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5.1. Homogeneous Equations

Consider the n-th order homogeneous linear differential equation

(5.1) z(n) + a1z
(n−1) + . . . + anz = 0,

where z = z(t) is an unknown real or complex valued scalar function, and where a1, . . . , an are real
or complex constants.

The importance of equations of the type (5.1) is two-fold. Firstly, the determination of a funda-
mental system of solutions merely involves finding the roots of an associated polynomial. Secondly,
many physical phenomena can be described in terms of such equations, after perhaps a linearization
process.

Since the coefficients a1, . . . , an are constants, the following two results follow immediately from
Propositions 4.2, 4.3 and 4.4.

Proposition 5.1. For every n-th order differential equation (5.1), a fundamental system of solu-
tions exists, and every solution is a linear combination of members of such a fundamental system.

Proposition 5.2. Suppose that ψ1(t), . . . , ψn(t) are solutions of (5.1). Then the Wronskian of
ψ1(t), . . . , ψn(t) is given by

W (t) = W (0)e−a1t, t ∈ (−∞,∞).

We introduce some notation. We define the differential operator D recursively by Dz = z′ and
Dkz = D(Dk−1z) for k ! 2. Furthermore, if

(5.2) L(p) = pn + a1p
n−1 + . . . + an

is a polynomial, then we define the operator L(D) = Dn + a1Dn−1 + . . . + an by writing

L(D)z = Dnz + a1D
n−1z + . . . + anz = z(n) + a1z

(n−1) + . . . + anz,

so that equation (5.1) can be denoted by

L(D)z = 0.

It is easy to see that the following properties hold:
(i) If a and b are any constants and if z1 and z2 are any sufficiently differentiable scalar functions,

then L(D)(az1 + bz2) = aL(D)z1 + bL(D)z2.
(ii) If M(p) is another polynomial and if z is a sufficiently differentiable scalar function, then

(L + M)(D)z = L(D)z + M(D)z.
We call the polynomial (5.2) the characteristic polynomial of the equation (5.1).

Proposition 5.3. Suppose that L(p) is any arbitrary polynomial. Then

L(D)eλt = L(λ)eλt.
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30 5. LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Proof. Note that

L(D)eλt = Dneλt + a1D
n−1eλt + . . . + aneλt =

dn

dtn
eλt + a1

dn−1

dtn−1
eλt + . . . + aneλt

= λneλt + a1λ
n−1eλt + . . . + aneλt = (λn + a1λ

n−1 + . . . + an)eλt = L(λ)eλt

as required. ©

Remark. Note that we have used the result

d
dt

eλt = λeλt

in the proof. Make sure you can justify this for any complex number λ.

An immediate consequence of Proposition 5.3 is the following important result.

Proposition 5.4. The function ψ(t) = eλt is a solution of the differential equation (5.1) if and
only if λ is a root of the characteristic polynomial (5.2).

In the next two sections, we shall justify our claim that the determination of a fundamental system
of solutions merely involves finding the roots of an associated polynomial.

5.2. Distinct Roots

Proposition 5.5. Suppose that the characteristic polynomial (5.2) has distinct roots λ1, . . . , λn.
Then the functions

(5.3) eλ1t, . . . , eλnt

form a fundamental system of solutions of the differential equation (5.1).

Proof. In view of Proposition 5.4, the functions (5.3) are all solutions of (5.1). To show that they
form a fundamental system of solutions of (5.1), it remains to show, in view of Proposition 4.5, that
the Wronskian W (t) does not vanish for any t ∈ (−∞,∞). In view of Proposition 5.2, it suffices to
show that W (0) %= 0. Now

W (0) = det





1 . . . 1
λ1 . . . λn

λ2
1 . . . λ2

n
...

...
λn−1

1 . . . λn−1
n




=

∏

1!i<j!n

(λj − λi) %= 0

since λ1, . . . , λn are distinct. ©

Remark. The determinant

(5.4) det





1 . . . 1
λ1 . . . λn

λ2
1 . . . λ2

n
...

...
λn−1

1 . . . λn−1
n





is called a Vandermonde determinant, and can be calculated by elementary row operations as follows.
Subtracting λ1 times the (n− 1)-th row from the n-th row, then subtracting λ1 times the (n− 2)-th
row from the (n−1)-th row, and so on, and finally subtracting λ1 times the first row from the second



5.2. DISTINCT ROOTS 31

row, we see that (5.4) is reduced to

det





1 1 . . . 1
0 λ2 − λ1 . . . λn − λ1

0 λ2
2 − λ1λ2 . . . λ2

n − λ1λn
...

...
...

0 λn−1
2 − λ1λ

n−2
2 . . . λn−1

n − λ1λ
n−2
n




(5.5)

= det





1 1 . . . 1
0 λ2 − λ1 . . . λn − λ1

0 λ2(λ2 − λ1) . . . λn(λn − λ1)
...

...
...

0 λn−2
2 (λ2 − λ1) . . . λn−2

n (λn − λ1)




.

Expanding by the first column, we see that (5.5) is reduced to

det





λ2 − λ1 . . . λn − λ1

λ2(λ2 − λ1) . . . λn(λn − λ1)
...

...
λn−2

2 (λ2 − λ1) . . . λn−2
n (λn − λ1)




.

This is equal to

(5.6) (λ2 − λ1) . . . (λn − λ1) det





1 . . . 1
λ2 . . . λn
...

...
λn−2

2 . . . λn−2
n




.

The (n− 1)× (n− 1) determinant in (5.6) is also a Vandermonde determinant, so we can repeat the
argument to show that it is equal to

(λ3 − λ2) . . . (λn − λ2) det





1 . . . 1
λ3 . . . λn
...

...
λn−3

3 . . . λn−3
n




.

And so on.

Proposition 5.6. Suppose that the characteristic polynomial (5.2) has real coefficients. Suppose
further that it has distinct real roots λj, j = 1, . . . , k, and distinct pairs of non-real roots λ+

j = uj +ivj

and λ−j = uj − ivj, j = k + 1, . . . , s. Then the real valued functions

eλ1t, . . . , eλkt,

together with the real valued functions

(5.7) euk+1t cos vk+1t, . . . , eust cos vst and euk+1t sin vk+1t, . . . , eust sin vst,

form a fundamental system of solutions of the differential equation (5.1).

Remark. Note that n = k + 2(s− k).

Proof of Proposition 5.6. By Proposition 5.5, the functions

eλ1t, . . . , eλkt,

together with the functions

(5.8) eλ+
k+1t, . . . , eλ+

s t and eλ−k+1t, . . . , eλ−s t,

form a fundamental system of solutions of (5.1). For every j = k + 1, . . . , s, note now that
(

eλ+
j t

eλ−j t

)
=

(
1 i
1 −i

) (
eujt cos vjt
eujt sin vjt

)
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and
(

eujt cos vjt
eujt sin vjt

)
=

(
1/2 1/2
−i/2 i/2

) (
eλ+

j t

eλ−j t

)
.

It follows that linear independence is preserved if we replace (5.8) by (5.7). ©

5.3. Repeated Roots

Proposition 5.7. Suppose that the characteristic polynomial (5.2) has distinct roots λ1, . . . , λk,
with multiplicities µ1, . . . , µk respectively. Then the functions

(5.9) eλ1t, teλ1t, . . . , tµ1−1eλ1t, . . . , eλkt, teλkt, . . . , tµk−1eλkt

form a fundamental system of solutions of the differential equation (5.1).

Remark. Note that n = µ1 + . . . + µk.

Proof of Proposition 5.7. The proof is divided into two parts. We first show that every
function in (5.9) is a solution of (5.1). We then show that the functions in (5.9) form a fundamental
system of solutions by investigating the Wronskian.

(i) For every j = 1, . . . , k, we need to show that

(5.10) L(D)treλjt = 0, r = 0, 1, . . . , µj − 1.

If µj = 1, then clearly eλjt is a solution of (5.1). Suppose now that µj > 1. Then since L(p) =
(p−λj)µj M(p) for some polynomial M(p), it follows from applying Leibnitz’s rule and evaluating at
p = λj that

(5.11)
dr

dpr
L(λj) = 0, r = 0, 1, . . . , µj − 1.

Consider the function F (p, t) = ept. This has continuous partial derivatives of all orders. It follows
that for every r, s ! 0,

(5.12)
∂r

∂pr

∂s

∂ts
F (p, t) =

∂s

∂ts
∂r

∂pr
F (p, t).

The left hand side of (5.12) is equal to

∂r

∂pr

∂s

∂ts
ept =

∂r

∂pr
(psept),

while the right hand side of (5.12) is equal to

∂s

∂ts
∂r

∂pr
ept =

∂s

∂ts
(trept) = (trept)(s).

It follows that for every r, s ! 0,

(5.13)
∂r

∂pr
(psept) = (trept)(s).

Consider now the function ϕ(p, t) = L(D)ept = L(p)ept. By Leibnitz’s rule, for any r ! 0,

∂rϕ

∂pr
=

∂r

∂pr
(L(p)ept)(5.14)

=
(

dr

dpr
L(p)

)
ept +

(
r

1

) (
dr−1

dpr−1
L(p)

) (
∂

∂p
ept

)
+ . . . + L(p)

(
dr

dpr
ept

)

= ept

(
dr

dpr
L(p) + rt

dr−1

dpr−1
L(p) + . . . + trL(p)

)
.
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On the other hand, in view of (5.13),

∂rϕ

∂pr
=

∂r

∂pr
(L(p)ept) =

∂r

∂pr
(pnept + a1p

n−1ept + . . . + anept)(5.15)

=
∂r

∂pr
(pnept) + a1

∂r

∂pr
(pn−1ept) + . . . + an

∂r

∂pr
(ept)

= (trept)(n) + a1(trept)(n−1) + . . . + an(trept)

= L(D)trept.

Combining (5.14) and (5.15), we have

(5.16) L(D)trept = ept

(
dr

dpr
L(p) + rt

dr−1

dpr−1
L(p) + . . . + trL(p)

)
.

In view of (5.11), it is clear that the right hand side of (5.16) vanishes with p = λj if 0 " r < µj .
This establishes (5.10).

(ii) Consider the Wronskian W (t) of the functions (5.9). In view of Propositions 4.5 and 5.2, it
suffices to show that W (0) %= 0. Now

(5.17) W (0) = det

(
I1

∣∣∣∣∣ . . .

∣∣∣∣∣ Ik

)
,

where, for every j = 1, . . . , k, the n× µj matrix

Ij =





1 0 0 . . . 0
λj 1 0 . . . 0
λ2

j

(2
1

)
λj 1 . . . 0

λ3
j

(3
1

)
λ2

j

(3
2

)
λj . . . 0

...
...

...
...

λ
µj−1
j

(µj−1
1

)
λ

µj−2
j

(µj−1
2

)
λ

µj−3
j . . . 1

...
...

...
...

λn−1
j

(n−1
1

)
λn−2

j

(n−1
2

)
λn−3

j . . .
( n−1
µj−1

)
λ

n−µj

j





.

Now

W (0) =
∏

1!i<j!k

(λj − λi)µiµj %= 0

since λ1, . . . , λn are distinct. ©

Remark. The matrix in (5.17) is often called a generalized Vandermonde matrix. The determinant
(5.17) is often called a generalized Vandermonde determinant, and can be calculated by elementary
row and column operations as follows. First of all, observe that for every j = 1, . . . , k, the n × µj

matrix

Ij =





(0
0

)
0 0 . . . 0

(1
0

)
λj

(1
1

)
0 . . . 0

(2
0

)
λ2

j

(2
1

)
λj

(2
2

)
. . . 0

(3
0

)
λ3

j

(3
1

)
λ2

j

(3
2

)
λj . . . 0

...
...

...
...(µj−1

0

)
λ

µj−1
j

(µj−1
1

)
λ

µj−2
j

(µj−1
2

)
λ

µj−3
j . . .

(µj−1
µj−1

)

...
...

...
...(n−1

0

)
λn−1

j

(n−1
1

)
λn−2

j

(n−1
2

)
λn−3

j . . .
( n−1
µj−1

)
λ

n−µj

j





.

Consider the matrix in (5.17). Subtracting λ1 times the (n − 1)-th row from the n-th row, then
subtracting λ1 times the (n − 2)-th row from the (n − 1)-th row, and so on, and finally subtracting
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λ1 times the first row from the second row, we get the matrix

(5.18)

(
J1

∣∣∣∣∣ . . .

∣∣∣∣∣ Jk

)
,

where the n× µ1 matrix

J1 =





1 0 0 . . . 0
0

(0
0

)
0 . . . 0

0
(1
0

)
λ1

(1
1

)
. . . 0

0
(2
0

)
λ2

1

(2
1

)
λ1 . . . 0

...
...

...
...

0
(n−2

0

)
λn−2

1

(n−2
1

)
λn−3

1 . . .
( n−2
µ1−2

)
λn−µ1

1





,

and where, for j = 2, . . . , k, the n× µj matrix

Jj =





1 0 . . .
λj − λ1 1 . . .

λ2
j − λ1λj

(2
1

)
λj −

(1
1

)
λ1 . . .

...
...

λn−2
j − λ1λ

n−3
j

(n−2
1

)
λn−3

j −
(n−3

1

)
λ1λ

n−4
j . . .

λn−1
j − λ1λ

n−2
j

(n−1
1

)
λn−2

j −
(n−2

1

)
λ1λ

n−3
j . . .

( n−1
µj−1

)
λ

n−µj

j −
( n−2
µj−1

)
λ1λ

n−µj−1
j





.

Expanding the determinant of (5.18) by the first column, we conclude that W (0) is equal to the
determinant of the (n− 1)× (n− 1) matrix

(
J∗1

∣∣∣∣∣ . . .

∣∣∣∣∣ J∗k

)
,

where the (n− 1)× (µ1 − 1) matrix

(5.19) J∗1 =





(0
0

)
0 . . . 0

(1
0

)
λ1

(1
1

)
. . . 0

(2
0

)
λ2

1

(2
1

)
λ1 . . . 0

...
...

...(n−2
0

)
λn−2

1

(n−2
1

)
λn−3

1 . . .
( n−2
µ1−2

)
λn−µ1

1




,

and where, for j = 2, . . . , k, the (n− 1)× (µj − 1) matrix

J∗j =





λj − λ1 1 . . .
λ2

j − λ1λj

(2
1

)
λj −

(1
1

)
λ1 . . .

...
...

λn−2
j − λ1λ

n−3
j

(n−2
1

)
λn−3

j −
(n−3

1

)
λ1λ

n−4
j . . .

λn−1
j − λ1λ

n−2
j

(n−1
1

)
λn−2

j −
(n−2

1

)
λ1λ

n−3
j . . .

( n−1
µj−1

)
λ

n−µj

j −
( n−2
µj−1

)
λ1λ

n−µj−1
j




.

We shall now perform elementary column operations on J∗j for every j = 2, . . . , k. Removing a factor
(λj − λ1) from the first column, J∗j becomes





1 1 . . .(1
0

)
λj

(2
1

)
λj −

(1
1

)
λ1 . . .

...
...(n−3

0

)
λn−3

j

(n−2
1

)
λn−3

j −
(n−3

1

)
λ1λ

n−4
j . . .(n−2

0

)
λn−2

j

(n−1
1

)
λn−2

j −
(n−2

1

)
λ1λ

n−3
j . . .

( n−1
µj−1

)
λ

n−µj

j −
( n−2
µj−1

)
λ1λ

n−µj−1
j




.
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Subtracting now the first column here from the second column, we get




1 0 . . .(1
0

)
λj

(1
1

)
(λj − λ1) . . .

...
...(n−3

0

)
λn−3

j

(n−3
1

)
(λj − λ1)λn−4

j . . .(n−2
0

)
λn−2

j

(n−2
1

)
(λj − λ1)λn−3

j . . .
( n−1
µj−1

)
λ

n−µj

j −
( n−2
µj−1

)
λ1λ

n−µj−1
j




.

Removing a factor (λj − λ1) from the second column, this matrix now becomes




1 0 . . .(1
0

)
λj 1 . . .
...

...(n−3
0

)
λn−3

j

(n−3
1

)
λn−4

j . . .(n−2
0

)
λn−2

j

(n−2
1

)
λn−3

j . . .
( n−1
µj−1

)
λ

n−µj

j −
( n−2
µj−1

)
λ1λ

n−µj−1
j




.

We now subtract the second column here from the third column and then remove a factor (λj − λ1)
from the third column, and so on. To summarize, for each j = 2, . . . , k, J∗j becomes the (n− 1)× µj

matrix

(5.20)





1 0 . . .(1
0

)
λj 1 . . .
...

...(n−3
0

)
λn−3

j

(n−3
1

)
λn−4

j . . .(n−2
0

)
λn−2

j

(n−2
1

)
λn−3

j . . .
( n−2
µj−1

)
λ

n−µj−1
j





and a factor of (λj − λ1) has been removed from each column in the process. It now follows that
W (0) is

k∏

j=2

(λj − λ1)µj

times

(5.21) det

(
I∗1

∣∣∣∣∣ . . .

∣∣∣∣∣ I∗k

)
,

where I∗1 is given by (5.19) and I∗j is given by (5.20) for every j = 2, . . . , k. Note now that (5.21)
is also a generalized Vandermonde determinant, but of dimension (n − 1) × (n − 1). Denote by
Vλ1,...,λk(µ1, . . . , µk) the matrix in (5.17). Then we have shown that

detVλ1,...,λk(µ1, . . . , µk) =




k∏

j=2

(λj − λ1)µj



 detVλ1,...,λk(µ1 − 1, µ2, . . . , µk),

where the matrix on the right hand side has one row and one column fewer than the matrix on the
left hand side. Repeating this argument a finite number of times, we conclude that

detVλ1,...,λk(µ1, . . . , µk) =




k∏

j=2

(λj − λ1)µ1µj



 detVλ1,...,λk(0, µ2, . . . , µk),

where the matrix on the right hand side has µ1 rows and µ1 columns fewer than the matrix on the
left hand side, and also does not involve λ1. Omitting reference to λ1, we can write

Vλ1,...,λk(0, µ2, . . . , µk) = Vλ2,...,λk(µ2, . . . , µk),

and note that this is another generalized Vandermonde matrix. Repeating the argument thus far, we
deduce that

detVλ2,...,λk(µ2, . . . , µk) =




k∏

j=3

(λj − λ2)µ2µj



 detVλ3,...,λk(µ3, . . . , µk),
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where the matrix on the right hand side has µ2 rows and µ2 columns fewer than the matrix on the
left hand side, and also does not involve λ2. And so on. Eventually, we obtain

Vλ1,...,λk(µ1, µ2, . . . , µk) =
∏

1!i<j!k

(λj − λi)µiµj detVλk(µk),

where Vλk(µk) is a lower triangular matrix with diagonal entries 1, so that detVλk(µk) = 1.

Remark. A simpler, but indirect, way of showing that the functions in (5.9) are linearly indepen-
dent is as follows. Suppose that

(5.22)
k∑

j=1

µj−1∑

r=0

αjrt
reλjt = 0,

where αjr is a constant for every j = 1, . . . , k and every r = 0, 1, . . . , µj − 1. Clearly (5.22) is of the
form

(5.23)
k∑

j=1

pj(t)eλjt = 0,

where, for j = 1, . . . , k,

pj(t) =
µj−1∑

r=0

αjrt
r

is a polynomial of degree µj − 1. Suppose that for some j = 1, . . . , k and r = 0, 1, . . . , µj − 1, the
constant αjr is non-zero. Then clearly the polynomial pj(t) cannot be identically zero. Without loss
of generality assume that pk(t) is not identically zero. Multiplying (5.23) by e−λ1t, we have

(5.24) p1(t) +
k∑

j=2

pj(t)e(λj−λ1)t = 0.

Recall that p1(t) is a polynomial of degree µ1 − 1. It follows that on differentiating (5.24) µ1 times
with respect to t, we have

k∑

j=2

qj(t)e(λj−λ1)t = 0,

i.e.
k∑

j=2

qj(t)eλjt = 0.

Note that for every j = 2, . . . , k, the polynomial qj(t) has the same degree as the polynomial pj(t).
Repeating this argument a finite number of times, we get

(5.25) sk(t)eλkt = 0.

Recall now that we have assumed that pk(t) is not identically zero, so that (5.25) is clearly false.

To end this section, we state

Proposition 5.8. Suppose that the characteristic polynomial (5.2) has real coefficients. Suppose
further that it has distinct real roots λj, j = 1, . . . , k, with multiplicities µ1, . . . , µk respectively, and
distinct pairs of non-real roots λ+

j = uj + ivj and λ−j = uj − ivj, j = k + 1, . . . , s, with multiplicities
µk+1, . . . , µs respectively. Then the real valued functions

eλjt, teλjt, . . . , tµj−1eλjt, j = 1, . . . , k,

together with

eujt cos vjt, teujt cos vjt, . . . , t
µj−1eujt cos vjt, j = k + 1, . . . , s,

and

eujt sin vjt, teujt sin vjt, . . . , t
µj−1eujt sin vjt, j = k + 1, . . . , s,

form a fundamental system of solutions of the differential equation (5.1).
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Remark. Note that n = µ1 + . . . + µk + 2(µk+1 + . . . + µs).

5.4. Non-Homogeneous Equations

Consider the n-th order non-homogeneous linear differential equation

(5.26) z(n) + a1z
(n−1) + . . . + anz = b(t),

where z = z(t) is an unknown real or complex valued scalar function, a1, . . . , an are real or complex
constants, and the function b(t) is continuous on (r1, r2). Suppose that we have the initial conditions

(5.27) z(t0) = z0, z′(t0) = z′0, . . . , z(n−1)(t0) = z(n−1)
0 .

Then as a special case of Proposition 4.6, we have

Proposition 5.9. Suppose that b(t) is continuous on (r1, r2), and that ψ1(t), . . . , ψn(t) is a fun-
damental system of solutions of (5.1). Suppose further that t0 ∈ (r1, r2). Then the solution of the
equation (5.26) with initial conditions (5.27) is given by

y(t) = ψ0(t) + W−1(0)
n∑

j=1

ψj(t)
∫ t

t0

ea1sb(s)Wj(s) ds,

where ψ0(t) is the solution of the homogeneous equation (5.1) with given initial conditions (5.27), and
where, for every j = 1, . . . , n, Wj(t) = detWj(t) and the matrix Wj(t) is obtained from the matrix
W(t) by replacing the j-th column by (0, . . . , 0, 1).

Example. Consider the fourth order linear differential equation

z′′′′ − 4z′′′ + 3z′′ + 4z′ − 4z = e2t.

The corresponding homogeneous equation has characteristic polynomial p4− 4p3 +3p2 +4p− 4, with
roots λ1 = λ2 = 2, λ3 = 1 and λ4 = −1. A fundamental system of solutions is therefore

ψ1(t) = e2t, ψ2(t) = te2t, ψ3(t) = et, ψ4(t) = e−t,

with fundamental matrix

W(t) =





e2t te2t et e−t

2e2t (2t + 1)e2t et −e−t

4e2t (4t + 4)e2t et e−t

8e2t (8t + 12)e2t et −e−t



 .

Suppose now we have the initial conditions z(0) = 1, z′(0) = 2, z′′(0) = 12 and z′′′(0) = 30. Then

ψ0(t) = e2t + 2te2t − et + e−t

is the solution of the homogeneous equation satisfying the given initial conditions. On the other
hand,

W1(s) = det





0 se2s es e−s

0 (2s + 1)e2s es −e−s

0 (4s + 4)e2s es e−s

1 (8s + 12)e2s es −e−s



 = 2e2s(3s + 4),

W2(s) = det





e2s 0 es e−s

2e2s 0 es −e−s

4e2s 0 es e−s

8e2s 1 es −e−s



 = −6e2s,

W3(s) = det





e2s se2s 0 e−s

2e2s (2s + 1)e2s 0 −e−s

4e2s (4s + 4)e2s 0 e−s

8e2s (8s + 12)e2s 1 −e−s



 = −9e3s,

W4(s) = det





e2s se2s es 0
2e2s (2s + 1)e2s es 0
4e2s (4s + 4)e2s es 0
8e2s (8s + 12)e2s es 1



 = e5s.
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It follows that
4∑

j=1

ψj(t)
∫ t

0
ea1sb(s)Wj(s) ds

= e2t

∫ t

0
e−2s2e2s(3s + 4) ds + te2t

∫ t

0
e−2s(−6e2s) ds + et

∫ t

0
e−2s(−9e3s) ds + e−t

∫ t

0
e−2se5s ds

=
(
−3t2 + 8t− 26

3

)
e2t + 9et − 1

3
e−t.

Furthermore,

W (0) = det





1 0 1 1
2 1 1 −1
4 4 1 1
8 12 1 −1



 = −18.

Hence

z(t) = e2t + 2te2t − et + e−t +
(

1
6
t2 − 4

9
t +

13
27

)
e2t − 1

2
et +

1
54

e−t

= e2t + 2te2t − 3
2
et +

55
54

e−t +
(

1
6
t2 − 4

9
t +

13
27

)
e2t

is the solution of the equation with given initial condition.

5.5. Method of Undetermined Coefficients

Let us return to equation (5.26).
Suppose that b(t) is a solution of some homogeneous linear equation with constant coefficients,

z(m) + b1z
(m−1) + . . . + bmz = 0,

say. Then writing M(D) = Dm + b1Dm−1 + . . . + bm, we have

(5.28) M(D)b(t) = 0.

If we write L(D) = Dn + a1Dn−1 + . . . + an, then (5.26) becomes

(5.29) L(D)z = b(t).

Combining (5.28) and (5.29), we obtain

(5.30) M(D)L(D)z = 0.

Writing N(D) = M(D)L(D), (5.30) can be rewritten in the form

(5.31) N(D)z = 0.

Note now that (5.31) is a homogeneous linear equation with constant coefficients and degree r = n+m.
Let χ1(t), . . . , χr(t) be a fundamental system of solutions of (5.31). Then the solution of (5.31) is

given by

(5.32) χ(t) =
r∑

i=1

βiχi(t),

where β1, . . . , βr are arbitrary constants. Substituting this into (5.29), we obtain

(5.33) L(D)χ(t) = b(t).

Next, note that if ϕ1(t), . . . , ϕn(t) is a fundamental system of solutions of L(D)z = 0, then clearly
ϕ1(t), . . . , ϕn(t) form a linearly independent set of solutions of (5.31). Without loss of generality, we
may therefore assume that

(5.34) χi(t) = ϕi(t), i = 1, . . . , n.

If we now combine (5.32) and (5.33), and noting (5.34) and

L(D)ϕi(t) = 0, i = 1, . . . , n,
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we obtain

(5.35) b(t) =
r∑

i=1

βiL(D)χi(t) =
r∑

i=n+1

βiL(D)χi(t).

We can now determine βn+1, . . . , br by comparing coefficients on the two sides of (5.35). Note also
that

n∑

i=1

βiχi(t)

is a solution of the homogeneous equation L(D)z = 0, and the coefficients β1, . . . , βn are determined
by initial conditions.

Example. Consider the differential equation

(5.36) z′′ − z = e2t(t2 + 1).

This can be expressed in the form

L(D)z = e2t(t2 + 1),

where L(D) = D2 − 1. The function b(t) = e2t(t2 + 1) satisfies the homogeneous linear equation
M(D)b(t) = 0, where M(D) = (D − 2)3. In our notation, we consider the equation N(D)z = 0,
where N(D) = (D − 2)3(D2 − 1). A fundamental system of solutions of N(D)z = 0 is given by

χ1(t) = et, χ2(t) = e−t, χ3(t) = e2t, χ4(t) = te2t, χ5(t) = t2e2t.

Hence

χ(t) = β1et + β2e−t + β3e2t + β4te2t + β5t
2e2t

is a solution of (5.36) for suitable choices of the coefficients. Now

L(D)χ(t) = β3L(D)e2t + β4L(D)te2t + β5L(D)t2e2t

= (3β5t
2 + (8β5 + 3β4)t + (2β5 + 4β4 + 3β3))e2t.

But L(D)χ(t) = e2t(t2 + 1), so we must have

t2 + 1 = 3β5t
2 + (8β5 + 3β4)t + (2β5 + 4β4 + 3β3).

Comparing coefficients, we have

β3 =
35
27

, β4 = −8
9
, β5 =

1
3
.

The solution of (5.36) is now given by

χ(t) = β1et + β2e−t + e2t

(
1
3
t2 − 8

9
t +

35
27

)
.

Note that β1 and β2 are determined by initial conditions.

5.6. Behaviour of Solutions

Consider the n-th order homogeneous linear equation

(5.37) z(n) + a1z
(n−1) + . . . + anz = 0,

where a1, . . . , an are real or complex constants. The solutions z(t) are defined on t ∈ (−∞,∞). In
practical situations, we are interested in the behaviour of the solutions as t→ +∞.

If the characteristic polynomial of the equation has distinct roots λ1, . . . , λk, with multiplicities
µ1, . . . , µk respectively, then by Proposition 5.7, any solution z(t) is a linear combination of the
functions

eλ1t, teλ1t, . . . , tµ1−1eλ1t, . . . , eλkt, teλkt, . . . , tµk−1eλkt.

Let ξ(t) = treλt be one of these functions. If λ has negative real part, then clearly

lim
t→+∞

treλt = 0.

We have proved
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Proposition 5.10. Suppose that all the roots of the characteristic polynomial of the equation (5.37)
have negative real parts. Then given any solution z(t) of (5.37), we have

lim
t→+∞

z(t) = 0.

Next, consider a function of the form ξ(t) = eλt. If λ has non-positive real part, then clearly eλt is
bounded as t→ +∞. We have therefore proved the following variation to Proposition 5.10.

Proposition 5.11. Suppose that all the roots of the characteristic polynomial of the equation (5.37)
have non-positive real parts, and that all such roots with multiplicity greater than 1 have negative real
parts. Then any solution z(t) of (5.37) remains bounded as t→ +∞.

These are examples of situations when we say the solutions of the system are stable.
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Problems for Chapter 5

1. For each of the following differential equations, solve the corresponding homogeneous equation.
Then solve the non-homogeneous equation using the method of undetermined coefficients, without
guessing the particular integral:

(i) z′′ − 3z′ + 2z = cos t
(ii) z′′ − 3z′ + 2z = et

(iii) z′′ − 3z′ + 2z = et + 2te2t

(iv) z′′′ − z′ = t2et

(v) z′′ + 4z′ + 3z = t sin t + et

2. Consider the Euler equation

tnz(n) + a1t
n−1z(n−1) + . . . + anz = 0,

where a1, . . . , an are constants.
(i) Show that the substitution t = eu reduces the equation to an n-th order linear equation

with constant coefficients. Describe a fundamental system of solutions of equation.
(ii) Consider the case n = 2. Find conditions on the coefficients a1 and a2 to ensure that all

solutions of the equation are bounded as t→ +∞.
3. Solve the following Euler equations using the method in Question 2(i):

(i) t2z′′ − 4tz′ + 6z = 0
(ii) t2z′′ − 3tz′ + 5z = 0
(iii) t3z′′′ + tz′ − z = 0


