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6.1. Homogeneous Systems

Consider the first order homogeneous linear system
(6.1) 2 = Ax.

Here A is a constant n X n matrix with real or complex entries, and = = z(t) = (z1(t),...,z,(¢)) is
an unknown vector function, considered as an n-dimensional column vector.
It was shown in Chapter 3 that given any initial condition

(6.2) .T(to) = Xy = (.1310,...,.13”0),

there is a unique solution to the system (6.1) satisfying (6.2). It was also shown that a fundamental
system of solutions ¢1(t),...,@n(t) of (6.1) exists. Here in the special case when A is constant, we
shall attempt to describe such a fundamental system.

Suppose that B is a constant invertible n xn matrix. Write y = B~'2. Then 2 = By. Furthermore,
2’ = By'. Tt follows that (6.1) can be described by By’ = ABy, i.e.

(6.3) y = B"'ABy.

The idea is to choose B so that B~'AB has simple form.
Consider the polynomial det(A — pI) = 0. This can be written in the form

(6.4) (p—A)" ... (p— Ap)H* =0,

where the distinct roots A1, ..., A\r € C are the eigenvalues, with multiplicities p1, . .., i respectively.
It is well known that we can choose B so that B! AB is in Jordan normal form. When this is achieved,
we can then study the system (6.3) in Section 6.2. The reduction of the matrix A to Jordan normal
form is covered in any standard course in linear algebra. However, for the sake of completeness, we
briefly discuss this in Section 6.3.

6.2. A Fundamental System of Solutions

Suppose now that we have found an invertible matrix B such that J = B~ AB is in Jordan normal
form; in other words,

Ji
Jo
Jk
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where, for every j =1,...,k, the p; X p; matrix
)‘j (%]
)\j V3
Jj = Aj ,
Up
Aj
with v, ..., v, € {0,1}, and Ay, ..., A\ are distinct eigenvalues of the matrix A, with multiplicities
W1, ..., tx respectively. This means that
Ji
J3
(6.5) J = : ,
I
where for every k =1,...,m, the matrix J; is of the form
Al
Al
(6.6) A
1
A

for some eigenvalue A of A and some i < n. Note that the numbers A may no longer be distinct.
Consider first of all the first order p-dimensional system

(6.7) y' = Ky,
where the matrix K is of the form (6.6).

LEMMA 6.1. A fundamental system of solutions of the first order u-dimensional system (6.7) is
given by
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PrROOF. It is not difficult to check for every j

=1,...,pu, the vector ¢;[\, ](t) is a solution of the
system (6.7). Note also that the Wronskian W (0) =

1. O
Consider now of all the first order n-dimensional system
(6.8) y' =Jy,

where the matrix J is of the form (6.5), and where, for every k = 1,...,m, the matrix J}} is of the
form (6.6) for some eigenvalue A of A and some py < n.
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LEMMA 6.2. A fundamental system of solutions of the first order u-dimensional system (6.8) is
given by
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PROOF. It is not difficult to check for every vector given is a solution of the system (6.8), in view
of Lemma 6.1. Note again that the Wronskian W (0) =1. O

We now return to the system (6.1).

LEMMA 6.3. Suppose that 11(t),..., ¥, (t) form a fundamental system of solutions of the system
(6.8), where J = B~YAB is in Jordan normal form. Then Biy(t),..., B, (t) form a fundamental
system of solutions of the system (6.1).

PROOF. For every k = 1,...,n, since ¥ (t) = Jiy(t), it follows that By, (t) = BJB™!Byy(t).
Note now that A = BJB~!. On the other hand, the Wronskian of B (t), ..., Bi,(t) is the product
of the determinant of B and the Wronskian of 11 (t), ..., 4,(t), and so non-zero. (O

To summarize, given any first order homogeneous linear system z’ = Az, we first reduce the matrix
A to Jordan normal form .J. We then find a fundamental system of solutions of the system vy’ = Jy
by using Lemma 6.2. Finally, we obtain a fundamental system of solutions of the original system in
view of Lemma 6.3.

ExAMPLE. Consider the 3-dimensional system 2’ = Az, where

-3 1 -1
A=| -7 5 —1
-6 6 —2
If
1 10
B=|1 11],
0 -1 1

then it is not difficult to check that

B 'AB=J=

O O N
|
[l O
- O O
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We now need to solve the 3-dimensional system 3’ = Jy. By Lemma 6.2, a fundamental system of
solutions of 3’ = Jy is given by

¥1(t) = (e7%,0,0),
Po(t) = (te 2, e7280),
¥s(t) = (0,0,e™).
By Lemma 6.3, a fundamental system of solutions of ' = Az is given by
B (t) = (e7%,e7%)0),
Bipo(t) = (te™* + e te™ 2 f o2 —e72),
Bps(t) = (0,e*,et).

6.3. Jordan Normal Form

This section is concerned with describing the linear algebra necessary to reduce the matrix A to
Jordan normal form, and may be skipped if you are familiar with Jordan normal form.

LEMMA 6.4. Let A be an n X n matriz with characteristic polynomial (6.4). For every j =1,... k,
let V ={ueC": (A— X\I)"u=0}. Then C" is the direct sum of V1,..., V.

PROOF. (i) We shall first of all show that C™ is the direct sum of V4 and W, where
W={ueC": (A=) ... (A= AI)"*u =0}
To do this, let
filp) =(p—M)" and  fa(p) = (p— A2)"* ... (p — M)

Then f;(p) and f>(p) are coprime, so there exist polynomials g;(p) and go(p), with coefficients in C,
such that g1(p) f1(p) + g2(p) f2(p) = 1. Hence

(6.9) 91(A) f1(A) + g2(A) f2(A) = 1.
Let w € C™. Then
u=g1(A)f1(A)u + g2(A) f2(A)u.
Now g1(A)f1(A)u € W, since
f2(A)g1(A) f1(A)u = g1(A) f1(A) f2(A)u = 0.

Similarly g2(A)f2(A)u € Vi. Hence C™ is a sum of V3 and W. To show that C™ is the direct sum of
V1 and W, we shall show that for every u € C", the expression

u=vi+w, vieEV,weW,

is unique. Note first of all that since fi(A)v; = 0, we must have

(6.10) 91(A) fr(A)u = g1(A) fr(A)w.

On the other hand, using (6.9) and noting that f3(A)w = 0, we must have

(6.11) w = g1(A) fr(A)w.

Combining (6.10) and (6.11), we conclude that w = g1 (A) f1(A)u. Similarly v = g2(A) f2(A)u.
(ii) We now assume that W is a direct sum of V3, ..., V{, where for every j =2,...,k,

Vi={uecW:(A-NI)"u=0}

Clearly V/ C V;. On the other hand, suppose that u € V;. Then (A — A\;I)*u = 0, so that
(A= XaD)#2 . (A= A D)**u = 0, whence u € W. Hence V; CV/. O
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LEMMA 6.5. Let V' be a vector space over C, of dimension . Suppose that f :V — V is a linear
map, and that there exists an integer r > 0 such that f© = 0 on V. Then there exists a basis of V
with respect to which the matrixz of f is of the form

0 (%]
0 V3

0o . ,

where v, ..., v, € {0,1}.

To prove Lemma 6.5, we may assume that f # 0 on V, otherwise the result is trivial. Hence there
exists an integer ¢ > 1 such that

fi#0 and fitl =0
on V. For every integer r > 0, let
E,. =ker fT.
Clearly Ey = {0} and E,4q1 = V.

LEMMA 6.6. We have {0} = Ej ;Cé E, ; ;Cé E, ; E,11 = V. Furthermore, f(Ei+1) C E; for
every 1 =0,1,...,q.

LEMMA 6.7. Leti=1,...,q be chosen. Suppose that W is a subspace of V' such that WNE; = {0}.
Then f(W) N E;_1 = {0}. Furthermore, f induces an isomorphism of W onto f(W).

LEMMA 6.8. There exist subspaces W1, ..., Wqi1 of V such that
(i) for everyi=1,...,q+ 1, E; is the direct sum of E;—1 and W;; and
(ii) for everyi=2,...,q+ 1, f maps W; one-to-one into W;_1.

Proor oF LEMMA 6.5. We first of all construct the subspaces W1, ..., Wy41 of V asin Lemma 6.8.
Let

V1,1, V1,25 -5 U1,y

be a basis of Wy41. Since these vectors are linearly independent and since f maps W, one-to-one
into Wy, the vectors

o), f(vi2), .o flo)
are linearly independent. We can extend this collection to a basis of W, of the form
V2153 V2, V2 1y - o3 U215
where
florj)=wv2,, j=1,...,r1.
Repeating this argument, we can show that there exists a basis of W;_; of the form
U3,15+++5U3,r55, U3 rg+1y - -+, U3 rg;
where
flugj)=vs,, j=1,...,ra.
Continuing in this way, we finally arrive at a basis of W7 = E; of the form
(6.12) Bbits s Vet
where
f(vg;) =vgs15, F=1,...,7q

Since F; = ker f, we also have

f(’l)quLj) :0, ] = 17...,7“q+1.
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It is easy to see from Lemma 6.8(i) that V is the direct sum of Wh,...,W,41, and a basis can be
constructed using the vectors we have discussed so far. We can write the elements of this basis in the
following order:

V1,1 PN U1,
V2,1 e V2,ry V2,r1+1 e V2,ry
Vg+1,1 -+ Yg+l,rm VUg4+l,m+1 oo+ Ugtliry  --- Ugtlrg+1l -0 Ugtlirggs

The elements can be rewritten in the following order: column by column from left to right, and each
column from bottom to top, and denoted by

vy, t=1,...,r1+ ...+ rgq.

Then either f(v;) = 0 or f(v;) = v;_1, and the matrix of f with respect to this basis has the form
indicated in the statement of Lemma 6.5. O

PrOOF OF LEMMA 6.6. The second assertion follows from the definition of E,.. To prove the
first assertion, note that clearly F; C FE;;1. On the other hand, suppose on the contrary that
E; = E;4 for some i = 0,1,...,q. Then for every v € V, 0 = fit(v) = f+1(f27%(v)), so that
fi7(v) € E;y1 = E;, whence f9(v) = 0, contradicting the definition of q. O

PROOF OF LEMMA 6.7. Let v € f(W) N E;_;. Then there exists w € W such that v = f(w),
so that 0 = fi=1(v) = f%(w), whence w € E;. Hence w = 0, and so v = 0. This proves the first
assertion. On the other hand, the mapping f|w : W — f(W) is clearly linear and onto. It is easy to
check that it is also one-to-one. (O

Proor or LEMMA 6.8. Choose W41 so that E,1q = V is a direct sum of E; and Wy11. Then
f(We41) € E,. By Lemma 6.7, f(Wy41) N Ey—1 = {0}. Hence there exists W, such that f(Wy41) C
W, and such that E, is a direct sum of E,_; and W,. We continue this way to construct Wy_1,..., Wy,
where f(W;11) C W, for every ¢ = 1,...,q. Note that (ii) follows from the second assertion of
Lemma 6.7. O

To obtain Jordan normal form, we first of all apply Lemma 6.4. Consider the restriction of A to
the elements of each V;. Then A — A;I can be described by a matrix of the form given in Lemma 6.5.
Obtain a Jordan bases for V;. We now take the union of all such bases obtained for Vi, ..., V. Jordan
normal form follows easily.



