INTRODUCTION TO LEBESGUE INTEGRATION

W W L CHEN

© W W L Chen, 1977, 2008.

This chapter was first written in 1977 while the author was an undergraduate at Imperial College, University of London.

It is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied, with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system without permission from the author, unless such system is not accessible to any individuals other than its owners.

Chapter 6

DOMINATED CONVERGENCE THEOREM

6.1. Lebesgue's Theorem

In this section, we shall deduce the following result from the Monotone convergence theorem studied in the last chapter. The result below is usually considered the cornerstone of Lebesgue integration theory.

THEOREM 6A. (LEBESGUE'S THEOREM) Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that the sequence of functions $f_n \in \mathcal{L}(I)$ satisfies the following conditions:

- (a) The sequence $f_n: I \to \mathbb{R}$ converges almost everywhere to a limit function $f: I \to \mathbb{R}$.
- (b) There exists a non-negative function $F \in \mathcal{L}(I)$ such that for every $n \in \mathbb{N}$, $|f_n(x)| \leq F(x)$ for almost all $x \in I$.

Then the limit function $f \in \mathcal{L}(I)$, the sequence

$$\int_{I} f_n(x) \, \mathrm{d}x$$

is convergent, and

$$\int_{I} f(x) dx = \lim_{n \to \infty} \int_{I} f_n(x) dx.$$
 (1)

REMARK. Note condition (b) that the sequence f_n is dominated by F almost everywhere.

PROOF OF THEOREM 6A. We shall construct two sequences $g_n, h_n \in \mathcal{L}(I)$ such that

$$g_n(x) \le f_n(x) \le h_n(x) \tag{2}$$

Chapter 6 : Dominated Convergence Theorem ______ page 1 of 5

for every $x \in I$, and where g_n is increasing and h_n is decreasing on I, and both converge to the limit function f almost everywhere on I. Clearly the sequence

$$\int_{I} g_n(x) \, \mathrm{d}x$$

is increasing and bounded above by

$$\int_{I} F(x) \, \mathrm{d}x,$$

so that

$$\lim_{n \to \infty} \int_I g_n(x) \, \mathrm{d}x$$

exists. It follows from Theorem 5C that $f \in \mathcal{L}(I)$ and

$$\int_{I} f(x) dx = \lim_{n \to \infty} \int_{I} g_n(x) dx.$$
 (3)

On the other hand, the sequence

$$\int_I h_n(x) \, \mathrm{d}x$$

is decreasing and bounded below by

$$-\int_{I} F(x) dx$$

so that

$$\lim_{n \to \infty} \int_I h_n(x) \, \mathrm{d}x$$

exists. It follows from Theorem 5C (applied to the sequence $-h_n$) that

$$\int_{I} f(x) dx = \lim_{n \to \infty} \int_{I} h_n(x) dx.$$
 (4)

Combining (3) and (4), we obtain

$$\int_{I} f(x) dx = \lim_{n \to \infty} \int_{I} g_n(x) dx = \lim_{n \to \infty} \int_{I} h_n(x) dx.$$
 (5)

On the other hand, it follows from (2) that for every $n \in \mathbb{N}$,

$$\int_{I} g_n(x) \, \mathrm{d}x \le \int_{I} f_n(x) \, \mathrm{d}x \le \int_{I} h_n(x) \, \mathrm{d}x. \tag{6}$$

The equality (1) follows on letting $n \to \infty$ in (6) and combining with (5). It remains to establish the existence of the sequences g_n and h_n . For every $n \in \mathbb{N}$, write

$$h_n(x) = \sup\{f_n(x), f_{n+1}(x), f_{n+2}(x), \ldots\}$$

for every $x \in I$. Clearly $f_n(x) \leq h_n(x)$ for every $x \in I$, and h_n is decreasing on I. Suppose that $x \in I$ and $f_n(x) \to f(x)$ as $n \to \infty$. Then given any $\epsilon > 0$, there exists N such that for every n > N,

$$f(x) - \epsilon < f_n(x) < f(x) + \epsilon$$
.

It follows that for all n > N,

$$f(x) - \epsilon < h_n(x) \le f(x) + \epsilon$$

so that $h_n(x) \to f(x)$ as $n \to \infty$. Since $f_n \to f$ as $n \to \infty$ almost everywhere on I, it follows that $h_n \to f$ as $n \to \infty$ almost everywhere on I. Unfortunately, we also need to show that $h_n \in \mathcal{L}(I)$. Here, the difficulty arises since $h_n(x)$ is defined as the supremum of a collection which may be finite or infinite. This difficulty would not have arisen if the collection were finite, since the supremum of such a collection would then be equal to its maximum, and we could then use Theorem 4N repeatedly. However, the finite case suggests the following approach. For every $m, n \in \mathbb{N}$ with m > n, write

$$h_{nm}(x) = \max\{f_n(x), f_{n+1}(x), \dots, f_m(x)\}\$$

for every $x \in I$. Then by repeated application of Theorem 4N, we have $h_{nm} \in \mathcal{L}(I)$. For every fixed $n \in \mathbb{N}$, the sequence h_{nm} (in counting variable m > n) is increasing on I. On the other hand, clearly $|h_{nm}(x)| \leq F(x)$ for almost all $x \in I$. It follows that

$$\left| \int_{I} h_{nm}(x) \, \mathrm{d}x \right| \le \int_{I} |h_{nm}(x)| \, \mathrm{d}x \le \int_{I} F(x) \, \mathrm{d}x.$$

Hence the sequence

$$\int_{I} h_{nm}(x) \, \mathrm{d}x$$

is increasing and bounded above and so converges. It follows from Theorem 5C that h_{nm} converges almost everywhere as $m \to \infty$ to a limit function in $\mathcal{L}(I)$. Clearly $h_{nm} \to h_n$ as $m \to \infty$. This proves that $h_n \in \mathcal{L}(I)$. Similarly, write

$$g_n(x) = \inf\{f_n(x), f_{n+1}(x), f_{n+2}(x), \ldots\}$$

for every $x \in I$. Clearly $g_n(x) \leq f_n(x)$ for every $x \in I$, and g_n is increasing on I. Suppose that $x \in I$ and $f_n(x) \to f(x)$ as $n \to \infty$. Then given any $\epsilon > 0$, there exists N such that for every n > N,

$$f(x) - \epsilon < f_n(x) < f(x) + \epsilon.$$

It follows that for all n > N,

$$f(x) - \epsilon \le g_n(x) < f(x) + \epsilon,$$

so that $g_n(x) \to f(x)$ as $n \to \infty$. Since $f_n \to f$ as $n \to \infty$ almost everywhere on I, it follows that $g_n \to f$ as $n \to \infty$ almost everywhere on I. To show that $g_n \in \mathcal{L}(I)$, for every $m, n \in \mathbb{N}$ with m > n, write

$$g_{nm}(x) = \min\{f_n(x), f_{n+1}(x), \dots, f_m(x)\}\$$

for every $x \in I$. Then by repeated application of Theorem 4N, we have $g_{nm} \in \mathcal{L}(I)$. For every fixed $n \in \mathbb{N}$, the sequence g_{nm} (in counting variable m > n) is decreasing on I. On the other hand, clearly $|g_{nm}(x)| \leq F(x)$ for almost all $x \in I$. It follows that

$$\left| \int_{I} g_{nm}(x) \, \mathrm{d}x \right| \le \int_{I} |g_{nm}(x)| \, \mathrm{d}x \le \int_{I} F(x) \, \mathrm{d}x.$$

Hence the sequence

$$\int_{I} g_{nm}(x) \, \mathrm{d}x$$

is decreasing and bounded below and so converges. It follows from Theorem 5C (applied to the sequence $-g_{nm}$) that g_{nm} converges almost everywhere as $m \to \infty$ to a limit function in $\mathcal{L}(I)$. Clearly $g_{nm} \to g_n$ as $m \to \infty$. This proves that $g_n \in \mathcal{L}(I)$. The proof of Theorem 6A is now complete. \bigcirc

The following version for a series can be deduced easily from Theorem 6A.

THEOREM 6B. Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that the sequence of functions $q_n \in \mathcal{L}(I)$ satisfies the following conditions:

- (a) $\sum_{n=1}^{\infty} g_n$ converges almost everywhere on I to a sum function $g: I \to \mathbb{R}$.
- (b) There exists a non-negative function $G \in \mathcal{L}(I)$ such that for every $N \in \mathbb{N}$, $\left| \sum_{n=1}^{N} g_n(x) \right| \leq G(x)$ for almost all $x \in I$.

Then $g \in \mathcal{L}(I)$, the series

$$\sum_{n=1}^{\infty} \int_{I} g_n(x) \, \mathrm{d}x$$

converges, and

$$\int_I g(x) dx = \int_I \sum_{n=1}^{\infty} g_n(x) dx = \sum_{n=1}^{\infty} \int_I g_n(x) dx.$$

6.2. Consequences of Lebesgue's Theorem

The following result is sometimes called the Bounded convergence theorem.

THEOREM 6C. Suppose that $I \subseteq \mathbb{R}$ is a bounded interval. Suppose further that the sequence of functions $f_n \in \mathcal{L}(I)$ satisfies the following conditions:

- (a) The sequence $f_n: I \to \mathbb{R}$ converges almost everywhere to a limit function $f: I \to \mathbb{R}$.
- (b) There exists $M \in \mathbb{R}$ such that for every $n \in \mathbb{N}$, $|f_n(x)| \leq M$ for almost all $x \in I$. Then the limit function $f \in \mathcal{L}(I)$, and

$$\int_{I} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{I} f_n(x) \, \mathrm{d}x.$$

Remark. In view of conditions (a) and (b), we say that the sequence f_n is boundedly convergent almost everywhere on I.

PROOF OF THEOREM 6C. Let F(x) = M for every $x \in I$, and note that since I is a bounded interval, we have $F \in \mathcal{L}(I)$. The result now follows from Theorem 6A. \bigcirc

The last result in this section is sometimes useful in establishing Lebesgue integrability.

THEOREM 6D. Suppose that $I \subseteq \mathbb{R}$ is an interval. Suppose further that the sequence of functions $f_n \in \mathcal{L}(I)$ satisfies the following conditions:

- (a) The sequence $f_n: I \to \mathbb{R}$ converges almost everywhere to a limit function $f: I \to \mathbb{R}$.
- (b) There exists a non-negative function $F \in \mathcal{L}(I)$ such that $|f(x)| \leq F(x)$ for almost all $x \in I$. Then the limit function $f \in \mathcal{L}(I)$.

PROOF. For every $n \in \mathbb{N}$, write

$$g_n(x) = \max\{\min\{f_n(x), F(x)\}, -F(x)\}$$

for every $x \in I$ (the reader is advised to draw a picture). Then $g_n \in \mathcal{L}(I)$ by Theorem 4N. It is easy to see that $|g_n(x)| \leq F(x)$ for almost all $x \in I$, and that $g_n \to f$ as $n \to \infty$ almost everywhere on I. The result follows from Theorem 6A. \bigcirc