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4.1. Homogeneous Equations

Consider the n-th order homogeneous linear differential equation

(4.1) y(n) + a1(t)y(n−1) + . . . + an(t)y = 0,

where y = y(t) is an unknown scalar function, and where the scalar functions a1(t), . . . , an(t) are
continuous on (r1, r2).

If we use the substitution

x1 = y, x2 = y′, . . . , xn = y(n−1),

then x = (y, y′, . . . , y(n−1)) and x′ = (y′, y′′, . . . , y(n)). Note that




y′

...

y(n)




=





0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 . . . 0 1

−an(t) . . . −a1(t)









y

...

y(n−1)




.

It follows that the equation (4.1) becomes the first order n-dimensional system

(4.2) x′ = A(t)x,

where

(4.3) A(t) =





0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 . . . 0 1

−an(t) . . . −a1(t)




.

Suppose further that x0 = (y0, y′0, . . . , y
(n−1)
0 ), where y0, y′0, . . . , y

(n−1)
0 are given constants. Then

the initial condition x(t0) = x0 of the system (4.2) is equivalent to the initial condition

(4.4) y(t0) = y0, y′(t0) = y′0, . . . , y(n−1)(t0) = y(n−1)
0

of the equation (4.1).
Suppose that y = ψ(t) is a solution of (4.1). Then it is not difficult to see that x = ϕ(t) =

(ψ(t), ψ′(t), . . . , ψ(n−1)(t)) is a solution of (4.2). Suppose now that x = ϕ(t) = (ϕ1(t), . . . , ϕn(t)) is
a solution of (4.2). We can show that y = ϕ1(t) is a solution of (4.1). Indeed, in view of (4.2) and
(4.3), we have y′ = ϕ′1(t) = ϕ2(t), y′′ = ϕ′2(t) = ϕ3(t), . . . , y(n−1) = ϕ′n−1(t) = ϕn(t). It follows that
(4.1) and (4.2) are equivalent. We therefore have the following result.
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20 4. HIGHER ORDER LINEAR EQUATIONS

Proposition 4.1. Suppose that the scalar functions a1(t), . . . , an(t) are continuous on (r1, r2), and
that t0 ∈ (r1, r2). Then given any constants y0, y′0, . . . , y

(n−1)
0 , there exists a unique solution y = y(t),

t ∈ (r1, r2), of the equation (4.1) such that the initial condition (4.4) is satisfied.

We now attempt to deduce results analogous to those in Sections 3.2 and 3.3. Our task here is
considerably easier in view of the equivalence of (4.1) and (4.2).

Definition. Suppose that

(4.5) ψ1(t), . . . , ψn(t), t ∈ (r1, r2),

are solutions of the n-th order differential equation (4.1), linearly independent over (r1, r2). Then we
say that (4.5) is a fundamental system of solutions of (4.1).

Corresponding to Proposition 3.3, we have

Proposition 4.2. For every n-th order differential equation (4.1), where the scalar functions
a1(t), . . . , an(t) are continuous on (r1, r2), a fundamental system of solutions exists.

Proof. By Proposition 3.3, a fundamental system of solutions exists for the equivalent system
(4.2). Suppose that this is

(4.6) ϕ1(t), . . . , ϕn(t).

Furthermore, given t0 ∈ (r1, r2) and k = 1, . . . , n, we may assume that

ϕk(t0) = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

) = ek.

Note now that for every k = 1, . . . , n,

ϕk(t) = (ψk(t), ψ′k(t), . . . , ψ(n−1)
k (t))

for some solution ψk(t) of (4.1). It follows that the collection ψ1(t), . . . , ψn(t) are distinct non-trivial
solutions of (4.1) (why?). It therefore remains to show that the solutions ψ1(t), . . . , ψn(t) are linearly
independent over (r1, r2). Suppose that

n∑

k=1

αkψk(t)

is identically zero over (r1, r2). Then so are
n∑

k=1

αkψ′k(t), . . . ,
n∑

k=1

αkψ(n−1)
k (t)

(why?). It follows that
n∑

k=1

αkϕk(t)

is identically zero over (r1, r2). Since (4.6) is a fundamental system of solutions of (4.2), we must
have α1 = . . . = αn = 0. ©

Proposition 4.3. Every solution of an n-th order differential equation (4.1), where the scalar func-
tions a1(t), . . . , an(t) are continuous on (r1, r2), is a linear combination of members of a fundamental
system of solutions of (4.1).

Proof. Suppose that (4.5) is a fundamental system of solutions of (4.1), and that y(t), t ∈ (r1, r2),
is a solution of (4.1) satisfying the initial condition (4.4). Consider the system of equations

(4.7) y(j)
0 = y(j)(t0) =

n∑

k=1

αkψ(j)
k (t0), j = 0, 1, . . . , n− 1,
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in the variables α1, . . . , αn. Let Y0 = (y0, . . . , y
(n−1)
0 ) and α = (α1, . . . , αn). Then the system (4.7)

can be written in the form Y0 =W(t0)α, where for t ∈ (r1, r2),

(4.8) W(t) =





ψ1(t) . . . ψn(t)
ψ′1(t) . . . ψ′n(t)

...
...

ψ(n−1)
1 (t) . . . ψ(n−1)

n (t)




.

Note that the columns of the matrixW(t) form a linearly independent set of solutions of the equivalent
system (4.2) in (r1, r2), so that W−1(t) exists for every t ∈ (r1, r2) (why?). It follows that α =
W−1(t0)Y0. Note now that

y(t) =
n∑

k=1

αkψk(t)

as required. ©

Suppose that ψ1(t), . . . , ψn(t), t ∈ (r1, r2), are solutions of the differential equation (4.1), where
the scalar functions a1(t), . . . , an(t) are continuous on (r1, r2). Whether these solutions will form
a fundamental system of solutions of (4.1) depends on whether they are linearly independent over
(r1, r2).

The determinant

W (t) = det





ψ1(t) . . . ψn(t)
ψ′1(t) . . . ψ′n(t)

...
...

ψ(n−1)
1 (t) . . . ψ(n−1)

n (t)





is called the Wronskian of the solutions ψ1(t), . . . , ψn(t). Also, if ψ1(t), . . . , ψn(t) is a fundamental
system of solutions of (4.1), then the matrix (4.8) is called a fundamental matrix.

Note now that the columns of (4.8) form n solutions of the system (4.2). On the other hand, it is
clear from (4.3) that trA(t) = −a1(t). It now follows from Proposition 3.5 that

Proposition 4.4. Suppose that the scalar functions a1(t), . . . , an(t) are continuous on (r1, r2).
Suppose further that ψ1(t), . . . , ψn(t) are solutions of (4.1), and that t0 ∈ (r1, r2). Then the Wron-
skian of ψ1(t), . . . , ψn(t) is given by

W (t) = W (t0) exp
(
−

∫ t

t0

a1(s) ds

)
, t ∈ (r1, r2).

Corresponding to Proposition 3F, we have

Proposition 4.5. Suppose that the scalar functions a1(t), . . . , an(t) are continuous on (r1, r2).
Suppose further that ψ1(t), . . . , ψn(t) are solutions of (4.1). Then ψ1(t), . . . , ψn(t) is a fundamental
system of solutions of (4.1) if and only if the Wronskian W (t) $= 0 for every t ∈ (r1, r2).

Examples. (1) Consider the second order differential equation y′′ + a(t)y = 0, where the scalar
function a(t) is continuous on (r1, r2). Then for any two solutions, the Wronskian W (t) is constant
on (r1, r2), since it is clear from Proposition 4.4 that W (t) = W (t0) on (r1, r2). This constant is
non-zero if and only if the two solutions are linearly independent on (r1, r2).

(2) Consider the third order equation

y′′′ +
1
t
y′′ − 2

t2
y′ +

2
t3

y = 0, t > 0.

Then the Wronskian of any three solutions satisfies

W (t) = W (t0) exp
(
−

∫ t

t0

1
s

ds

)
= W (t0)

t0
t

,
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where t, t0 > 0. A fundamental system of solutions is given by ψ1(t) = t2, ψ2(t) = t and ψ3(t) = 1/t.
Then

W (t) = det




t2 t 1/t
2t 1 −1/t2

2 0 2/t3



 = −6
t

and W (1) = −6.

4.2. Non-Homogeneous Equations

Consider the n-th order non-homogeneous linear differential equation

(4.9) y(n) + a1(t)y(n−1) + . . . + an(t)y = b(t),

where y = y(t) is an unknown scalar function, and where the scalar functions a1(t), . . . , an(t) and
b(t) are continuous on (r1, r2).

Again we use the substitution x1 = y, x2 = y′, . . . , xn = y(n−1). Then (4.9) can be rewritten as
an n-dimensional non-homogeneous system

(4.10) x′ = A(t)x + B(t),

where the matrix A(t) is given by (4.3), and where B(t) = (0, . . . , 0, b(t)).
If x0 = (y0, y′0, . . . , y

(n−1)
0 ), where y0, y′0, . . . , y

(n−1)
0 are given constants, then the initial condition

x(t0) = x0 of (4.10) is equivalent to the initial condition (4.4) of (4.9). We may therefore conclude
that solutions of (4.9) satisfying the initial conditions (4.4) exist and are unique on (r1, r2).

Suppose that ψ1(t), . . . , ψn(t), t ∈ (r1, r2), is a fundamental system of solutions of the homogeneous
equation (4.1). Consider the function

(4.11) ψ(t) =
n∑

j=1

cj(t)ψj(t),

where we shall attempt to choose c1(t), . . . , cn(t) so that (4.11) is a solution of (4.9) in (r1, r2) with
initial condition (4.4). Note that the matrix W(t) given by (4.8) is a fundamental matrix of the
equivalent system (4.2). Our task is therefore simpler than choosing c(t) = (c1(t), . . . , cn(t)) so that
Ψ(t) =W(t)c(t) is a solution of (4.10), and so

W ′(t)c(t) +W(t)c′(t) = A(t)W(t)c(t) + B(t).

Since W ′(t) = A(t)W(t), we need

(4.12) W(t)c′(t) = B(t).

To determine c(t) = (c1(t), . . . , cn(t)), note that W (t) = detW(t) $= 0 for every t ∈ (r1, r2). Noting
that B(t) = (0, . . . , 0, b(t)), we have, applying Cramer’s rule on (4.12), that

c′j(t) =
b(t)Wj(t)

W (t)
, j = 1, . . . , n,

where, for every j = 1, . . . , n, Wj(t) = detWj(t) and the matrix Wj(t) is obtained from the matrix
W(t) by replacing the j-th column by (0, . . . , 0, 1). It follows that

(4.13) cj(t) = cj(t0) +
∫ t

t0

b(s)Wj(s)
W (s)

ds, j = 1, . . . , n.

Finally the initial conditions (4.4) give W(t0)c(t0) = Y0 = (y0, y′0, . . . , y
(n−1)
0 ), so that

c(t0) = (c1(t0), . . . , cn(t0)) =W−1(t0)Y0.

Hence

ψ(t) =
n∑

j=1

cj(t0)ψj(t) +
n∑

j=1

ψj(t)
∫ t

t0

b(s)Wj(s)
W (s)

ds.

Note that

ψ0(t) =
n∑

j=1

cj(t0)ψj(t)
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is the solution of the homogeneous equation (4.1) with given initial condition (4.4).
We have proved

Proposition 4.6. Suppose that the scalar functions a1(t), . . . , an(t) and b(t) are continuous on
(r1, r2), and that ψ1(t), . . . , ψn(t), t ∈ (r1, r2), is a fundamental system of solutions of (4.1). Suppose
further that t0 ∈ (r1, r2). Then the solution of the equation (4.9) with initial condition (4.4) is given
by

y(t) = ψ0(t) +
n∑

j=1

ψj(t)
∫ t

t0

b(s)Wj(s)
W (s)

ds,

where ψ0(t) is the solution of the homogeneous equation (4.1) with given initial condition (4.4), and
where, for every j = 1, . . . , n, Wj(t) = detWj(t) and the matrix Wj(t) is obtained from the matrix
W(t) by replacing the j-th column by (0, . . . , 0, 1).

Examples. (1) Consider the second order equation

(4.14) y′′ + a1(t)y′ + a2(t)y = b(t),

where the scalar functions a1(t), a2(t) and b(t) are continuous on (r1, r2). Suppose that ψ1(t) and
ψ2(t) are linearly independent solutions of the homogeneous equation. Then

W(t) =
(

ψ1(t) ψ2(t)
ψ′1(t) ψ′2(t)

)
.

Hence W1(t) = −ψ2(t) and W2(t) = ψ1(t). Suppose now that t0 ∈ (r1, r2). Then the solution of
(4.14) with initial conditions y(t0) = y0 and y′(t0) = y′0 is given by

y(t) = c1ψ1(t) + c2ψ2(t)− ψ1(t)
∫ t

t0

b(s)ψ2(s)
W (s)

ds + ψ2(t)
∫ t

t0

b(s)ψ1(s)
W (s)

ds,

where the constants c1 and c2 are chosen to satisfy the initial conditions.
(2) We continue with the example at the end of Section 4.1, where ψ1(t) = t2, ψ2(t) = t and

ψ3(t) = 1/t is a fundamental system of solutions of the homogeneous equation

y′′′ +
1
t
y′′ − 2

t2
y′ +

2
t3

y = 0, t > 0.

Consider the non-homogeneous equation

y′′′ +
1
t
y′′ − 2

t2
y′ +

2
t3

y = t, t > 0,

with initial conditions y(1) = 1, y′(1) = 2 and y′′(1) = 3. Then (4.12) with t = 1 gives



1 1 1
2 1 −1
2 0 2








c1(1)
c2(1)
c3(1)



 =




1
2
3



 ,

so that c1(1) = 4/3, c2(1) = −1/2 and c3(1) = 1/6. On the other hand,

W1(t) = det




0 t 1/t
0 1 −1/t2

1 0 2/t3



 = −2
t
,

W2(t) = det




t2 0 1/t
2t 0 −1/t2

2 1 2/t3



 = 3,

W3(t) = det




t2 t 0
2t 1 0
2 0 1



 = −t2.



24 4. HIGHER ORDER LINEAR EQUATIONS

Recall also that W (t) = −6/t. It follows from (4.13) that

c1(t) =
4
3

+
1
3

∫ t

1
sds =

1
6
t2 +

7
6
,

c2(t) = −1
2
− 1

2

∫ t

1
s2 ds = −1

6
t3 − 1

3
,

c3(t) =
1
6

+
1
6

∫ t

1
s4 ds =

1
30

t5 +
2
15

.

It now follows from (4.11) that the required solution is

y(t) =
(

1
6
t2 +

7
6

)
t2 +

(
−1

6
t3 − 1

3

)
t +

(
1
30

t5 +
2
15

)
1
t

=
1
30

t4 +
7
6
t2 − 1

3
t +

2
15t

.
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Problems for Chapter 4

1. Consider the differential equation y′′ + a(t)y = 0, where the function a(t) is continuous and real
valued on (r1, r2). Let t0 ∈ (r1, r2). Suppose that ψ is a non-trivial solution of the equation satisfying
ψ(t0) = 0. Show that ψ′(t0) $= 0.

2. Consider the differential equation y(n) + a1(t)y(n−1) + . . . + an(t)y = 0, where a1(t), . . . , an(t)
are continuous and real valued on (r1, r2). Let t0 ∈ (r1, r2).

(i) Show that if ψ is a solution of the equation, then so are Reψ and Imψ.
(ii) Suppose that ψ is a solution of the equation. Suppose also that ψ(t0), ψ′(t0), . . . , ψ(n−1)(t0)

are all real. Prove that ψ is real valued on (r1, r2).
3. Consider the differential equation y′′ + a1(t)y′ + a2(t)y = 0, where the functions a1(t) and a2(t)

are continuous on an interval (r1, r2). Suppose that ψ1(t) and ψ2(t) form a fundamental system of
solutions. Show that

a1(t) = −
det

(
ψ1(t) ψ2(t)
ψ′′1 (t) ψ′′2 (t)

)

det
(

ψ1(t) ψ2(t)
ψ′1(t) ψ′2(t)

) and a2(t) =
det

(
ψ′1(t) ψ′2(t)
ψ′′1 (t) ψ′′2 (t)

)

det
(

ψ1(t) ψ2(t)
ψ′1(t) ψ′2(t)

) .

4. Suppose that u1(t), . . . , un(t) are real valued scalar functions continuous on the closed interval
[r1, r2]. Suppose further that M = (mij) is an n× n matrix, where for every i, j = 1, . . . , n,

mij =
∫ r2

r1

ui(t)uj(t) dt.

(i) Show that if u1(t), . . . , un(t) are linearly dependent over (r1, r2), then detM = 0.
(ii) Suppose that detM = 0. Then the rows of M are linearly dependent. Let b1, . . . , bn ∈ R,

not all zero, satisfy b1m1j + . . . + bnmnj = 0 for every j = 1, . . . , n, and let

A(t) = b1u1(t) + . . . + bnun(t)

for every t ∈ [r1, r2]. Show that
∫ r2

r1

A2(t) dt = 0.

Deduce that u1(t), . . . , un(t) are linearly dependent over (r1, r2).
5. Consider the differential equation

y′′ +
1
t
y′ − 1

t2
y = 0, t > 0.

(i) Show that there is a solution of the form tk, where k is a constant.
(ii) Find two linearly independent solutions of the equation, and show that they are linearly

independent.
(iii) Find the solution y(t) of the equation satisfying y(1) = 1 and y′(1) = 0.
(iv) Find the solution y(t) of the equation satisfying y(1) = 0 and y′(1) = 1.

6. Consider the n-th order linear differentiation equation

y(n) + a1(t)y(n−1) + . . . + an(t)y = 0,

where a1(t), . . . , an(t) are continuous on (r1, r2). Suppose that y1(t) is a solution of the equation, and
that t0 ∈ (r1, r2). Show that the substitution

y = y1(t)
∫ t

t0

u(s) ds

will result in an (n − 1)-th order linear differentiation equation in the variable u = u(t). Use this
method to find a second solution to each of the following equations, linearly independent of the
given y1(t):

(i) y′′ + 4ty′ + (4t2 + 2)y = 0 and y1(t) = e−t2

(ii) y′′ − (2 sec2 t)y = 0 and y1(t) = tan t
(iii) ty′′ − (t + 1)y′ − 2(t− 1)y = 0 and y1(t) = e2t
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7. Suppose that a(t) is continuous on (r1, r2), and that the scalar function y1(t) is a non-trivial
solution of the differential equation y′′ + a(t)y = 0. Show that if t0 ∈ (r1, r2), then

y2(t) = y1(t)
∫ t

t0

(y1(s))−2 ds

is another solution, linearly independent from y1(t) over (r1, r2).
8. Consider the differential equation y′′ + a1(t)y′ + a2(t)y = 0, where the functions a1(t) and a2(t)

are continuous on an interval (r1, r2), and a1(t) has continuous derivative on (r1, r2).
(i) Suppose that ψ is a solution of the equation, and that ψ = uϕ, where u = u(t) and ϕ = ϕ(t)

are both twice-differentiable on (r1, r2). Find a differential equation in u = u(t) which will
make ϕ the solution of a differential equation in which the term involving the first derivative
is absent.

(ii) Solve this differential equation for u.
(iii) Show that ϕ is a solution of the differential equation x′′ + α(t)x = 0, where

α(t) = a2(t)−
1
4
a2
1(t)−

1
2
a′1(t).

9. Consider the differential equation y′′ + a1(t)y′ + a2(t)y = 0, where the functions a1(t) and a2(t)
are continuous on an interval (r1, r2). Show that if t0 ∈ (r1, r2), then the function

ψ(t) = exp
(∫ t

t0

p(s) ds

)

is a solution of the equation if and only if p(t) is a solution of the Riccati equation

x′ = −x2 − a1(t)x− a2(t).

10. Suppose that a1(t) amd a2(t) are continuous on (r1, r2). Suppose also that ψ1 is a real valued
non-trivial solution of the differential equation y′′ + a1(t)y = 0, and ψ2 is a real valued non-trivial
solution of the differential equation y′′ + a2(t)y = 0. Suppose further that a2(t) > a1(t) for every
t ∈ (r1, r2). Follow ths steps indicated below to show that if t1 < t2 are successive zeros of ψ1 on
(r1, r2), then ψ2(t) = 0 for some t ∈ (t1, t2). Suppose on the contrary that ψ2(t) $= 0 in (t1, t2). In
view of the Intermediate value theorem, we may assume, without loss of generality, that ψ2(t) > 0
in (t1, t2). Also, in view of the Intermediate value theorem, either ψ1(t) > 0 for all t ∈ (t1, t2) or
ψ1(t) < 0 for all t ∈ (t1, t2). Consider the case ψ1(t) > 0 for all t ∈ (t1, t2) (the case ψ1(t) < 0 for all
t ∈ (t1, t2) is essentially similar).

(i) Use your knowledge in analysis to show that ψ1(t1) > 0 and ψ1(t2) < 0.
(ii) Show that (ψ2(t)ψ′1(t)− ψ1(t)ψ′2(t))′ = (a2(t)− a1(t))ψ1(t)ψ2(t).
(iii) Show that ψ2(t2)ψ′1(t2)− ψ2(t1)ψ′1(t1) > 0.
(iv) Point out the contradiction.

11. Use the idea in Question 10 to show that any real valued solution of the differential equation
y′′ + ty = 0 has infinitely many zeros on (0,∞).
[Hint : Let a1(t) = 1, a2(t) = t and ψ1(t) = cos t.]

12. Consider the differential equation

y′′ +
4
t
y′ +

2
t2

y =
sin t

t
, t > 0.

Show that y1(t) = 1/t and y2(t) = 1/t2 form a fundamental system of solutions of the corresponding
homogeneous equation. Find also the solution y(t) of the given equation satisfying y(1) = 1 and
y′(1) = 0.

13. Consider the differential equation

y′′ − 2
t
y′ + y = t2, t > 0.

Show that y1(t) = sin t − t cos t and y2(t) = cos t + t sin t form a fundamental system of solutions of
the corresponding homogeneous equation. Find also the solution y(t) of the given equation satisfying
y(π/2) = 0 and y′(π/2) = 1.
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14. Show that the function ψ(t), defined by (4.11), satisfies

ψ(k)(t0) =
n∑

j=1

cj(t0)ψ
(k)
j (t0), k = 0, 1, . . . , n.

15. Consider the differential equation

t2y′′ + 4ty′ + (2 + t2)y = t2, t > 0.

(i) Show that a fundamental system of solutions of the corresponding homogeneous equation
is given by

ψ1(t) =
ϕ1(t)

t2
and ψ2(t) =

ϕ2(t)
t2

,

where ϕ1(t) and ϕ2(t) form a fundamental system of solutions of the equation x′′ + x = 0.
(ii) Find all solutions of the original equation for t > 0.


