N}$, define the function $a_n : I \to \mathbb{R}$ by writing

$$a_n(x) = \begin{cases} s_n(x) & \text{if } x \in I_1, \\ t_n(x) & \text{if } x \in I \setminus I_1. \end{cases}$$

It is easy to see that a_n is an increasing sequence of step functions on I, and that $a_n(x) \to u(x)$ as $n \to \infty$ for almost all $x \in I$. This proves that $u \in \mathcal{U}(I)$. To complete the proof, note that for every $n \in \mathbb{N}$, we have

$$\int_{I} a_{n}(x) dx = \int_{I_{1}} s_{n}(x) dx + \int_{I_{2}} t_{n}(x) dx,$$

noting that $a_n(x) = t_n(x)$ for almost all $x \in I_2$. The result now follows on letting $n \to \infty$. \bigcirc

4.3. Lebesgue Integrable Functions on an Interval

The final step in our definition of the Lebesgue integral concerns extending the definition of the Lebesgue integral for upper functions to a larger collection which we shall call the Lebesgue integrable functions.

DEFINITION. Suppose that $f: I \to \mathbb{R}$ is a function defined on an interval $I \subseteq \mathbb{R}$. Suppose further that there exist upper functions $u: I \to \mathbb{R}$ and $v: I \to \mathbb{R}$ on I such that f(x) = u(x) - v(x) for all $x \in I$. Then we say that f is a Lebesgue integrable function on I, denoted by $f \in \mathcal{L}(I)$. We also say that f is Lebesgue integrable over I, and define the integral of f over I by

$$\int_{I} f(x) dx = \int_{I} u(x) dx - \int_{I} v(x) dx.$$

The validity of the definition is justified by the following simple result. The proof is left as an exercise.

THEOREM 4K. Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that $u_1, v_1, u_2, v_2 \in \mathcal{U}(I)$, and that $u_1(x) - v_1(x) = u_2(x) - v_2(x)$ for every $x \in I$. Then

$$\int_{I} u_{1}(x) dx - \int_{I} v_{1}(x) dx = \int_{I} u_{2}(x) dx - \int_{I} v_{2}(x) dx.$$

Corresponding to Theorems 4A and 4F, we have the following result. The proof is left as an exercise.

THEOREM 4L. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $f, g \in \mathcal{L}(I)$. Then

(a)
$$f + g \in \mathcal{L}(I)$$
 and $\int_I (f(x) + g(x)) dx = \int_I f(x) dx + \int_I g(x) dx$;

(b) for every
$$c \in \mathbb{R}$$
, $cf \in \mathcal{L}(I)$ and $\int_I cf(x) dx = c \int_I f(x) dx$;

(c) if
$$f(x) \ge 0$$
 for almost all $x \in I$, then $\int_I f(x) dx \ge 0$;

(d) if
$$f(x) \ge g(x)$$
 for almost all $x \in I$, then $\int_I f(x) dx \ge \int_I g(x) dx$; and

(e) if
$$f(x) = g(x)$$
 for almost all $x \in I$, then $\int_I f(x) dx = \int_I g(x) dx$.

We now investigate some further properties of the Lebesgue integral.

THEOREM 4M. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $f \in \mathcal{L}(I)$. Then so are $f^+ = \max\{f, 0\}$, $f^- = \max\{-f, 0\}$ and |f|. Furthermore,

$$\left| \int_{I} f(x) \, \mathrm{d}x \right| \le \int_{I} |f(x)| \, \mathrm{d}x. \tag{24}$$

PROOF. There exist $u, v \in \mathcal{U}(I)$ such that f(x) = u(x) - v(x) for all $x \in I$. Then

$$f^+ = \max\{u - v, 0\} = \max\{u, v\} - v.$$

By Theorem 4G, $\max\{u,v\} \in \mathcal{U}(I)$. It follows that $f^+ \in \mathcal{L}(I)$. By Theorem 4L(a)(b), we also have $f^- = f^+ - f \in \mathcal{L}(I)$ and $|f| = f^+ + f^- \in \mathcal{L}(I)$. On the other hand, we have $-|f(x)| \leq |f(x)|$ for every $x \in I$. The inequality (24) now follows from Theorem 4L(d). \bigcirc

THEOREM 4N. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $f, g \in \mathcal{L}(I)$. Then so are $\max\{f, g\}$, $\min\{f, g\}$.

PROOF. Note that

$$\max\{f,g\} = \frac{f+g+|f-g|}{2}$$
 and $\min\{f,g\} = \frac{f+g-|f-g|}{2}$.

The result now follows from Theorem 4L(a)(b). \bigcirc

Corresponding to Theorems 4H and 4J, we have the following two results. The proofs are left as exercises.

THEOREM 4P. Suppose that the interval $I \subseteq \mathbb{R}$ can be written in the form $I = I_1 \cup I_2$, where the intervals I_1 and I_2 have no interior points in common. Suppose further that $f \in \mathcal{L}(I)$. Then $f \in \mathcal{L}(I_1)$ and $f \in \mathcal{L}(I_2)$, and

$$\int_{I} f(x) dx = \int_{I_1} f(x) dx + \int_{I_2} f(x) dx.$$

THEOREM 4Q. Suppose that the interval $I \subseteq \mathbb{R}$ can be written in the form $I = I_1 \cup I_2$, where the intervals I_1 and I_2 have no interior points in common. Suppose further that $f_1 \in \mathcal{L}(I_1)$ and $f_2 \in \mathcal{L}(I_2)$. Define the function $f: I \to \mathbb{R}$ by

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in I_1, \\ f_2(x) & \text{if } x \in I \setminus I_1. \end{cases}$$

Then $f \in \mathcal{L}(I)$, and

$$\int_{I} f(x) dx = \int_{I_1} f_1(x) dx + \int_{I_2} f_2(x) dx.$$

We conclude this section by proving the following two results which are qualitative statements concerning the approximation of a Lebesgue integrable function by an upper function and by a step function respectively.

THEOREM 4R. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $f \in \mathcal{L}(I)$. Then for every $\epsilon > 0$, there exist $u, v \in \mathcal{U}(I)$ satisfying the following conditions:

- (a) f(x) = u(x) v(x) for every $x \in I$;
- (b) $v(x) \ge 0$ for almost all $x \in I$; and

(c)
$$\int_{I} v(x) dx < \epsilon$$
.

PROOF. There exist $u_1, v_1 \in \mathcal{U}(I)$ such that $f = u_1 - v_1$ on I. Suppose that v_1 is generated by the sequence of step functions $t_n \in \mathcal{S}(I)$. Since

$$\int_{I} v_1(x) dx = \lim_{n \to \infty} \int_{I} t_n(x) dx,$$

it follows that there exists $N \in \mathbb{N}$ such that

$$0 \le \int_I (v_1(x) - t_N(x)) \, \mathrm{d}x = \left| \int_I v_1(x) \, \mathrm{d}x - \int_I t_N(x) \, \mathrm{d}x \right| < \epsilon.$$

Let $u = u_1 - t_N$ and $v = v_1 - t_N$ on I. Then it is easy to see that $u, v \in \mathcal{U}(I)$. Also (a) and (c) follow immediately. To show (b), note that the sequence t_n is increasing, and that $t_n(x) \to v_1(x)$ as $n \to \infty$ for almost all $x \in I$. \bigcirc

THEOREM 4S. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $f \in \mathcal{L}(I)$. Then for every $\epsilon > 0$, there exist $s \in \mathcal{S}(I)$ and $g \in \mathcal{L}(I)$ satisfying the following conditions:

(a) f(x) = s(x) + g(x) for every $x \in I$; and

(b)
$$\int_{I} |g(x)| dx < \epsilon$$
.

PROOF. By Theorem 4R, there exist $u, v \in \mathcal{U}(I)$ such that f = u - v on $I, v(x) \ge 0$ for almost all $x \in I$, and

$$0 \le \int_{I} v(x) \, \mathrm{d}x < \frac{\epsilon}{2}. \tag{25}$$

Suppose that u is generated by the sequence of step functions $s_n \in \mathcal{S}(I)$. Since

$$\int_{I} u(x) dx = \lim_{n \to \infty} \int_{I} s_n(x) dx,$$

it follows that there exists $N \in \mathbb{N}$ such that

$$0 \le \int_{I} (u(x) - s_N(x)) \, \mathrm{d}x = \left| \int_{I} u(x) \, \mathrm{d}x - \int_{I} s_N(x) \, \mathrm{d}x \right| < \frac{\epsilon}{2}. \tag{26}$$

Let $s = s_N$ and $g = u - (v + s_N)$ on I. Clearly $s \in \mathcal{S}(I)$ and $g = \mathcal{L}(I)$. Also (a) follows immediately. On the other hand, we have

$$|g(x)| \le |u(x) - s_N(x)| + |v(x)| = (u(x) - s_N(x)) + v(x)$$

for almost all $x \in I$. It follows from Theorem 4L, (25) and (26) that

$$\int_{I} |g(x)| \, \mathrm{d}x \le \int_{I} (u(x) - s_N(x) + v(x)) \, \mathrm{d}x = \int_{I} (u(x) - s_N(x)) \, \mathrm{d}x + \int_{I} v(x) \, \mathrm{d}x < \epsilon.$$

This gives (b). \bigcirc

4.4. Sets of Measure Zero

In this section, we shall show that the behaviour of a Lebesgue integrable function on a set of measure zero does not affect the integral. More precisely, we prove the following result.

THEOREM 4T. Suppose that $I \subseteq \mathbb{R}$ is an interval, and that $f \in \mathcal{L}(I)$. Suppose further that the function $g: I \to \mathbb{R}$ is such that f(x) = g(x) for almost all $x \in I$. Then $g \in \mathcal{L}(I)$, and

$$\int_{I} f(x) \, \mathrm{d}x = \int_{I} g(x) \, \mathrm{d}x.$$

EXAMPLE 4.4.1. Consider the function $g:[0,1]\to\mathbb{R}$, defined by

$$g(x) = \begin{cases} 0 & \text{if } x \text{ is rational,} \\ 1 & \text{if } x \text{ is irrational.} \end{cases}$$

Let f(x) = 1 for every $x \in [0, 1]$. Then $f \in \mathcal{L}([0, 1])$, and

$$\int_{[0,1]} f(x) \, \mathrm{d}x = 1.$$

Note next that the set of rational numbers in [0,1] is a set of measure zero. It follows from Theorem 4T that $g \in \mathcal{L}([0,1])$, and

$$\int_{[0,1]} g(x) \, \mathrm{d}x = 1.$$

Recall, however, that the function g is not Riemann integrable over [0,1].

The proof of Theorem 4T depends on the following intermediate result.

THEOREM 4U. Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that the function $f: I \to \mathbb{R}$ is such that f(x) = 0 for almost all $x \in I$. Then $f \in \mathcal{L}(I)$, and

$$\int_{I} f(x) \, \mathrm{d}x = 0.$$

PROOF. Let $s_n: I \to \mathbb{R}$ satisfy $s_n(x) = 0$ for all $x \in I$. Then s_n is an increasing sequence of step functions which converges to 0 everywhere in I. It follows that $s_n(x) = f(x)$ for almost all $x \in I$. Furthermore, it is clear that

$$\lim_{n \to \infty} \int_I s_n(x) \, \mathrm{d}x = 0.$$

It follows that $f \in \mathcal{U}(I)$, and

$$\int_{I} f(x) dx = \lim_{n \to \infty} \int_{I} s_n(x) dx = 0$$

as required. \bigcirc

PROOF OF THEOREM 4T. In view of Theorem 4U, we have $g - f \in \mathcal{L}(I)$, and

$$\int_{I} (g(x) - f(x)) \, \mathrm{d}x = 0.$$

Note next that g = f + (g - f), and the result follows from Theorem 4L(a). \bigcirc

4.5. Relationship with Riemann Integration

We conclude this chapter by showing that Lebesgue integration is indeed a generalization of Riemann integration. We prove the following result. Suppose that $A, B \in \mathbb{R}$ and A < B throughout this section.

THEOREM 4V. Suppose that the function $f:[A,B] \to \mathbb{R}$ is bounded. Suppose further that f is Riemann integrable over [A,B].

- (a) Then the set \mathcal{D} of discontinuities of f in [A, B] has measure zero.
- (b) Furthermore, $f \in \mathcal{U}([A, B])$, and the Lebesgue integral of f over [A, B] is equal to the Riemann integral of f over [A, B].

REMARKS. (1) In fact, it can be shown that for any bounded function $f:[A,B] \to \mathbb{R}$, the condition (a) is equivalent to the condition that f is Riemann integrable over [A,B].

(2) Note that if f is Riemann integrable over [A, B], then it is an upper function on [A, B]. We shall show in the proof that the step functions generating f arise from some lower Riemann sums.

PROOF OF THEOREM 4V. (a) For every $x \in [A, B]$, write

$$\omega(x) = \lim_{h \to 0+} \sup_{y \in [A,B] \cap (x-h,x+h)} |f(y) - f(x)|.$$

It can be shown that $\omega(x_0) = 0$ if and only if f is continuous at x_0 . It follows that we can write

$$\mathcal{D} = \bigcup_{k=1}^{\infty} \mathcal{D}_k,$$

where, for every $k \in \mathbb{N}$,

$$\mathcal{D}_k = \left\{ x \in [A, B] : \omega(x) \ge \frac{1}{k} \right\}.$$

Suppose on the contrary that \mathcal{D} does not have measure zero. Then by Theorem 3M, there exists $k_0 \in \mathbb{N}$ such that \mathcal{D}_{k_0} does not have measure zero, so that there exists $\epsilon_0 > 0$ such that every countable collection of open intervals covering \mathcal{D}_{k_0} has a sum of lengths at least ϵ_0 . Suppose that

$$\Delta: A = x_0 < x_1 < x_2 < \ldots < x_n = B$$

is a dissection of the interval [A, B]. Then

$$S(f,\Delta) - s(f,\Delta) = \sum_{i=1}^{n} (x_i - x_{i-1}) \left(\sup_{x \in [x_{i-1}, x_i]} f(x) - \inf_{x \in [x_{i-1}, x_i]} f(x) \right).$$

Write

$$S(f, \Delta) - s(f, \Delta) = T_1 + T_2 \ge T_1,$$
 (27)

where

$$T_{1} = \sum_{\substack{i=1\\(x_{i-1},x_{i})\cap\mathcal{D}_{k_{0}}\neq\emptyset}}^{n} (x_{i} - x_{i-1}) \left(\sup_{x\in[x_{i-1},x_{i}]} f(x) - \inf_{x\in[x_{i-1},x_{i}]} f(x) \right)$$
(28)

and

$$T_2 = \sum_{\substack{i=1\\(x_{i-1},x_i)\cap \mathcal{D}_{k_0} = \emptyset}}^n (x_i - x_{i-1}) \left(\sup_{x \in [x_{i-1},x_i]} f(x) - \inf_{x \in [x_{i-1},x_i]} f(x) \right).$$

Note that the open intervals in T_1 cover \mathcal{D}_{k_0} , with the possible exception of a finite number of points (which has total measure zero). It follows that the total length of the intervals in T_1 is at least ϵ_0 . In other words,

$$\sum_{\substack{i=1\\(x_{i-1},x_i)\cap\mathcal{D}_{k_0}\neq\emptyset}}^n (x_i - x_{i-1}) \ge \epsilon_0.$$
(29)

On the other hand,

$$\sup_{x \in [x_{i-1}, x_i]} f(x) - \inf_{x \in [x_{i-1}, x_i]} f(x) \ge \frac{1}{k_0}$$
(30)

whenever $(x_{i-1}, x_i) \cap \mathcal{D}_{k_0} \neq \emptyset$. Combining (28)–(30), we conclude that

$$T_1 \ge \frac{\epsilon_0}{k_0}.\tag{31}$$

It now follows from (27) and (31) that

$$S(f,\Delta) - s(f,\Delta) \ge \frac{\epsilon_0}{k_0}.$$
(32)

Note finally that (32) holds for every dissection Δ of [A, B]. It follows that f is not Riemann integrable over [A, B].

(b) For every $n \in \mathbb{N}$, consider the dissection

$$\Delta_n: A = x_0 < x_1 < x_2 < \ldots < x_{2^n} = B$$

of the interval [A, B] into 2^n equal subintervals of length $(B - A)/2^n$, and note that the subintervals of Δ_{n+1} can be obtained by bisecting the subintervals of Δ_n . For every $i = 1, \ldots, 2^n$, let

$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\},$$
(33)

and define a step function $s_n: [A, B] \to \mathbb{R}$ by

$$s_n(x) = \begin{cases} m_i & \text{if } x \in (x_{i-1}, x_i], \\ m_1 & \text{if } x = x_0. \end{cases}$$
 (34)

It is easy to check (the reader is advised to draw a picture) that

$$s_n(x) \le f(x) \tag{35}$$

for every $x \in [A, B]$, and that the sequence s_n is increasing on [A, B]. To show that $f \in \mathcal{U}([A, B])$, it remains to show that $s_n(x) \to f(x)$ as $n \to \infty$ for almost all $x \in [A, B]$, and that the sequence

$$\int_{[A,B]} s_n(x) \, \mathrm{d}x = s(f, \Delta_n) \tag{36}$$

is convergent. Since the set of discontinuities of f in [A, B] has measure zero, to show that $s_n(x) \to f(x)$ as $n \to \infty$ for almost all $x \in [A, B]$, it suffices to show that $s_n(x_0) \to f(x_0)$ as $n \to \infty$ at every point x_0 of continuity of f. Suppose now that f is continuous at x_0 . Then given any $\epsilon > 0$, there exists $\delta > 0$ such that

$$f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$$
 for every $x \in (x_0 - \delta, x_0 + \delta)$.

Let

$$m(\delta) = \inf\{f(x) : x \in (x_0 - \delta, x_0 + \delta)\}.$$
 (37)

Then $f(x_0) - \epsilon \leq m(\delta)$, and so

$$f(x_0) \le m(\delta) + \epsilon. \tag{38}$$

On the other hand, there clearly exists $N \in \mathbb{N}$ large enough such that an interval $[x_{i-1}, x_i]$ in the dissection Δ_N contains x_0 and lies inside $(x_0 - \delta, x_0 + \delta)$; in other words,

$$x_0 \in [x_{i-1}, x_i] \subset (x_0 - \delta, x_0 + \delta) \tag{39}$$

(the reader is advised to draw a picture). Then, in view of (33)–(35) and (37)–(39), we have

$$S_N(x_0) \le f(x_0) \le m(\delta) + \epsilon \le m_i + \epsilon = S_N(x_0) + \epsilon. \tag{40}$$

Since the sequence s_n is increasing on [A, B], it follows from (35) and (40) that for every n > N, we have

$$s_n(x_0) \le f(x_0) \le S_N(x_0) + \epsilon \le S_n(x_0) + \epsilon.$$

Hence $|s_n(x_0) - f(x_0)| < \epsilon$ for every n > N, whence $s_n(x_0) \to f(x_0)$ as $n \to \infty$. Finally, note that the sequence (36) is increasing and bounded above. Clearly it converges to the Riemann integral of f over [A, B]. \bigcirc