CHAPTER 2

First Order Linear Equations

© W W L Chen, 1991, 2013.

This chapter is available free to all individuals,
on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

2.1. Homogeneous Equations

Consider the first order differential equation

$$(2.1) x' = Ax$$

where x = x(t) is an unknown scalar function, and where A is a constant.

Suppose that $\varphi(t)$ is a solution of (2.1). Then $\varphi'(t) = A\varphi(t)$, so that

$$e^{-At}(\varphi'(t) - A\varphi(t)) = (e^{-At}\varphi(t))' = 0,$$

whence $e^{-At}\varphi(t) = \alpha$ for some constant α .

Suppose now that we have the initial condition $x(t_0) = x_0$. Then $\alpha = e^{-At_0}\varphi(t_0) = e^{-At_0}x_0$. It follows that

(2.2)
$$\varphi(t) = x_0 e^{A(t-t_0)}.$$

Note now that $\Omega(t) = e^{A(t-t_0)}$ is a solution of (2.1) satisfying $\Omega(t_0) = 1$. Hence (2.2) can be rewritten in the form

(2.3)
$$\varphi(t) = \Omega(t)x_0.$$

We have proved

PROPOSITION 2.1. Suppose that A is a constant. Then the solution of the differential equation (2.1) satisfying the initial condition $x(t_0) = x_0$ is given by (2.3), where $\Omega(t)$ is a solution of (2.1) satisfying $\Omega(t_0) = 1$.

Consider next the first order differential equation

$$(2.4) x' = A(t)x,$$

where x = x(t) is an unknown scalar function, and where the scalar function A(t) is continuous on (r_1, r_2) .

Suppose that $\varphi(t)$ is a solution of (2.4). Then $\varphi'(t) - A(t)\varphi(t) = 0$.

We shall find a function u(t) such that

$$u(t)(\varphi'(t) - A(t)\varphi(t)) = (u(t)\varphi(t))'.$$

It is easily checked that an example of such a function is given by

(2.5)
$$\exp\left(-\int_{t_0}^t A(s) \,\mathrm{d}s\right).$$

Then $u(t)\varphi(t) = \alpha$ for some constant α .

Suppose now that we have the initial condition $x(t_0) = x_0$. Then $\alpha = u(t_0)\varphi(t_0) = u(t_0)x_0$. It follows that

(2.6)
$$\varphi(t) = \frac{u(t_0)}{u(t)} x_0.$$

Note now that $\Omega(t) = u(t_0)/u(t)$ is a solution of (2.4) satisfying $\Omega(t_0) = 1$. Hence (2.6) can be rewritten in the form

We have proved

PROPOSITION 2.2. Suppose that A(t) is continuous on (r_1, r_2) . Suppose further that $t_0 \in (r_1, r_2)$. Then the solution of the equation (2.4) satisfying the initial condition $x(t_0) = x_0$ is given by (2.7), where $\Omega(t)$ is a solution of (2.4) satisfying $\Omega(t_0) = 1$.

2.2. Non-Homogeneous Equations

Consider now the first order differential equation

$$(2.8) x' = A(t)x + B(t),$$

where x = x(t) is an unknown scalar function, and where the scalar functions A(t) and B(t) are continuous on (r_1, r_2) .

Consider first the equation (2.4) with initial condition $x(t_0) = x_0$. By Proposition 2.2, there exists a solution $\Omega(t)$ such that $\Omega(t_0) = 1$ and $x(t) = \Omega(t)x_0$ is a solution of (2.4) with $x(t_0) = x_0$. Using this solution $\Omega(t)$, we shall attempt to find a solution of (2.8) which satisfies the initial condition $x(t_0) = x_0$.

Consider the function

(2.9)
$$\varphi(t) = \Omega(t)c(t),$$

where we shall attempt to choose c(t) so that (2.9) is a solution of (2.8) with $\varphi(t_0) = x_0$. Clearly we need

(2.10)
$$\Omega'(t)c(t) + \Omega(t)c'(t) = \varphi'(t) = A(t)\varphi(t) + B(t) = A(t)\Omega(t)c(t) + B(t).$$

Since $\Omega(t)$ is a solution of (2.4), we must have $\Omega'(t) = A(t)\Omega(t)$. For (2.10) to hold, we must therefore have

(2.11)
$$\Omega(t)c'(t) = B(t).$$

We note now that $\Omega(t) \neq 0$ for all $t \in (r_1, r_2)$. To see this, note that if $\Omega(t) = 0$ for some $t \in (r_1, r_2)$, then the function $\psi(t) = 0$, $t \in (r_1, r_2)$, is clearly a solution of (2.4), so that $\Omega(t) = \psi(t)$, $t \in (r_1, r_2)$, in view of uniqueness. We can therefore rewrite (2.11) in the form

(2.12)
$$c'(t) = \Omega^{-1}(t)B(t).$$

Let us return to (2.9), and ensure that the initial condition $\varphi(t_0) = x_0$ is satisfied. We therefore also need

$$(2.13) x_0 = \varphi(t_0) = \Omega(t_0)c(t_0) = c(t_0).$$

We can now integrate (2.12) with the initial condition (2.13) to obtain

$$c(t) = x_0 + \int_{t_0}^t \Omega^{-1}(s)B(s) ds.$$

We have thus proved

PROPOSITION 2.3. Suppose that A(t) and B(t) are continuous on (r_1, r_2) . Suppose further that $t_0 \in (r_1, r_2)$. Then the solution of the equation (2.8) with initial condition $x(t_0) = x_0$ is given by

$$x(t) = \Omega(t)x_0 + \int_{t_0}^t \Omega(t)\Omega^{-1}(s)B(s) ds,$$

where $\Omega(t)$ is a solution of (2.4) satisfying $\Omega(t_0) = 1$.

Recall that $\Omega(t) = u(t_0)/u(t)$, where u(t) is given by (2.5), is a solution of (2.4) satisfying $\Omega(t_0) = 1$. In this case,

$$\Omega(t) = \exp\left(\int_{t_0}^t A(s) \,\mathrm{d}s\right).$$

It now follows from Proposition 2.3 that

$$x(t) = x_0 \exp\left(\int_{t_0}^t A(s) \, \mathrm{d}s\right) + \exp\left(\int_{t_0}^t A(s) \, \mathrm{d}s\right) \int_{t_0}^t \exp\left(-\int_{t_0}^s A(u) \, \mathrm{d}u\right) B(s) \, \mathrm{d}s,$$

a more familiar form of solution of the equation (2.8).

10

Problems for Chapter 2

- 1. Solve each of the following differential equations for the unknown scalar function x = x(t) with given initial condition:
 - (i) $x' = x + 2e^t$ and x(0) = 1
 - (ii) $x' = -t^{-1}x t^{-2}$ and x(1) = 1
 - (iii) $x' = -(t+1)t^{-1}x 3t^2e^{-t}$ and x(1) = 1
 - 2. The differential equation

$$y' + \alpha(t)y = \beta(t)y^k$$
,

where k is a constant, is called the Bernoulli equation.

- (i) Show that the substitution $x = y^{1-k}$ transforms this equation into a linear equation.
- (ii) Find all the solutions of $y' 2ty = ty^2$.
- 3. Consider the homogeneous differential equation x' = A(t)x, where the function A(t) is continuous on $(-\infty, \infty)$ and periodic with period $\xi > 0$, *i.e.* $A(t + \xi) = A(t)$ for every $t \in (-\infty, \infty)$.
 - (i) Suppose that $\varphi(t)$ is a non-trivial solution, and that $\psi(t) = \varphi(t+\xi)$ for every $t \in (-\infty, \infty)$. Show that $\psi(t)$ is also a solution.
 - (ii) Show that there is a constant c such that $\varphi(t+\xi)=c\varphi(t)$ for every $t\in(-\infty,\infty)$. Find an explicit expression for this constant c.
 - (iii) What condition must the function A(t) satisfy in order that there exists a non-trivial solution of period 2ξ ?
 - (iv) If A(t) is real valued, what is the condition in (iii)?
 - (v) If A(t) is constant, what is the condition in (iii)?
- 4. Consider the non-homogeneous differential equation x' = A(t)x + B(t), where the functions A(t) and B(t) are continuous and real valued on $(-\infty, \infty)$ and periodic with period $\xi > 0$, and that the function B(t) is not identically zero.
 - (i) Show that a solution $\varphi(t)$ is periodic with period ξ if and only if $\varphi(0) = \varphi(\xi)$.
 - (ii) Show that there exists a unique solution with period ξ if there is no non-trivial solution of the homogeneous equation with period ξ .
 - (iii) Suppose that there is a non-trivial solution of the homegeneous equation with period ξ . Show that there are periodic solutions of period ξ of the non-homogeneous equation if and only if

$$\int_0^{\xi} \exp\left(-\int_0^t A(s) \, \mathrm{d}s\right) B(t) \, \mathrm{d}t = 0.$$

(iv) Find solutions of period 2π for the equation $x' = 3x + \sin t$.