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6.1. Homogeneous Systems

Consider the first order homogeneous linear system

(6.1) x′ = Ax.

Here A is a constant n× n matrix with real or complex entries, and x = x(t) = (x1(t), . . . , xn(t)) is
an unknown vector function, considered as an n-dimensional column vector.

It was shown in Chapter 3 that given any initial condition

(6.2) x(t0) = x0 = (x10, . . . , xn0),

there is a unique solution to the system (6.1) satisfying (6.2). It was also shown that a fundamental
system of solutions ϕ1(t), . . . , ϕn(t) of (6.1) exists. Here in the special case when A is constant, we
shall attempt to describe such a fundamental system.

Suppose that B is a constant invertible n×n matrix. Write y = B−1x. Then x = By. Furthermore,
x′ = By′. It follows that (6.1) can be described by By′ = ABy, i.e.

(6.3) y′ = B−1ABy.

The idea is to choose B so that B−1AB has simple form.
Consider the polynomial det(A− pI) = 0. This can be written in the form

(6.4) (p− λ1)µ1 . . . (p− λk)µk = 0,

where the distinct roots λ1, . . . , λk ∈ C are the eigenvalues, with multiplicities µ1, . . . , µk respectively.
It is well known that we can choose B so that B−1AB is in Jordan normal form. When this is achieved,
we can then study the system (6.3) in Section 6.2. The reduction of the matrix A to Jordan normal
form is covered in any standard course in linear algebra. However, for the sake of completeness, we
briefly discuss this in Section 6.3.

6.2. A Fundamental System of Solutions

Suppose now that we have found an invertible matrix B such that J = B−1AB is in Jordan normal
form; in other words,

J =





J1

J2

. . .
Jk




,
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44 6. FIRST ORDER LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS

where, for every j = 1, . . . , k, the µj × µj matrix

Jj =





λj v2

λj v3

λj
. . .
. . . vµj

λj




,

with v2, . . . , vµj ∈ {0, 1}, and λ1, . . . , λk are distinct eigenvalues of the matrix A, with multiplicities
µ1, . . . , µk respectively. This means that

(6.5) J =





J∗1
J∗2

. . .
J∗m




,

where for every k = 1, . . . ,m, the matrix J∗k is of the form

(6.6)





λ 1
λ 1

λ
. . .
. . . 1

λ





for some eigenvalue λ of A and some µ ! n. Note that the numbers λ may no longer be distinct.
Consider first of all the first order µ-dimensional system

(6.7) y′ = Ky,

where the matrix K is of the form (6.6).

Lemma 6.1. A fundamental system of solutions of the first order µ-dimensional system (6.7) is
given by

φ1[λ, µ](t) = (eλt, 0, . . . , 0︸ ︷︷ ︸
µ−1

),

φ2[λ, µ](t) = (teλt, eλt, 0, . . . , 0︸ ︷︷ ︸
µ−2

),

φ3[λ, µ](t) =
(

1
2!

t2eλt, teλt, eλt, 0, . . . , 0︸ ︷︷ ︸
µ−3

)
,

φ4[λ, µ](t) =
(

1
3!

t3eλt,
1
2!

t2eλt, teλt, eλt, 0, . . . , 0︸ ︷︷ ︸
µ−4

)
,

...

φµ[λ, µ](t) =
(

1
(µ− 1)!

tµ−1eλt, . . . ,
1
2!

t2eλt, teλt, eλt

)
.

Proof. It is not difficult to check for every j = 1, . . . , µ, the vector φj [λ, µ](t) is a solution of the
system (6.7). Note also that the Wronskian W (0) = 1. ©

Consider now of all the first order n-dimensional system

(6.8) y′ = Jy,

where the matrix J is of the form (6.5), and where, for every k = 1, . . . ,m, the matrix J∗k is of the
form (6.6) for some eigenvalue λk of A and some µk ! n.
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Lemma 6.2. A fundamental system of solutions of the first order µ-dimensional system (6.8) is
given by

(φ1[λ1, µ1](t), 0, . . . , 0︸ ︷︷ ︸
µ2+...+µm

),

...
(φµ1 [λ1, µ1](t), 0, . . . , 0︸ ︷︷ ︸

µ2+...+µm

);

...
(0, . . . , 0︸ ︷︷ ︸

µ1+...+µk−1

, φ1[λk, µk](t), 0, . . . , 0︸ ︷︷ ︸
µk+1+...+µm

),

...
(0, . . . , 0︸ ︷︷ ︸

µ1+...+µk−1

, φµk [λk, µk](t), 0, . . . , 0︸ ︷︷ ︸
µk+1+...+µm

);

...
(0, . . . , 0︸ ︷︷ ︸

µ1+...+µm−1

, φ1[λm, µm](t)),

...
(0, . . . , 0︸ ︷︷ ︸

µ1+...+µm−1

, φµm [λm, µm](t)).

Proof. It is not difficult to check for every vector given is a solution of the system (6.8), in view
of Lemma 6.1. Note again that the Wronskian W (0) = 1. ©

We now return to the system (6.1).

Lemma 6.3. Suppose that ψ1(t), . . . , ψn(t) form a fundamental system of solutions of the system
(6.8), where J = B−1AB is in Jordan normal form. Then Bψ1(t), . . . , Bψn(t) form a fundamental
system of solutions of the system (6.1).

Proof. For every k = 1, . . . , n, since ψ′k(t) = Jψk(t), it follows that Bψ′k(t) = BJB−1Bψk(t).
Note now that A = BJB−1. On the other hand, the Wronskian of Bψ1(t), . . . , Bψn(t) is the product
of the determinant of B and the Wronskian of ψ1(t), . . . , ψn(t), and so non-zero. ©

To summarize, given any first order homogeneous linear system x′ = Ax, we first reduce the matrix
A to Jordan normal form J . We then find a fundamental system of solutions of the system y′ = Jy
by using Lemma 6.2. Finally, we obtain a fundamental system of solutions of the original system in
view of Lemma 6.3.

Example. Consider the 3-dimensional system x′ = Ax, where

A =




−3 1 −1
−7 5 −1
−6 6 −2



 .

If

B =




1 1 0
1 1 1
0 −1 1



 ,

then it is not difficult to check that

B−1AB = J =




−2 1 0

0 −2 0
0 0 4



 .



46 6. FIRST ORDER LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS

We now need to solve the 3-dimensional system y′ = Jy. By Lemma 6.2, a fundamental system of
solutions of y′ = Jy is given by

ψ1(t) = (e−2t, 0, 0),

ψ2(t) = (te−2t, e−2t, 0),

ψ3(t) = (0, 0, e4t).

By Lemma 6.3, a fundamental system of solutions of x′ = Ax is given by

Bψ1(t) = (e−2t, e−2t, 0),

Bψ2(t) = (te−2t + e−2t, te−2t + e−2t,−e−2t),

Bψ3(t) = (0, e4t, e4t).

6.3. Jordan Normal Form

This section is concerned with describing the linear algebra necessary to reduce the matrix A to
Jordan normal form, and may be skipped if you are familiar with Jordan normal form.

Lemma 6.4. Let A be an n×n matrix with characteristic polynomial (6.4). For every j = 1, . . . , k,
let Vj = {u ∈ Cn : (A− λjI)µj u = 0}. Then Cn is the direct sum of V1, . . . , Vk.

Proof. (i) We shall first of all show that Cn is the direct sum of V1 and W , where

W = {u ∈ Cn : (A− λ2I)µ2 . . . (A− λkI)µku = 0}.

To do this, let

f1(p) = (p− λ1)µ1 and f2(p) = (p− λ2)µ2 . . . (p− λk)µk .

Then f1(p) and f2(p) are coprime, so there exist polynomials g1(p) and g2(p), with coefficients in C,
such that g1(p)f1(p) + g2(p)f2(p) = 1. Hence

(6.9) g1(A)f1(A) + g2(A)f2(A) = I.

Let u ∈ Cn. Then

u = g1(A)f1(A)u + g2(A)f2(A)u.

Now g1(A)f1(A)u ∈W , since

f2(A)g1(A)f1(A)u = g1(A)f1(A)f2(A)u = 0.

Similarly g2(A)f2(A)u ∈ V1. Hence Cn is a sum of V1 and W . To show that Cn is the direct sum of
V1 and W , we shall show that for every u ∈ Cn, the expression

u = v1 + w, v1 ∈ V, w ∈W,

is unique. Note first of all that since f1(A)v1 = 0, we must have

(6.10) g1(A)f1(A)u = g1(A)f1(A)w.

On the other hand, using (6.9) and noting that f2(A)w = 0, we must have

(6.11) w = g1(A)f1(A)w.

Combining (6.10) and (6.11), we conclude that w = g1(A)f1(A)u. Similarly v1 = g2(A)f2(A)u.
(ii) We now assume that W is a direct sum of V ′

2 , . . . , V ′
k, where for every j = 2, . . . , k,

V ′
j = {u ∈W : (A− λjI)µj u = 0}.

Clearly V ′
j ⊆ Vj . On the other hand, suppose that u ∈ Vj . Then (A − λjI)µj u = 0, so that

(A− λ2I)µ2 . . . (A− λkI)µku = 0, whence u ∈W . Hence Vj ⊆ V ′
j . ©
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Lemma 6.5. Let V be a vector space over C, of dimension µ. Suppose that f : V → V is a linear
map, and that there exists an integer r " 0 such that fr = 0 on V . Then there exists a basis of V
with respect to which the matrix of f is of the form





0 v2

0 v3

0
. . .
. . . vµ

0




,

where v2, . . . , vµ ∈ {0, 1}.

To prove Lemma 6.5, we may assume that f '= 0 on V , otherwise the result is trivial. Hence there
exists an integer q " 1 such that

fq '= 0 and fq+1 = 0

on V . For every integer r " 0, let

Er = ker fr.

Clearly E0 = {0} and Eq+1 = V .

Lemma 6.6. We have {0} = E0 ! E1 ! . . . ! Eq ! Eq+1 = V . Furthermore, f(Ei+1) ⊆ Ei for
every i = 0, 1, . . . , q.

Lemma 6.7. Let i = 1, . . . , q be chosen. Suppose that W is a subspace of V such that W ∩Ei = {0}.
Then f(W ) ∩ Ei−1 = {0}. Furthermore, f induces an isomorphism of W onto f(W ).

Lemma 6.8. There exist subspaces W1, . . . ,Wq+1 of V such that
(i) for every i = 1, . . . , q + 1, Ei is the direct sum of Ei−1 and Wi; and
(ii) for every i = 2, . . . , q + 1, f maps Wi one-to-one into Wi−1.

Proof of Lemma 6.5. We first of all construct the subspaces W1, . . . ,Wq+1 of V as in Lemma 6.8.
Let

v1,1, v1,2, . . . , v1,r1

be a basis of Wq+1. Since these vectors are linearly independent and since f maps Wq+1 one-to-one
into Wq, the vectors

f(v1,1), f(v1,2), . . . , f(v1,r1)

are linearly independent. We can extend this collection to a basis of Wq of the form

v2,1, . . . , v2,r1 , v2,r1+1, . . . , v2,r2 ,

where

f(v1,j) = v2,j , j = 1, . . . , r1.

Repeating this argument, we can show that there exists a basis of Wq−1 of the form

v3,1, . . . , v3,r2 , v3,r2+1, . . . , v3,r3 ,

where

f(v2,j) = v3,j , j = 1, . . . , r2.

Continuing in this way, we finally arrive at a basis of W1 = E1 of the form

(6.12) vq+1,1, . . . , vq+1,rq+1 ,

where

f(vq,j) = vq+1,j , j = 1, . . . , rq.

Since E1 = ker f , we also have

f(vq+1,j) = 0, j = 1, . . . , rq+1.
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It is easy to see from Lemma 6.8(i) that V is the direct sum of W1, . . . ,Wq+1, and a basis can be
constructed using the vectors we have discussed so far. We can write the elements of this basis in the
following order:

v1,1 . . . v1,r1

v2,1 . . . v2,r1 v2,r1+1 . . . v2,r2

...
...

...
...

vq+1,1 . . . vq+1,r1 vq+1,r1+1 . . . vq+1,r2 . . . vq+1,rq+1 . . . vq+1,rq+1

The elements can be rewritten in the following order: column by column from left to right, and each
column from bottom to top, and denoted by

vi, i = 1, . . . , r1 + . . . + rq+1.

Then either f(vi) = 0 or f(vi) = vi−1, and the matrix of f with respect to this basis has the form
indicated in the statement of Lemma 6.5. ©

Proof of Lemma 6.6. The second assertion follows from the definition of Er. To prove the
first assertion, note that clearly Ei ⊆ Ei+1. On the other hand, suppose on the contrary that
Ei = Ei+1 for some i = 0, 1, . . . , q. Then for every v ∈ V , 0 = fq+1(v) = f i+1(fq−i(v)), so that
fq−i(v) ∈ Ei+1 = Ei, whence fq(v) = 0, contradicting the definition of q. ©

Proof of Lemma 6.7. Let v ∈ f(W ) ∩ Ei−1. Then there exists w ∈ W such that v = f(w),
so that 0 = f i−1(v) = f i(w), whence w ∈ Ei. Hence w = 0, and so v = 0. This proves the first
assertion. On the other hand, the mapping f |W : W → f(W ) is clearly linear and onto. It is easy to
check that it is also one-to-one. ©

Proof of Lemma 6.8. Choose Wq+1 so that Eq+1 = V is a direct sum of Eq and Wq+1. Then
f(Wq+1) ⊆ Eq. By Lemma 6.7, f(Wq+1) ∩Eq−1 = {0}. Hence there exists Wq such that f(Wq+1) ⊆
Wq and such that Eq is a direct sum of Eq−1 and Wq. We continue this way to construct Wq−1, . . . ,W1,
where f(Wi+1) ⊆ Wi for every i = 1, . . . , q. Note that (ii) follows from the second assertion of
Lemma 6.7. ©

To obtain Jordan normal form, we first of all apply Lemma 6.4. Consider the restriction of A to
the elements of each Vj . Then A−λjI can be described by a matrix of the form given in Lemma 6.5.
Obtain a Jordan bases for Vj . We now take the union of all such bases obtained for V1, . . . , Vk. Jordan
normal form follows easily.


