CHAPTER 6

First Order Linear Systems with Constant Coefficients

© W W L Chen, 1991, 2013.

This chapter is available free to all individuals,
on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

6.1. Homogeneous Systems

Consider the first order homogeneous linear system

$$(6.1) x' = Ax$$

Here A is a constant $n \times n$ matrix with real or complex entries, and $x = x(t) = (x_1(t), \dots, x_n(t))$ is an unknown vector function, considered as an n-dimensional column vector.

It was shown in Chapter 3 that given any initial condition

$$(6.2) x(t_0) = x_0 = (x_{10}, \dots, x_{n0}),$$

there is a unique solution to the system (6.1) satisfying (6.2). It was also shown that a fundamental system of solutions $\varphi_1(t), \ldots, \varphi_n(t)$ of (6.1) exists. Here in the special case when A is constant, we shall attempt to describe such a fundamental system.

Suppose that B is a constant invertible $n \times n$ matrix. Write $y = B^{-1}x$. Then x = By. Furthermore, x' = By'. It follows that (6.1) can be described by By' = ABy, i.e.

$$(6.3) y' = B^{-1}ABy.$$

The idea is to choose B so that $B^{-1}AB$ has simple form.

Consider the polynomial det(A - pI) = 0. This can be written in the form

$$(6.4) (p - \lambda_1)^{\mu_1} \dots (p - \lambda_k)^{\mu_k} = 0,$$

where the distinct roots $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ are the eigenvalues, with multiplicities μ_1, \ldots, μ_k respectively. It is well known that we can choose B so that $B^{-1}AB$ is in Jordan normal form. When this is achieved, we can then study the system (6.3) in Section 6.2. The reduction of the matrix A to Jordan normal form is covered in any standard course in linear algebra. However, for the sake of completeness, we briefly discuss this in Section 6.3.

6.2. A Fundamental System of Solutions

Suppose now that we have found an invertible matrix B such that $J = B^{-1}AB$ is in Jordan normal form; in other words,

$$J = \left(\begin{array}{ccc} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_k \end{array} \right),$$

where, for every j = 1, ..., k, the $\mu_j \times \mu_j$ matrix

$$J_j = \left(\begin{array}{cccc} \lambda_j & v_2 & & & \\ & \lambda_j & v_3 & & \\ & & \lambda_j & \ddots & \\ & & & \ddots & v_{\mu_j} \\ & & & & \lambda_j \end{array}\right),$$

with $v_2, \ldots, v_{\mu_j} \in \{0, 1\}$, and $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of the matrix A, with multiplicities μ_1, \ldots, μ_k respectively. This means that

(6.5)
$$J = \begin{pmatrix} J_1^* & & & \\ & J_2^* & & \\ & & \ddots & \\ & & & J_m^* \end{pmatrix},$$

where for every k = 1, ..., m, the matrix J_k^* is of the form

(6.6)
$$\begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \lambda & \ddots & & \\ & & & \ddots & 1 & \\ & & & & \lambda \end{pmatrix}$$

for some eigenvalue λ of A and some $\mu \leq n$. Note that the numbers λ may no longer be distinct. Consider first of all the first order μ -dimensional system

$$(6.7) y' = Ky,$$

where the matrix K is of the form (6.6).

Lemma 6.1. A fundamental system of solutions of the first order μ -dimensional system (6.7) is given by

$$\phi_{1}[\lambda,\mu](t) = (e^{\lambda t}, \underbrace{0, \dots, 0}_{\mu-1}),$$

$$\phi_{2}[\lambda,\mu](t) = (te^{\lambda t}, e^{\lambda t}, \underbrace{0, \dots, 0}_{\mu-2}),$$

$$\phi_{3}[\lambda,\mu](t) = \left(\frac{1}{2!}t^{2}e^{\lambda t}, te^{\lambda t}, e^{\lambda t}, \underbrace{0, \dots, 0}_{\mu-3}\right),$$

$$\phi_{4}[\lambda,\mu](t) = \left(\frac{1}{3!}t^{3}e^{\lambda t}, \frac{1}{2!}t^{2}e^{\lambda t}, te^{\lambda t}, e^{\lambda t}, \underbrace{0, \dots, 0}_{\mu-4}\right),$$

$$\vdots$$

$$\phi_{\mu}[\lambda,\mu](t) = \left(\frac{1}{(\mu-1)!}t^{\mu-1}e^{\lambda t}, \dots, \frac{1}{2!}t^{2}e^{\lambda t}, te^{\lambda t}, e^{\lambda t}\right).$$

PROOF. It is not difficult to check for every $j=1,\ldots,\mu$, the vector $\phi_j[\lambda,\mu](t)$ is a solution of the system (6.7). Note also that the Wronskian W(0)=1. \bigcirc

Consider now of all the first order n-dimensional system

$$(6.8) y' = Jy,$$

where the matrix J is of the form (6.5), and where, for every k = 1, ..., m, the matrix J_k^* is of the form (6.6) for some eigenvalue λ_k of A and some $\mu_k \leq n$.

Lemma 6.2. A fundamental system of solutions of the first order μ -dimensional system (6.8) is given by

$$(\phi_{1}[\lambda_{1}, \mu_{1}](t), \underbrace{0, \dots, 0}_{\mu_{2}+\dots+\mu_{m}}),$$

$$\vdots$$

$$(\phi_{\mu_{1}}[\lambda_{1}, \mu_{1}](t), \underbrace{0, \dots, 0}_{\mu_{2}+\dots+\mu_{m}});$$

$$\vdots$$

$$\underbrace{(0, \dots, 0, \phi_{1}[\lambda_{k}, \mu_{k}](t), \underbrace{0, \dots, 0}_{\mu_{k+1}+\dots+\mu_{m}}),}_{\mu_{k+1}+\dots+\mu_{m}};$$

$$\vdots$$

$$\underbrace{(0, \dots, 0, \phi_{\mu_{k}}[\lambda_{k}, \mu_{k}](t), \underbrace{0, \dots, 0}_{\mu_{k+1}+\dots+\mu_{m}});}_{\mu_{k+1}+\dots+\mu_{m}};$$

$$\vdots$$

$$\underbrace{(0, \dots, 0, \phi_{1}[\lambda_{m}, \mu_{m}](t)),}_{\mu_{1}+\dots+\mu_{m-1}};$$

$$\vdots$$

$$\underbrace{(0, \dots, 0, \phi_{\mu_{m}}[\lambda_{m}, \mu_{m}](t)).}_{\mu_{1}+\dots+\mu_{m-1}};$$

PROOF. It is not difficult to check for every vector given is a solution of the system (6.8), in view of Lemma 6.1. Note again that the Wronskian W(0) = 1.

We now return to the system (6.1).

LEMMA 6.3. Suppose that $\psi_1(t), \ldots, \psi_n(t)$ form a fundamental system of solutions of the system (6.8), where $J = B^{-1}AB$ is in Jordan normal form. Then $B\psi_1(t), \ldots, B\psi_n(t)$ form a fundamental system of solutions of the system (6.1).

PROOF. For every k = 1, ..., n, since $\psi'_k(t) = J\psi_k(t)$, it follows that $B\psi'_k(t) = BJB^{-1}B\psi_k(t)$. Note now that $A = BJB^{-1}$. On the other hand, the Wronskian of $B\psi_1(t), ..., B\psi_n(t)$ is the product of the determinant of B and the Wronskian of $\psi_1(t), ..., \psi_n(t)$, and so non-zero. \bigcirc

To summarize, given any first order homogeneous linear system x' = Ax, we first reduce the matrix A to Jordan normal form J. We then find a fundamental system of solutions of the system y' = Jy by using Lemma 6.2. Finally, we obtain a fundamental system of solutions of the original system in view of Lemma 6.3.

Example. Consider the 3-dimensional system x' = Ax, where

$$A = \left(\begin{array}{rrr} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{array} \right).$$

If

$$B = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{array}\right),$$

then it is not difficult to check that

$$B^{-1}AB = J = \left(\begin{array}{rrr} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{array} \right).$$

We now need to solve the 3-dimensional system y' = Jy. By Lemma 6.2, a fundamental system of solutions of y' = Jy is given by

$$\psi_1(t) = (e^{-2t}, 0, 0),$$

$$\psi_2(t) = (te^{-2t}, e^{-2t}, 0),$$

$$\psi_3(t) = (0, 0, e^{4t}).$$

By Lemma 6.3, a fundamental system of solutions of x' = Ax is given by

$$B\psi_1(t) = (e^{-2t}, e^{-2t}, 0),$$

$$B\psi_2(t) = (te^{-2t} + e^{-2t}, te^{-2t} + e^{-2t}, -e^{-2t}),$$

$$B\psi_3(t) = (0, e^{4t}, e^{4t}).$$

6.3. Jordan Normal Form

This section is concerned with describing the linear algebra necessary to reduce the matrix A to Jordan normal form, and may be skipped if you are familiar with Jordan normal form.

LEMMA 6.4. Let A be an $n \times n$ matrix with characteristic polynomial (6.4). For every $j = 1, \ldots, k$, let $V_j = \{u \in \mathbb{C}^n : (A - \lambda_j I)^{\mu_j} u = 0\}$. Then \mathbb{C}^n is the direct sum of V_1, \ldots, V_k .

PROOF. (i) We shall first of all show that \mathbb{C}^n is the direct sum of V_1 and W, where

$$W = \{ u \in \mathbb{C}^n : (A - \lambda_2 I)^{\mu_2} \dots (A - \lambda_k I)^{\mu_k} u = 0 \}.$$

To do this, let

$$f_1(p) = (p - \lambda_1)^{\mu_1}$$
 and $f_2(p) = (p - \lambda_2)^{\mu_2} \dots (p - \lambda_k)^{\mu_k}$.

Then $f_1(p)$ and $f_2(p)$ are coprime, so there exist polynomials $g_1(p)$ and $g_2(p)$, with coefficients in \mathbb{C} , such that $g_1(p)f_1(p) + g_2(p)f_2(p) = 1$. Hence

$$(6.9) q_1(A) f_1(A) + q_2(A) f_2(A) = I.$$

Let $u \in \mathbb{C}^n$. Then

$$u = g_1(A)f_1(A)u + g_2(A)f_2(A)u.$$

Now $g_1(A)f_1(A)u \in W$, since

$$f_2(A)g_1(A)f_1(A)u = g_1(A)f_1(A)f_2(A)u = 0.$$

Similarly $g_2(A)f_2(A)u \in V_1$. Hence \mathbb{C}^n is a sum of V_1 and W. To show that \mathbb{C}^n is the direct sum of V_1 and W, we shall show that for every $u \in \mathbb{C}^n$, the expression

$$u = v_1 + w, \quad v_1 \in V, \ w \in W,$$

is unique. Note first of all that since $f_1(A)v_1=0$, we must have

(6.10)
$$g_1(A)f_1(A)u = g_1(A)f_1(A)w.$$

On the other hand, using (6.9) and noting that $f_2(A)w = 0$, we must have

(6.11)
$$w = g_1(A)f_1(A)w.$$

Combining (6.10) and (6.11), we conclude that $w = g_1(A)f_1(A)u$. Similarly $v_1 = g_2(A)f_2(A)u$. (ii) We now assume that W is a direct sum of V'_2, \ldots, V'_k , where for every $j = 2, \ldots, k$,

$$V_i' = \{ u \in W : (A - \lambda_j I)^{\mu_j} u = 0 \}.$$

Clearly $V'_j \subseteq V_j$. On the other hand, suppose that $u \in V_j$. Then $(A - \lambda_j I)^{\mu_j} u = 0$, so that $(A - \lambda_2 I)^{\mu_2} \dots (A - \lambda_k I)^{\mu_k} u = 0$, whence $u \in W$. Hence $V_j \subseteq V'_j$. \bigcirc

LEMMA 6.5. Let V be a vector space over \mathbb{C} , of dimension μ . Suppose that $f: V \to V$ is a linear map, and that there exists an integer $r \geq 0$ such that $f^r = 0$ on V. Then there exists a basis of V with respect to which the matrix of f is of the form

$$\begin{pmatrix}
0 & v_2 & & & & \\
& 0 & v_3 & & & & \\
& & 0 & \ddots & & \\
& & & \ddots & v_{\mu} & & \\
& & & & 0
\end{pmatrix},$$

where $v_2, \ldots, v_{\mu} \in \{0, 1\}.$

To prove Lemma 6.5, we may assume that $f \neq 0$ on V, otherwise the result is trivial. Hence there exists an integer $q \geqslant 1$ such that

$$f^q \neq 0$$
 and $f^{q+1} = 0$

on V. For every integer $r \geq 0$, let

$$E_r = \ker f^r$$
.

Clearly $E_0 = \{0\}$ and $E_{q+1} = V$.

LEMMA 6.6. We have $\{0\} = E_0 \subsetneq E_1 \subsetneq \ldots \subsetneq E_q \subsetneq E_{q+1} = V$. Furthermore, $f(E_{i+1}) \subseteq E_i$ for every $i = 0, 1, \ldots, q$.

LEMMA 6.7. Let i = 1, ..., q be chosen. Suppose that W is a subspace of V such that $W \cap E_i = \{0\}$. Then $f(W) \cap E_{i-1} = \{0\}$. Furthermore, f induces an isomorphism of W onto f(W).

Lemma 6.8. There exist subspaces W_1, \ldots, W_{q+1} of V such that

- (i) for every i = 1, ..., q + 1, E_i is the direct sum of E_{i-1} and W_i ; and
- (ii) for every i = 2, ..., q + 1, f maps W_i one-to-one into W_{i-1} .

PROOF OF LEMMA 6.5. We first of all construct the subspaces W_1, \ldots, W_{q+1} of V as in Lemma 6.8. Let

$$v_{1,1}, v_{1,2}, \ldots, v_{1,r_1}$$

be a basis of W_{q+1} . Since these vectors are linearly independent and since f maps W_{q+1} one-to-one into W_q , the vectors

$$f(v_{1,1}), f(v_{1,2}), \ldots, f(v_{1,r_1})$$

are linearly independent. We can extend this collection to a basis of W_q of the form

$$v_{2,1},\ldots,v_{2,r_1},v_{2,r_1+1},\ldots,v_{2,r_2},$$

where

$$f(v_{1,j}) = v_{2,j}, \quad j = 1, \dots, r_1.$$

Repeating this argument, we can show that there exists a basis of W_{q-1} of the form

$$v_{3,1},\ldots,v_{3,r_2},v_{3,r_2+1},\ldots,v_{3,r_3},$$

where

$$f(v_{2,j}) = v_{3,j}, \quad j = 1, \dots, r_2.$$

Continuing in this way, we finally arrive at a basis of $W_1 = E_1$ of the form

$$(6.12) v_{q+1,1}, \dots, v_{q+1,r_{q+1}},$$

where

$$f(v_{q,j}) = v_{q+1,j}, \quad j = 1, \dots, r_q.$$

Since $E_1 = \ker f$, we also have

$$f(v_{q+1,j}) = 0, \quad j = 1, \dots, r_{q+1}.$$

It is easy to see from Lemma 6.8(i) that V is the direct sum of W_1, \ldots, W_{q+1} , and a basis can be constructed using the vectors we have discussed so far. We can write the elements of this basis in the following order:

The elements can be rewritten in the following order: column by column from left to right, and each column from bottom to top, and denoted by

$$v_i$$
, $i = 1, \ldots, r_1 + \ldots + r_{q+1}$.

Then either $f(v_i) = 0$ or $f(v_i) = v_{i-1}$, and the matrix of f with respect to this basis has the form indicated in the statement of Lemma 6.5. \bigcirc

PROOF OF LEMMA 6.6. The second assertion follows from the definition of E_r . To prove the first assertion, note that clearly $E_i \subseteq E_{i+1}$. On the other hand, suppose on the contrary that $E_i = E_{i+1}$ for some $i = 0, 1, \ldots, q$. Then for every $v \in V$, $0 = f^{q+1}(v) = f^{i+1}(f^{q-i}(v))$, so that $f^{q-i}(v) \in E_{i+1} = E_i$, whence $f^q(v) = 0$, contradicting the definition of q. \bigcirc

PROOF OF LEMMA 6.7. Let $v \in f(W) \cap E_{i-1}$. Then there exists $w \in W$ such that v = f(w), so that $0 = f^{i-1}(v) = f^i(w)$, whence $w \in E_i$. Hence w = 0, and so v = 0. This proves the first assertion. On the other hand, the mapping $f|_W: W \to f(W)$ is clearly linear and onto. It is easy to check that it is also one-to-one. \bigcirc

PROOF OF LEMMA 6.8. Choose W_{q+1} so that $E_{q+1} = V$ is a direct sum of E_q and W_{q+1} . Then $f(W_{q+1}) \subseteq E_q$. By Lemma 6.7, $f(W_{q+1}) \cap E_{q-1} = \{0\}$. Hence there exists W_q such that $f(W_{q+1}) \subseteq W_q$ and such that E_q is a direct sum of E_{q-1} and W_q . We continue this way to construct W_{q-1}, \ldots, W_1 , where $f(W_{i+1}) \subseteq W_i$ for every $i = 1, \ldots, q$. Note that (ii) follows from the second assertion of Lemma 6.7. \bigcirc

To obtain Jordan normal form, we first of all apply Lemma 6.4. Consider the restriction of A to the elements of each V_j . Then $A - \lambda_j I$ can be described by a matrix of the form given in Lemma 6.5. Obtain a Jordan bases for V_j . We now take the union of all such bases obtained for V_1, \ldots, V_k . Jordan normal form follows easily.