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5.1. Homogeneous Equations
Consider the n-th order homogeneous linear differential equation
(5.1) 2 4a2Y 4 a2 =0,

where z = z(t) is an unknown real or complex valued scalar function, and where a1, ..., a, are real
or complex constants.

The importance of equations of the type (5.1) is two-fold. Firstly, the determination of a funda-
mental system of solutions merely involves finding the roots of an associated polynomial. Secondly,
many physical phenomena can be described in terms of such equations, after perhaps a linearization
process.

Since the coefficients a,...,a, are constants, the following two results follow immediately from
Propositions 4.2, 4.3 and 4.4.

PROPOSITION 5.1. For every n-th order differential equation (5.1), a fundamental system of solu-
tions exists, and every solution is a linear combination of members of such a fundamental system.

PROPOSITION 5.2. Suppose that 11 (t),..., ¥, (t) are solutions of (5.1). Then the Wronskian of
$1(8),- - Yalt) s given by
W(t) = W(0)e~ ™', t & (—o0,00).

We introduce some notation. We define the differential operator D recursively by Dz = 2’ and
D¥z = D(D*~12) for k > 2. Furthermore, if

(5.2) Lip)=p" +a1p" '+ ...+ an
is a polynomial, then we define the operator L(D) = D™ + a; D"~ + ...+ a,, by writing
L(D)z=D"z2+a1D" "2 +... +a,z= 2™ 42D 4 4 anz,
so that equation (5.1) can be denoted by
L(D)z = 0.

It is easy to see that the following properties hold:

(i) If @ and b are any constants and if z; and 2z are any sufficiently differentiable scalar functions,
then L(D)(az1 + bzs) = aL(D)z; + bL(D)z,.

(ii) If M(p) is another polynomial and if z is a sufficiently differentiable scalar function, then
(L+ M)(D)z = L(D)z + M(D)z.

We call the polynomial (5.2) the characteristic polynomial of the equation (5.1).

PROPOSITION 5.3. Suppose that L(p) is any arbitrary polynomial. Then
L(D)eM = L(\)e.
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30 5. LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

PROOF. Note that

L(D)e* = DM 4+ a; D" LM 4 .. 4 anet = dieAt+a dnt
1 n i 1dtn_1

=AMt g N M + L+ aeM = A" Fa A"+ an)eM = L()\)eM

eM +...+ane>‘t

as required. ()

REMARK. Note that we have used the result

d
&ekt — )\ekt

in the proof. Make sure you can justify this for any complex number .
An immediate consequence of Proposition 5.3 is the following important result.

PROPOSITION 5.4. The function 1 (t) = e is a solution of the differential equation (5.1) if and
only if X is a root of the characteristic polynomial (5.2).

In the next two sections, we shall justify our claim that the determination of a fundamental system
of solutions merely involves finding the roots of an associated polynomial.

5.2. Distinct Roots

PROPOSITION 5.5. Suppose that the characteristic polynomial (5.2) has distinct roots i, ..., Ay,.
Then the functions
(5.3) et etnt
form a fundamental system of solutions of the differential equation (5.1).

PROOF. In view of Proposition 5.4, the functions (5.3) are all solutions of (5.1). To show that they
form a fundamental system of solutions of (5.1), it remains to show, in view of Proposition 4.5, that
the Wronskian W (t) does not vanish for any ¢ € (—oco,00). In view of Proposition 5.2, it suffices to
show that W (0) # 0. Now

1 1
Mo A
2 2
W) =det| A A = J[ y-x)#0
: : 1<i<j<n
P VD Vi
since Aq, ..., A, are distinct. (O
REMARK. The determinant
1 1
Ao A
PV

is called a Vandermonde determinant, and can be calculated by elementary row operations as follows.
Subtracting A; times the (n — 1)-th row from the n-th row, then subtracting A; times the (n — 2)-th
row from the (n — 1)-th row, and so on, and finally subtracting A; times the first row from the second
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row, we see that (5.4) is reduced to

1 1 . 1
0 Ao — N\ . An — A1
(5.5) det | O A3 — A2 . A2 — A\,
0 AT =X AT L ATt a2
1 1 .. 1
0 Ag — A1 . An — A1
—det| 0 AQa—A) o (A=)
0 A572(g = A o ARTE(N, =)
Expanding by the first column, we see that (5.5) is reduced to
Ao — N\ o An — A1
AoAa— A1) oo (A — A1)
det ) .
72 = A) s AT, =)
This is equal to
1 1
)\2 >\n
(56) ()\2 — /\1) . (>\n — )\1) det . .
VD

The (n — 1) x (n — 1) determinant in (5.6) is also a Vandermonde determinant, so we can repeat the
argument to show that it is equal to

1 1

A3 e

(/\3—)\2)...(/\n—)\2)det .
PV D

And so on.

PROPOSITION 5.6. Suppose that the characteristic polynomial (5.2) has real coefficients. Suppose

further that it has distinct real roots \j, j = 1,...,k, and distinct pairs of non-real roots )\;r = u; +iv;
and Ay =wuj —ivj, j=k+1,...,s. Then the real valued functions
e)\lt, . 76)\kt7

together with the real valued functions

(5.7) e 1t cosvpyt,...,e"tcosvgt  and e“tsinvgyqt,. .., e" ! sinvt,
form a fundamental system of solutions of the differential equation (5.1).

REMARK. Note that n =k + 2(s — k).

PROOF OF PROPOSITION 5.6. By Proposition 5.5, the functions

e)\1t’ . ,e)\kt,

together with the functions
(5.8) e)‘k++1t, e ,eAjt and el eMs
form a fundamental system of solutions of (5.1). For every j =k +1,...,s, note now that

Nt (1 i et cosv;t
Mt ) T\ i e“tsinv;t
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evlteosvt \ [ 1/2 1/2 Nt
ewtsinogt )\ —i2 i/2 )\ vt )

It follows that linear independence is preserved if we replace (5.8) by (5.7). O

and

5.3. Repeated Roots

PROPOSITION 5.7. Suppose that the characteristic polynomial (5.2) has distinct roots A1,. .., Ag,
with multiplicities py, . .., up respectively. Then the functions
(5.9) Mt et gl M ekt e oAkt

form a fundamental system of solutions of the differential equation (5.1).
REMARK. Note that n = py + ... + ug.

PrROOF OF PROPOSITION 5.7. The proof is divided into two parts. We first show that every
function in (5.9) is a solution of (5.1). We then show that the functions in (5.9) form a fundamental
system of solutions by investigating the Wronskian.

(i) For every j = 1,..., k, we need to show that

(5.10) L(D)t"eNt =0, r=0,1,...,0; — 1.

If u; = 1, then clearly e*? is a solution of (5.1). Suppose now that pu; > 1. Then since L(p) =

(p — Aj)" M (p) for some polynomial M (p), it follows from applying Leibnitz’s rule and evaluating at
p = A; that

dT

(5.11) g

L(A\)=0, r=0,1,...,p4; — L

Consider the function F(p,t) = eP!. This has continuous partial derivatives of all orders. It follows
that for every r,s > 0,

ar o° 0% o
12 t) = F(p,t).
(5.12) o OF 1) =55 o (p,t)
The left hand side of (5.12) is equal to
ar 0° ar
pt — (S pt
ap Ot o P
while the right hand side of (5.12) is equal to
o o 0°
pt _ © tr Pty _ r pt (s)
ooy —oan )= e

It follows that for every r,s > 0,

T

(5.13) (pPePt) = (t7ePh)().

"
Consider now the function ¢(p,t) = L(D)eP! = L(p)eP'. By Leibnitz’s rule, for any r > 0,

e O ot
6pr - 8])7« (L(p)e )

() () () () +- o0 (57)

dr drfl
=eft | —L t——L .+ tL .
o (D)4t L)+ L))

(5.14)
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On the other hand, in view of (5.13),

T (L) = D o)

(5.15)

8pr - apr s
= ﬂ(pnept) Jralﬂ(pnflept)Jr”.Jra ) (ePh)
dp" op" " opr

= (t"eP)™) £ ay (t7ePH) Y £ 4 oa, (tTeP)

= L(D)t"e!".
Combining (5.14) and (5.15), we have

dr dr—l
1 L(D)t"elPt =Pt | —L —L ..+ t'L .

(5.16) (D) = (L)t L) o L) )

In view of (5.11), it is clear that the right hand side of (5.16) vanishes with p = X; if 0 < r < p;.
This establishes (5.10).

(ii) Consider the Wronskian W (t) of the functions (5.9). In view of Propositions 4.5 and 5.2, it
suffices to show that W (0) # 0. Now

(517) W(O) = det ( ,[1 ’ ‘ Ik ) 5

where, for every j =1,...,k, the n x p; matrix
1 0 0 0
Aj 1 0 0
2
Aj (DA 1 0
3 3
Aj (1) () 0
I; = : : :
pyj—1 0 — 1Y\ y Hj—2 1 —1\ y Hi—3
Aj (“1 ))\j’ (’92 ))\jJ 1
n.fl —1. n—2 —1- n—3 —1 . n—pp;
Aj ("1 (N (TN
Now
wE) = JI Oy=rpmm#0
1<i<j<k
since Aq, ..., A, are distinct. (O

REMARK. The matrix in (5.17) is often called a generalized Vandermonde matrix. The determinant
(5.17) is often called a generalized Vandermonde determinant, and can be calculated by elementary

row and column operations as follows. First of all, observe that for every j = 1,...,k, the n X p;
matrix
) 0 0 0
(o) (1) 0 0
(0)A7 ()X () 0
O 12 T 17 ¥ :
] - . .
(ujofl)/\?rl (ujfl)/\?r2 (u;-;l))\;{r?) . (Zj:b
Y G Y G LY V) RVl

Consider the matrix in (5.17). Subtracting A; times the (n — 1)-th row from the n-th row, then
subtracting A; times the (n — 2)-th row from the (n — 1)-th row, and so on, and finally subtracting
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A1 times the first row from the second row, we get the matrix

(5.18) <J1 ’ ‘ Jk>7

where the n X p; matrix

1 0 0 0
0 ) 0 0
Cleoon W 0
S I RGP o |
0 ("IN (I (AT
and where, for j = 2,...,k, the n x p; matrix
1 0
N — A 1
A=A (D2 — DM
Jj = : .
D LV o DV el () YD Vi
N AT (TN = (TN ()X (A

Expanding the determinant of (5.18) by the first column, we conclude that W(0) is equal to the
determinant of the (n — 1) x (n — 1) matrix

<J; | ‘ J,;>,

where the (n — 1) x (g1 — 1) matrix

(o) 0
(o) O
(5.19) Ji=| @M Dxn 0 ,
(N (TN (N
and where, for j =2,...,k, the (n — 1) x (g; — 1) matrix
Aj— M 1
Af =y ORYEORY
J; = : :
A?j - /\1,\?:2 (ni))\;:z _ (HEZ),\l)\;‘:i S R
AT =AY ("7 ))‘? - (" ))‘1)‘? (url))‘j T (Mq))‘l/\j ’
We shall now perform elementary column operations on J7 for every j = 2,..., k. Removing a factor
(Aj — A1) from the first column, J; becomes
1 1
(o)A HRYE RN
(ngz) )\?72 (nzj) /\?72 _ (nzz))\l/\?ij . I _2 —
(no )A;‘li (nl ))‘?7 - (nl )Al)‘?i (:j—l))‘j T - (:,~—1)>‘1>‘j ’
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Subtracting now the first column here from the second column, we get
1 0
(o) (D =)

(s PV () IOV I Ve

COANTE T = AN (AT = ()M
Removing a factor (A; — A1) from the second column, this matrix now becomes
1 0
(o) 1
(TN TN
(OANTE TN AT = (AN
We now subtract the second column here from the third column and then remove a factor (A\; — A1)
from the third column, and so on. To summarize, for each j = 2,...,k, J; becomes the (n —1) X p;
matrix
1 0
(o) 1
(5.20) : :
n—3\yn—3 (n—3)yn—4
EnOQ;igz—Q En12;i\\%—3 o (n—z ))\nfﬂjfl
0 )N 1 )% e =)

and a factor of (A\; — A1) has been removed from each column in the process. It now follows that
W (0) is

k
TT = an)r

=2
times

(5.21) det ( Iy |

I,j),

where I7 is given by (5.19) and I} is given by (5.20) for every j = 2,...,k. Note now that (5.21)
is also a generalized Vandermonde determinant, but of dimension (n — 1) x (n — 1). Denote by
Vagrooas (15 - - - i) the matrix in (5.17). Then we have shown that

k
detv>\17~~-1Ak(u17"'7uk) = H(/\j 7)‘1)1” detv)\l-,--~7>\k(ﬂl - lhu27"'7,uk)7

j=2
where the matrix on the right hand side has one row and one column fewer than the matrix on the

left hand side. Repeating this argument a finite number of times, we conclude that

k

detV}\l,.A.,/\k(le-wﬂk) = H()\j _AI)HIUJ detv)\l,...,)\k(()?//@w"7/1']6)7
j=2

where the matrix on the right hand side has p; rows and p; columns fewer than the matrix on the
left hand side, and also does not involve A;. Omitting reference to A1, we can write
antoeon (05 przs oo ) = Vg (2 -5 i),

and note that this is another generalized Vandermonde matrix. Repeating the argument thus far, we
deduce that

k
detv}\z ----- )\k(:U’Qa"'nu’k) = H(AJ _)‘Q)Mzuj detV)\3 77777 )\k(M37"'7/‘Lk)7

Jj=3
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where the matrix on the right hand side has us rows and po columns fewer than the matrix on the
left hand side, and also does not involve As. And so on. Eventually, we obtain

V>\17~--,>\k (,ula 2, ... ,Uk) = H (/\] - Ai)#iuj det V)\k (:uk)’

1<i<j<k
where Vs, (i) is a lower triangular matrix with diagonal entries 1, so that det Vy, (ux) = 1.

REMARK. A simpler, but indirect, way of showing that the functions in (5.9) are linearly indepen-
dent is as follows. Suppose that
kopi—1

(5.22) DN ajtelit =,

j=1 r=0

where «;, is a constant for every j =1,...,k and every r = 0,1,...,p; — 1. Clearly (5.22) is of the
form

k
(5.23) > pi(t)edt =0,
j=1

where, for j =1,...,k,
Bi—1

pi(t) =D ajt”
r=0

is a polynomial of degree u; — 1. Suppose that for some j = 1,...,k and r = 0,1,...,u; — 1, the
constant «j, is non-zero. Then clearly the polynomial p;(t) cannot be identically zero. Without loss
of generality assume that py(t) is not identically zero. Multiplying (5.23) by e~ we have

k
(5.24) pi(t) + ) pi(H)e Mt =0,
j=2

Recall that p;(t) is a polynomial of degree p1 — 1. It follows that on differentiating (5.24) p; times
with respect to ¢, we have

k
> gyt =
=2
i.€.

qj (t)e)‘jt =0.

-

Jj=2

Note that for every j = 2,...,k, the polynomial ¢;(¢) has the same degree as the polynomial p;(t).
Repeating this argument a finite number of times, we get

(5.25) sp(t)et = 0.
Recall now that we have assumed that pg(¢) is not identically zero, so that (5.25) is clearly false.

To end this section, we state

PROPOSITION 5.8. Suppose that the characteristic polynomial (5.2) has real coefficients. Suppose
further that it has distinct real roots \j, j = 1,...,k, with multiplicities ji1, ..., pr respectively, and

distinct pairs of non-real roots )\;L =uj +iv; and A; =wu; —iv;, j=k+1,...,s, with multiplicities
k41, - - -5 fbs TESPEctively. Then the real valued functions
et et TNt =1k,

together with

=1

e" cosvjt, te"t cosv;t, ... ' e cosvit, j=k+1,...,s,

and

e“i'sinv;t, te"i sinw;t, ..., " e i sinvit, j=k+1,...,s,

form a fundamental system of solutions of the differential equation (5.1).
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REMARK. Note that n = p; + ...+ i + 2(et1 + .- - + fs)-

5.4. Non-Homogeneous Equations

Consider the n-th order non-homogeneous linear differential equation

(5.26) 2 pazY a2 = b(2),

where z = z(t) is an unknown real or complex valued scalar function, aq,...,a, are real or complex
constants, and the function b(¢) is continuous on (71, 72). Suppose that we have the initial conditions
(5.27) 2(to) = 20, 2(to) =2z, ..., 2" D(te) =z,

Then as a special case of Proposition 4.6, we have

PROPOSITION 5.9. Suppose that b(t) is continuous on (r1,r2), and that ¥1(t), ..., ¥, (t) is a fun-
damental system of solutions of (5.1). Suppose further that ty € (r1,r2). Then the solution of the
equation (5.26) with initial conditions (5.27) is given by

n t
) = 0(t) + WL 0) D200 [ e bW (s)d,
=1 fo
where Yo (t) is the solution of the homogeneous equation (5.1) with given initial conditions (5.27), and

where, for every j =1,...,n, W;(t) = det W;(t) and the matriz W;(t) is obtained from the matriz
W(t) by replacing the j-th column by (0,...,0,1).

ExAMPLE. Consider the fourth order linear differential equation
L g 4 3" +4Z/ — 4y = th-

The corresponding homogeneous equation has characteristic polynomial p* — 4p3 + 3p? + 4p — 4, with
roots \;y = Ao =2, A3 =1 and Ay = —1. A fundamental system of solutions is therefore

Ui(t) =e*,  aho(t) =te®, Ys(t) =e', Yu(t)=e",

with fundamental matrix

o2t p2t ot et

2% (2t +1)e? e —e?

Wit) = 4e? (4t +4)e* ot et
8et (8t +12)e* e —e !

Suppose now we have the initial conditions z(0) = 1, 2/(0) = 2, 2”(0) = 12 and 2"’(0) = 30. Then
Yo(t) = e + 2te® —ef + et

is the solution of the homogeneous equation satisfying the given initial conditions. On the other
hand,

0 se?s  e® e’
_ 0 (2s+1)e* e —e* | o
Wi(s) = det 0 (ds+4)e® o o |~ 2e*°(3s 4+ 4),
1 (8s+12)e* ef —e°
er 0 e e~s
2% 0 e —e° 28
W2<s> = det 4625 0 e e—$ = —0e )
8 1 e° —e®
e?* se?* 0 e ®
B 2% (2s+1)e* 0 —e® | 3
W (s) = det 4e?  (4s+4)e* 0 e | T %,
8e?* (8s+12)e* 1 —e=*
e?s se?* e* 0
_ 2e?*  (2s+1)e* e 0 | s,
Wa(s) = det 4e*5  (4s+4)e* e 0 | ¢
8e?s  (8s+12)e? e 1
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It follows that

4 t
S us(0) [ e o) as
j=1 0
t t t t
= / e 2%2e2%(3s + 4) ds + te?! / e 2 (—6e*) ds + e / e 2 (—9¢3)ds +e7! / e %57 ds
0 0 0 0

2 1
= (—3t2 + 8t — 36> e? 4+ 9et — gert.

Furthermore,
1 0 1 1
2 1 1 -1
W(0) = det A 41 117 —18.
8 12 1 -1
Hence

1, 4, 13 1 1
2(t) =e* +2te* —e' +e + <6t2 —5tt 27) e — e+ —e!

3 55 1 4 13
— o2t L 9pe2t 2ot —t S22y 2t
e”" + 2te 2e + 548 + 5 9 + 27 e

is the solution of the equation with given initial condition.

5.5. Method of Undetermined Coefficients

Let us return to equation (5.26).
Suppose that b(t) is a solution of some homogeneous linear equation with constant coefficients,

2 4y 4 bz =0,
say. Then writing M (D) = D™ +b; D™~ ! + ...+ b,,, we have

(5.28) M(D)b(t) = 0.

If we write L(D) = D" + a1 D" + ... + a,, then (5.26) becomes
(5.29) L(D)z = b(t).
Combining (5.28) and (5.29), we obtain

(5.30) M(D)L(D)z = 0.
Writing N(D) = M(D)L(D), (5.30) can be rewritten in the form
(5.31) N(D)z = 0.

Note now that (5.31) is a homogeneous linear equation with constant coefficients and degree r = n+m.
Let x1(t),...,xr(t) be a fundamental system of solutions of (5.31). Then the solution of (5.31) is
given by

(5.32) x(t) = Zﬁin:(t)7

i=1
where f31, ..., 3, are arbitrary constants. Substituting this into (5.29), we obtain
(5.33) L(D)x(t) = b(t).

Next, note that if p1(t),..., ¢, (t) is a fundamental system of solutions of L(D)z = 0, then clearly
©1(t),. .., pn(t) form a linearly independent set of solutions of (5.31). Without loss of generality, we
may therefore assume that

(5.34) Xi(t) =wi(t), i=1,...,n.
If we now combine (5.32) and (5.33), and noting (5.34) and
L(D)p;(t) =0, i=1,...,n,
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we obtain
T T
(5.35) b(t) =Y BLD)xi(t)= Y BL(D
i=1 i=n+1
We can now determine (3,11, ...,b, by comparing coefficients on the two sides of (5.35). Note also
that

n
> Bixilt)
i=1
is a solution of the homogeneous equation L(D)z = 0, and the coefficients /1, ..., 3, are determined
by initial conditions.
ExAMPLE. Consider the differential equation
(5.36) 2 — =t 4+ 1).
This can be expressed in the form

L(D)z = e*(t* + 1),

where L(D) = D? — 1. The function b(t) = e*(#? + 1) satisfies the homogeneous linear equation
M (D)b(t) = 0, where M (D) = (D — 2)3. In our notation, we consider the equation N(D)z = 0,
where N(D) = (D —2)3(D? — 1). A fundamental system of solutions of N(D)z = 0 is given by
Xl( ) = etv X2(t) = e_ta XS(t) = th, X4(t) = t62t7 XS(t) = t2e2t'
Hence

X(t) = Bre" + Pae™" + Bze® + Pate® + Pst’e?
is a solution of (5.36) for suitable choices of the coefficients. Now
L(D)x(t) = BsL(D)e* + B L(D)te* + f5L(D)t*e*
= (3B5t” + (885 + 3Bu)t + (285 + 4Bs + 383))e*
But L(D)x(t) = e*(t?> + 1), so we must have
?+1 =305t + (805 + 364t + (205 + 484 + 303).
Comparing coefficients, we have

35

63:2773

The solution of (5.36) is now given by
_ 1 8 35
X(t) = Bre’ + fre™" + <3t2 ot + 27)

Note that 01 and (2 are determined by initial conditions.

fa=—¢

9’ 55:

1
3

5.6. Behaviour of Solutions

Consider the n-th order homogeneous linear equation

(5.37) 2 4a2Y 4 a2 =0,
where ay,...,a, are real or complex constants. The solutions z(t) are defined on t € (—o0,00). In
practical situations, we are interested in the behaviour of the solutions as t — +oo.

If the characteristic polynomial of the equation has distinct roots Aq,..., Ax, with multiplicities
U1, ..., 1 respectively, then by Proposition 5.7, any solution z(t) is a linear combination of the
functions

Mt peMt o pmTleMt @At ekt kT LAkt

Let £(t) = t"e™ be one of these functions. If A has negative real part, then clearly

lim ¢"eM = 0.
t——+oo

We have proved



40 5. LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
PROPOSITION 5.10. Suppose that all the roots of the characteristic polynomial of the equation (5.37)
have negative real parts. Then given any solution z(t) of (5.37), we have
li =0.
(dim z(t) =0
Next, consider a function of the form &£(¢) = e*. If A has non-positive real part, then clearly e’ is
bounded as t — +o00. We have therefore proved the following variation to Proposition 5.10.

PROPOSITION 5.11. Suppose that all the roots of the characteristic polynomial of the equation (5.37)
have non-positive real parts, and that all such roots with multiplicity greater than 1 have negative real
parts. Then any solution z(t) of (5.37) remains bounded as t — +oc.

These are examples of situations when we say the solutions of the system are stable.
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Problems for Chapter 5

1. For each of the following differential equations, solve the corresponding homogeneous equation.
Then solve the non-homogeneous equation using the method of undetermined coefficients, without
guessing the particular integral:

(i) 2" — 32 4+ 2z = cost

(i) 2" =32 +2z=¢

(iii) 2” — 32 + 22 = el + 2te*
iv Z”/ _ Z/ — tht

( ) " / _ : t
(v) 2" +42' + 3z =tsint+e

2. Consider the Euler equation
t72() gt 4 4 a2 =0,

where aq,...,a, are constants.
(i) Show that the substitution ¢t = e" reduces the equation to an n-th order linear equation
with constant coefficients. Describe a fundamental system of solutions of equation.
(ii) Consider the case n = 2. Find conditions on the coefficients a; and as to ensure that all
solutions of the equation are bounded as t — +oc.
3. Solve the following Euler equations using the method in Question 2(i):
(i) t22" — 4tz +62 =0
(i) 22" —3tz' +52=0
(iii) 32" +t2' —2=0



