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2.1. Homogeneous Equations

Consider the first order differential equation
(2.1) ' = Az,

where x = x(t) is an unknown scalar function, and where A is a constant.
Suppose that ¢(t) is a solution of (2.1). Then ¢'(t) = Ap(t), so that

e (' (t) — Ap(t)) = (e Mp(t)) =0,

whence e 4ty (t) = o for some constant a.

Suppose now that we have the initial condition z(ty) = z9. Then a = e~ 40 p(ty) = e~ Aoz, It
follows that
(2.2) o(t) = moett=to),
Note now that Q(t) = eA(!=%) is a solution of (2.1) satisfying Q(to) = 1. Hence (2.2) can be rewritten
in the form
(2.3) o(t) = Qt)zo.
We have proved

PROPOSITION 2.1. Suppose that A is a constant. Then the solution of the differential equation
(2.1) satisfying the initial condition x(ty) = xqo is given by (2.3), where Q(t) is a solution of (2.1)
satisfying Q(tg) = 1.

Consider next the first order differential equation
(2.4) = A(t)z,

where x = z(t) is an unknown scalar function, and where the scalar function A(¢) is continuous on
(r1,72).

Suppose that ¢(t) is a solution of (2.4). Then ¢'(t) — A(t)p(t) = 0.

We shall find a function wu(t) such that

u(t)(¢'(t) — A(t)p(t) = (u(t)e(t))".
It is easily checked that an example of such a function is given by
t
(2.5) exp (— A(s) ds) .
to
Then u(t)p(t) = « for some constant «.

Suppose now that we have the initial condition z(t9) = z¢. Then a = u(to)p(to) = u(to)ro. It
follows that

(2.6) o(t) = .
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Note now that Q(t) = wu(to)/u(t) is a solution of (2.4) satisfying Q(¢p) = 1. Hence (2.6) can be
rewritten in the form
(2.7) o(t) = Qt)zo.
We have proved
PROPOSITION 2.2. Suppose that A(t) is continuous on (r1,72). Suppose further that ty € (r1,72).

Then the solution of the equation (2.4) satisfying the initial condition x(ty) = xq is given by (2.7),
where Q(t) is a solution of (2.4) satisfying Q(tg) = 1.

2.2. Non-Homogeneous Equations

Consider now the first order differential equation
(2.8) ' = A(t)x + B(t),

where x = x(¢) is an unknown scalar function, and where the scalar functions A(t) and B(t) are
continuous on (r1,72).

Consider first the equation (2.4) with initial condition z(tg) = x¢. By Proposition 2.2, there exists
a solution Q(t) such that Q(tg) = 1 and z(t) = Q(t)xo is a solution of (2.4) with z(ty) = z. Using
this solution €(t), we shall attempt to find a solution of (2.8) which satisfies the initial condition

x(to) = Xp.
Consider the function
(2.9) p(t) = Q(t)e(t),

where we shall attempt to choose ¢(t) so that (2.9) is a solution of (2.8) with ¢(tg) = . Clearly we
need

(2.10) Q' (t)e(t) + Q) (t) = ¢'(t) = A(t)p(t) + B(t) = A(t)Qt)c(t) + B(t).

Since Q(t) is a solution of (2.4), we must have Q'(t) = A(¢)Q2(¢). For (2.10) to hold, we must therefore
have

(2.11) Q) (t) = B(t).

We note now that Q(t) # 0 for all ¢ € (r1,72). To see this, note that if Q(¢) = 0 for some ¢ € (r1,72),
then the function ¥(t) =0, t € (r1,r2), is clearly a solution of (2.4), so that Q(t) = ¢¥(t), t € (r1,72),
in view of uniqueness. We can therefore rewrite (2.11) in the form
(2.12) d(t) = Q7 (t)B(t).

Let us return to (2.9), and ensure that the initial condition ¢(tg) = x¢ is satisfied. We therefore
also need

(2.13) o = (p(to) = Q(to)c(to) = C(to).
We can now integrate (2.12) with the initial condition (2.13) to obtain

c(t) = xo —|—/ Q (s)B(s) ds.

to

We have thus proved

PROPOSITION 2.3. Suppose that A(t) and B(t) are continuous on (r1,rs). Suppose further that
to € (r1,72). Then the solution of the equation (2.8) with initial condition x(tg) = o s given by

z(t) = Qt)zo + [ QHQ 7 (s)B(s) ds,

to
where Q(t) is a solution of (2.4) satisfying Q(tp) = 1.

Recall that Q(t) = u(to)/u(t), where u(t) is given by (2.5), is a solution of (2.4) satisfying Q(¢9) = 1.

In this case,
t
Q(t) = exp </ A(s) ds) .
to



2.2. NON-HOMOGENEOUS EQUATIONS

It now follows from Proposition 2.3 that

2(t) = g exp ( /t t A(s) ds> +exp ( /t t A(s) ds) /t t exp <— /t j Au) du) B(s) ds,

a more familiar form of solution of the equation (2.8).
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Problems for Chapter 2

1. Solve each of the following differential equations for the unknown scalar function x = x(t) with
given initial condition:
(i) ' =z + 2e! and z(0) =1
(i) o’ = —ttx—t2and 2(1) =1
(iii) 2’ = —(t + 1)t~ 1z — 3t%e !t and x(1) =1
2. The differential equation
Y+ alt)y = B(t)y",
where k is a constant, is called the Bernoulli equation.
(i) Show that the substitution x = y'~* transforms this equation into a linear equation.
(i) Find all the solutions of y/ — 2ty = ty?.

3. Consider the homogeneous differential equation ' = A(t)z, where the function A(t) is continuous
on (—oo,00) and periodic with period £ > 0, i.e. A(t+¢&) = A(t) for every t € (—o0, 00).

(i) Suppose that ¢(t) is a non-trivial solution, and that ¢ (t) = ¢(t + &) for every t € (—o0, c0).
Show that (t) is also a solution.

(ii) Show that there is a constant ¢ such that ¢(t + &) = cp(t) for every t € (—o0,00). Find an
explicit expression for this constant c.

(iii) What condition must the function A(t) satisfy in order that there exists a non-trivial solution
of period 2£7

(iv) If A(t) is real valued, what is the condition in (iii)?

(v) If A(t) is constant, what is the condition in (iii)?

4. Consider the non-homogeneous differential equation 2’ = A(t)x + B(t), where the functions A(t)
and B(t) are continuous and real valued on (—o0o,00) and periodic with period £ > 0, and that the
function B(t) is not identically zero.

(i) Show that a solution ¢(t) is periodic with period ¢ if and only if ¢(0) = p(&).
(ii) Show that there exists a unique solution with period ¢ if there is no non-trivial solution of
the homogeneous equation with period &.
(iii) Suppose that there is a non-trivial solution of the homegeneous equation with period &.
Show that there are periodic solutions of period ¢ of the non-homogeneous equation if and

only if
/o5 exp (— /Ot Als) ds) B(t)dt = 0.

(iv) Find solutions of period 27 for the equation 2’ = 3z + sint.



