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3.1. Matrix Formulation

We shall discuss a special type of first order n-dimensional system given by

(3.1) x′i =
n∑

j=1

aij(t)xj + bi(t), i = 1, . . . , n,

where x(t) = (x1(t), . . . , xn(t) is an unknown n-dimensional vector function and where, for i, j =
1, . . . , n, aij(t) and bi(t) are given scalar functions, continuous on (r1, r2).

Let A(t) = (aij(t))n×n represent the n × n matrix of the scalar functions aij(t), and let B(t) =
(b1(t), . . . , bn(t)). If we think of x′ = x′(t), x = x(t) and B(t) as n-dimensional column vectors, then
the system (3.1) can be expressed in matrix form as

(3.2) x′ = A(t)x + B(t).

Consider now the vector function f(t, x) = A(t)x+B(t). It is easy to see that with B = (r1, r2)×Rn,
the hypotheses of the Theorem are satisfied. It follows that given any initial values in B, the system
(3.2), and hence (3.1), has unique solution.

3.2. Homogeneous Systems

Suppose that B(t) = 0 identically. Then the system (3.2) becomes

(3.3) x′ = A(t)x.

We shall assume for the remainder of this chapter that A(t) is continuous on (r1, r2).
Suppose that ψ(t) = (ψ1(t), . . . , ψn(t)) and ξ(t) = (ξ1(t), . . . , ξn(t)) are both solutions of (3.3). For

every scalar constants α and β, consider now the function ϕ(t) = αψ(t) + βξ(t). Note that

ϕ′(t) = αψ′(t) + βξ′(t) = αA(t)ψ(t) + βA(t)ξ(t) = A(t)(αψ(t) + βξ(t)) = A(t)ϕ(t),

so that ϕ(t) is also a solution of (3.3). Repeating this argument a finite number of times if necessary,
it can be shown that any finite linear combination of solutions of (3.3) is also a solution of (3.3). In
other words, the system (3.3) is linear.

A simple consequence of the Theorem is the following. The proof is almost trivial.

Proposition 3.1. Suppose that A(t) is continuous on (r1, r2). Suppose further that t0 ∈ (r1, r2)
and that ϕ(t) is a solution of (3.3) satisfying ϕ(t0) = 0. Then ϕ(t) = 0 for every t ∈ (r1, r2).

This linearity also leads us to ideas in linear algebra.

Definition. A collection of functions ξ1(t), . . . , ξm(t) is linearly dependent over the interval (r1, r2)
if there exist constants α1, . . . , αm, not all zero, such that

m∑

k=1

αkξk(t) = 0
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12 3. FIRST ORDER LINEAR SYSTEMS

for every t ∈ (r1, r2). A collection of functions is linearly independent over the interval (r1, r2) if it is
not linearly dependent over the interval (r1, r2).

Examples. (1) The functions sin 2t and sin t cos t are linearly dependent over any interval (r1, r2),
for sin 2t− 2 sin t cos t = 0 for every t ∈ (r1, r2).

(2) The collection 1, t, t2, . . . , tm of scalar functions is linearly independent over (−∞,∞), for any
linear combination

m∑

k=0

αktk

is a polynomial, and has only finitely many zeros, unless α0 = α1 = . . . = αm = 0.
(3) For every i = 1, . . . , n, write

χi(t) = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

).

Then the collection of functions χ1(t), . . . , χn(t) is linearly independent, for
n∑

i=1

αiχi(t) = (α1, . . . , αn) = 0

if and only if α1 = . . . = αn = 0.

Proposition 3.2. Suppose that A(t) is continuous on (r1, r2), and ϕ1(t), . . . , ϕm(t), t ∈ (r1, r2),
are solutions of (3.3), linearly independent over (r1, r2). Then

ϕ(t) =
m∑

k=1

αkϕk(t) %= 0, t ∈ (r1, r2),

unless α1 = . . . = αm = 0.

Proof. By linearity, ϕ(t) is a solution of (3.3). Suppose that t0 ∈ (r1, r2) and ϕ(t0) = 0. Then
by Proposition 3.1, we must have ϕ(t) = 0 for every t ∈ (r1, r2), so that either α1 = . . . = αm = 0, or
ϕ1(t), . . . , ϕm(t) are linearly dependent over (r1, r2). ©

Using the idea of linear independence, we now attempt to describe the solutions of equations of
the form (3.3).

Definition. Suppose that

(3.4) ϕ1(t), . . . , ϕn(t), t ∈ (r1, r2),

are solutions of the first order n-dimensional linear system (3.3), linearly independent over (r1, r2).
Then we say that (3.4) is a fundamental system of solutions of the system (3.3).

We shall show that any solution of the system (3.3) can be described in terms of this fundamental
system of solutions of (3.3). However, before we do so, we must show that such a fundamental system
of solutions of (3.3) exists.

Proposition 3.3. For every first order n-dimensional linear system (3.3), where A(t) is continuous
on (r1, r2), a fundamental system of solutions exists.

Proof. For every k = 1, . . . , n, write

ek = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Then the vectors e1, . . . , en are linearly independent. For any t0 ∈ (r1, r2) and any k = 1, . . . , n, let
ϕk(t) denote the unique solution of (3.3) satisfying ϕk(t0) = ek. It remains to show that the solutions
ϕ1(t), . . . , ϕn(t) are linearly independent over (r1, r2). Suppose that

ϕ(t) =
n∑

k=1

αkϕk(t)
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is identically zero over (r1, r2). Then in particular,

ϕ(t0) =
n∑

k=1

αkϕk(t0) =
n∑

k=1

αkek = (α1, . . . , αn) = 0,

so that α1 = . . . = αn = 0. ©

Proposition 3.4. Every solution of a first order n-dimensional linear system (3.3), where A(t) is
continuous on (r1, r2), is a linear combination of members of a fundamental system of solutions of
(3.3).

Sketch of Proof. Suppose that x(t), t ∈ (r1, r2), is a solution of (3.3) with x(t0) = x0 =
(x10, . . . , xn0). Let ϕ1(t), . . . , ϕn(t), t ∈ (r1, r2), be the fundamental system of solutions of (3.3) in
the proof of Proposition 3.3, and let

ϕ(t) =
n∑

k=1

xk0ϕk(t), t ∈ (r1, r2).

By linearity, ϕ(t) is a solution of (3.3). It is easy to check that ϕ(t0) = x0. It follows from uniqueness
that x(t) = ϕ(t), t ∈ (r1, r2). If our fundamental system of solutions is different from that in the
proof of Proposition 3.3, then a slightly longer argument applies. ©

3.3. The Wronskian

Consider again the linear system (3.3), where A(t) is continuous on (r1, r2).
Suppose that ϕ1(t), . . . , ϕn(t), t ∈ (r1, r2), are solutions of (3.3). Whether these solutions will form

a fundamental system of solutions of (3.3) depends on whether they are linearly independent over
(r1, r2).

Suppose that

ϕj(t) = (ϕ1j(t), . . . , ϕnj(t)), j = 1, . . . , n.

Then the determinant

(3.5) W (t) = det




ϕ11(t) . . . ϕ1n(t)

...
...

ϕn1(t) . . . ϕnn(t)





is called the Wronskian of the solutions ϕ1(t), . . . , ϕn(t). If ϕ1(t), . . . , ϕn(t) is a fundamental system
of solutions of (3.3), then the matrix

(3.6) W(t) =




ϕ11(t) . . . ϕ1n(t)

...
...

ϕn1(t) . . . ϕnn(t)





is called a fundamental matrix.
Our aim is to show that a matrix W(t) is a fundamental matrix if and only if the correspond-

ing Wronskian W (t) never vanishes. However, we shall first find a simple way for calculating the
Wronskian. One such formula is given below.

Proposition 3.5 (Liouville). Suppose that A(t) is continuous on (r1, r2), that ϕ1(t), . . . , ϕn(t) are
solutions of (3.3), and that t0 ∈ (r1, r2). Then the Wronskian of ϕ1(t), . . . , ϕn(t) is given by

W (t) = W (t0) exp
(∫ t

t0

trA(s) ds

)
, t ∈ (r1, r2).

Proof. Let i and j be fixed. Expanding by the i-th row, we have

(3.7) W (t) = detW(t) = (−1)i+jϕij(t) detWij(t) +
n∑

k=1
k %=j

(−1)i+kϕik(t) detWik(t),
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where for every i, k = 1, . . . , n, the matrix Wik(t) is obtained from the matrix W(t) by deleting the
i-th row and k-th column. On the other hand, using the chain rule, we have

(3.8) W ′(t) =
n∑

i=1

n∑

j=1

∂W

∂ϕij
(t)ϕ′ij(t).

For any fixed pair i and j, note that Wij(t) as well as all the terms corresponding to k %= j on the
right hand side of (3.7) are independent of ϕij(t), so that

(3.9)
∂W

∂ϕij
(t) = (−1)i+j detWij(t),

and so on combining (3.8) and (3.9), we obtain

(3.10) W ′(t) =
n∑

i=1




n∑

j=1

ϕ′ij(t)(−1)i+j detWij(t)



 =
n∑

i=1

Wi(t),

where, for every i = 1, . . . , n,

(3.11) Wi(t) =
n∑

j=1

ϕ′ij(t)(−1)i+j detWij(t) = det





ϕ11(t) . . . ϕ1n(t)
...

...
ϕ′i1(t) . . . ϕ′in(t)

...
...

ϕn1(t) . . . ϕnn(t)




.

Note that the matrix on the right hand side is obtained from W(t) by replacing the i-th row by
the derivatives of its entries. Note also that for every j = 1, . . . , n, ϕj(t) = (ϕ1j(t), . . . , ϕnj(t)) is a
solution of (3.3), so that

(3.12) ϕ′ij(t) =
n∑

k=1

aik(t)ϕkj(t).

Combining (3.10)–(3.12), we obtain

W ′(t) =
n∑

i=1

det





ϕ11(t) . . . ϕ1n(t)
...

...
n∑

k=1
aik(t)ϕk1(t) . . .

n∑
k=1

aik(t)ϕkn(t)

...
...

ϕn1(t) . . . ϕnn(t)





=
n∑

i=1

det





ϕ11(t) . . . ϕ1n(t)
...

...
aii(t)ϕi1(t) . . . aii(t)ϕin(t)

...
...

ϕn1(t) . . . ϕnn(t)




.

Note that in the last step, we have multiplied, for each k %= i, the k-th row by −aik(t) and added it
to the i-th row. It now follows that

(3.13) W ′(t) =
n∑

i=1

aii(t)W (t) = (trA(t))W (t).

The desired result follows on integrating (3.13) with respect to t. ©

Proposition 3.6. Suppose that A(t) is continuous on (r1, r2). Suppose further that ϕ1(t), . . . , ϕn(t)
are solutions of (3.3). Then ϕ1(t), . . . , ϕn(t) is a fundamental system of solutions of (3.3) if and
only if the Wronskian W (t) %= 0 for every t ∈ (r1, r2).
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Proof. (⇒) Suppose that ϕ1(t), . . . , ϕn(t) is a fundamental system of solutions of (3.3). Then by
Proposition 3.4, any non-trivial solution ϕ(t) of (3.3) can be expressed in the form

ϕ(t) =
n∑

k=1

αkϕk(t),

where α1, . . . , αn ∈ R are not all zero. Furthermore, α1, . . . , αn are unique (why?). Suppose that
α = (α1, . . . , αn). Then we can write

(3.14) ϕ(t) =W(t)α,

where ϕ(t) and α are interpreted as n-dimensional column vectors. For every t ∈ (r1, r2), the system
(3.14) can be interpreted as a system of n linear equations in the n unknowns α1, . . . , αn, and having
unique solution, so that we must have W (t) = detW(t) %= 0.

(⇐) Suppose that W (t) %= 0 for any t ∈ (r1, r2). It follows that the columns of the matrix W(t)
in (3.6) are linearly independent over (r1, r2). Note that the columns of W(t) represent solutions
ϕ1(t), . . . , ϕn(t) of (3.3). It follows that ϕ1(t), . . . , ϕn(t) form a fundamental system of solutions of
(3.3). ©

We now attempt to express our result in matrix notation.

Proposition 3.7. Suppose that A(t) is continuous on (r1, r2). Then
(i) any fundamental matrix W(t) of (3.3) is a solution of the matrix differential equation

Φ′(t) = A(t)Φ(t);
(ii) the solution x(t) of (3.3) satisfying the initial condition x(t0) = x0 is given by x(t) =

W(t)W−1(t0)x0; and
(iii) the matrix Ω(t) =W(t)W−1(t0) is a fundamental matrix of (3.3) satisfying Ω(t0) = I.

Proof. (i) Note that the j-th columns of W ′(t) and W(t) are respectively ϕ′j(t) and ϕj(t), and
that ϕ′j(t) = A(t)ϕj(t).

(ii) Note that by Proposition 3.4, the solution x(t) is a linear combination of the columns of W(t),
and can therefore be expressed in the form

(3.15) x(t) =W(t)α,

where x(t) and α = (α1, . . . , αn) are interpreted as n-dimensional column vectors. Note now that
detW(t0) = W (t0) %= 0, so that W−1(t0) exists. It follows from (3.15) with t = t0 that

(3.16) α =W−1(t0)x(t0).

The result follows on combining (3.15) and (3.16).
(iii) It now follows from detW−1(t0) %= 0 that the columns of

Ω(t) =W(t)W−1(t0)

are linearly independent over (r1, r2). Also, the columns of Ω(t) are linear combinations of the
columns of W(t) and are therefore solutions of (3.3). Hence Ω(t) is a fundamental matrix. Clearly
Ω(t0) = I. ©

Example. Consider the two-dimensional system x′ = 2x + 3y and y′ = x + 4y. Then clearly

A(t) =
(

2 3
1 4

)
and trA(t) = 2 + 4 = 6. It is not difficult to see that the hypotheses of the

Theorem are satisfied with B = R3, so that all solutions ϕ(t) are defined for t ∈ (−∞,∞). Using
t0 = 0 and Proposition 3.5, the Wronskian of any fundamental system of solutions is given by

W (t) = W (0) exp
(∫ t

0
6 ds

)
= W (0)e6t.

Now a fundamental system of solutions is given by

ϕ1(t) = (3et,−et) and ϕ2(t) = (e5t, e5t),

with

W(t) =
(

3et e5t

−et e5t

)
.
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Hence W (0) = det
(

3 1
−1 1

)
= 4, so that W (t) = 4e6t. A very simple calculation then gives

W−1(0) =
(

1/4 −1/4
1/4 3/4

)
, so that

Ω(t) =
1
4

(
3et e5t

−et e5t

) (
1 −1
1 3

)
=

1
4

(
3et + e5t −3et + 3e5t

−et + e5t et + 3e5t

)
.

It is easily checked that Ω(0) = I.

3.4. Non-Homogeneous Systems

We now use our knowledge on the homogeneous system

(3.17) x′ = A(t)x

to study the non-homogeneous system

(3.18) x′ = A(t)x + B(t).

Here again, we assume throughout that the matrix A(t) and the vector B(t) = (b1(t), . . . , bn(t)) are
continuous on (r1, r2), so that solutions exist and are unique in B = (r1, r2) × Rn, and that every
such solution is defined on (r1, r2).

Consider the system (3.17) with initial condition x(t0) = x0. By Proposition 3.7, there exists a
fundamental matrix Ω(t) such that Ω(t0) = I and that x(t) = Ω(t)x0 is the solution of (3.17) with
x(t0) = x0. Using this particular fundamental matrix Ω(t), we shall attempt to find a solution of
(3.18) which satisfies the initial condition x(t0) = x0. This will then be the unique solution.

Consider the function

(3.19) ϕ(t) = Ω(t)c(t),

where we shall attempt to choose c(t) = (c1(t), . . . , cn(t)) so that (3.19) is a solution of (3.18) with
ϕ(t0) = x0. Clearly we need

(3.20) Ω′(t)c(t) + Ω(t)c′(t) = ϕ′(t) = A(t)ϕ(t) + B(t) = A(t)Ω(t)c(t) + B(t).

Since Ω(t) is a fundamental matrix of (3.17), it follows from Proposition 3.7(i) that Ω′(t) = A(t)Ω(t).
For (3.20) to hold, we must therefore have

(3.21) Ω(t)c′(t) = B(t).

On the other hand, in view of Proposition 3.6, det Ω(t) %= 0 for all t ∈ (r1, r2), so that Ω−1(t) exists
for every t ∈ (r1, r2). Equation (3.21) can therefore be rewritten in the form

(3.22) c′(t) = Ω−1(t)B(t).

Let us return to (3.19), and ensure that the initial condition ϕ(t0) = x0 is satisfied. We therefore
also need

(3.23) x0 = ϕ(t0) = Ω(t0)c(t0) = Ic(t0) = c(t0).

We now integrate (3.22) with the initial condition (3.23) to obtain

c(t) = x0 +
∫ t

t0

Ω−1(s)B(s) ds.

Here, the integration is an entry-by-entry integration.
We have proved

Proposition 3.8. Suppose that A(t) and B(t) are continuous on (r1, r2), and that t0 ∈ (r1, r2).
Then the solution of the system (3.18) with initial condition x(t0) = x0 is given by

x(t) = Ω(t)x0 +
∫ t

t0

Ω(t)Ω−1(s)B(s) ds, t ∈ (r1, r2),

where Ω(t) is a fundamental matrix of the system (3.17) satisfying Ω(t0) = I.
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In practice, Proposition 3.8 is rather useless, in the sense that any application will involve finding
a suitable fundamental matrix Ω(t) and its inverse, and then performing the required integration.
However, Proposition 3.8 is very useful, for it enables us to derive considerable information concerning
the solution of the system (3.18) simply from the properties of Ω(t) and the behaviour of B(t).

Remark. Consider the system x′ = Ax, where A is a constant matrix. Suppose that Ω(t) is a
fundamental matrix of the system satisfying Ω(0) = I. Let s ∈ R. It is not difficult to see that both
ϕ1(t) = Ω(t)Ω−1(s) and ϕ2(t) = Ω(t− s) satisfy the matrix differential equation Φ′(t) = AΦ(t), and
that ϕ1(s) = ϕ2(s) = I. By uniqueness of solution, we must have

(3.24) Ω(t− s) = Ω(t)Ω−1(s).

Consider now the system x′ = Ax + B(t), where A is a constant matrix and B(t) is continuous on
(r1, r2). Suppose that 0 ∈ (r1, r2). Then in view of Proposition 3.8 and (3.24), the solution of this
system with initial condition x(0) = x0 is given by

x(t) = Ω(t)x0 +
∫ t

0
Ω(t− s)B(s) ds, t ∈ (r1, r2).

Example. Recall the example at the end of Section 3.3, where it is shown that

Ω(t) =
1
4

(
3et + e5t −3et + 3e5t

−et + e5t et + 3e5t

)

is a fundamental matrix of the two-dimensional system x′ = 2x + 3y and y′ = x + 4y, and that
Ω(0) = I. Consider now the non-homogeneous system x′ = 2x + 3y + e2t and y′ = x + 4y + t.
Then solutions exist and are uniquely defined for t ∈ (−∞,∞). Suppose that we impose the initial
conditions x(0) = x0 and y(0) = y0. Then the solution of the non-homogeneous system with the
given initial conditions is given by

(
x(t)
y(t)

)
=

1
4

(
3et + e5t −3et + 3e5t

−et + e5t et + 3e5t

) (
x0

y0

)

+
1
4

∫ t

0

(
3et−s + e5(t−s) −3et−s + 3e5(t−s)

−et−s + e5(t−s) et−s + 3e5(t−s)

) (
e2s

s

)
ds.

The calculations are rather unpleasant.
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Problems for Chapter 3

1. We can complete the proof of Proposition 3.4 as follows. Let ϕ1(t), . . . , ϕn(t) be the fundamen-
tal system of solutions of (3.3) in the proof of Proposition 3.3, and that ψ1(t), . . . , ψn(t) is also a
fundamental system of solutions of (3.3). To complete the proof of Proposition 3.4, we shall prove
that every solution of (3.3) is a linear combination of ψ1(t), . . . , ψn(t) as follows:

(i) Explain why there exist α11, . . . , αn1 ∈ R, not all zero, such that

ψ1(t) = α11ϕ1(t) + . . . + αn1ϕn(t).

(ii) Without loss of generality, assume that α11 %= 0. Show that every solution of (3.3) is a
linear combination of the solutions

ψ1(t), ϕ2(t), . . . , ϕn(t).

(iii) Suppose now that 2 ! j ! n, and that every solution of (3.3) is a linear combination of

ψ1(t), . . . , ψj−1(t), ϕj(t), . . . , ϕn(t).

Explain why there exist α1j , . . . , αnj ∈ R, not all zero, such that

ψj(t) =
j−1∑

k=1

αkjψk(t) +
n∑

k=j

αkjϕk(t).

Explain also why not all αjj , . . . , αnj are zero.
(iv) Without loss of generality, assume that αjj %= 0. Show that every solution of (3.3) is a linear

combination of the solutions

ψ1(t), . . . , ψj(t), ϕj+1(t), . . . , ϕn(t).

(v) Complete the proof of Proposition 3.4.
2. Consider the first order system

x′ = 3x− y + 1,

y′ = 4x− y + t.

(i) Show that ϕ1(t) = (et, 2et) and ϕ2(t) = (tet,−et + 2tet) form a fundamental system of
solutions of the corresponding homogeneous system.

(ii) Find the solution ϕ(t) of the given system satisfying the initial condition ϕ(0) = (1, 0).


