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7.1. Introduction

Suppose that w = w(z) is a complex valued function of a complex variable z. We are interested in
a differential equation of the form

(7.1)
d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0,

where p(z) and q(z) are given complex valued functions. The purpose of this chapter is to attempt
to find a solution of (7.1) of the form

(7.2) w(z) = (z − z0)r
∞∑

n=0

an(z − z0)n,

where the power series in (7.2) converges in some neighbourhood of the point z = z0.
Recall that a complex valued function f(z) of a complex variable z is said to be analytic at z = z0

if f(z) has a Taylor series expansion

f(z) =
∞∑

n=0

bn(z − z0)n

which converges in some neighbourhood of z = z0. Recall also that a complex valued function f(z)
of a complex variable z is said to have a pole of order k ∈ N at z = z0 if g(z) = f(z)(z − z0)k is
analytic at z = z0 and g(z0) #= 0.

7.2. The Singular Case

Let us return to the differential equation (7.1).

Definition. We say that a point z = z0 is a singular point of the differential equation (7.1) if p(z)
or q(z) is not analytic at z = z0. Furthermore, we say that the singular point z = z0 is regular if the
following extra conditions are satisfied:

(i) if p(z) has a pole at z = z0, then the pole is of order 1; and
(ii) if q(z) has a pole at z = z0, then the pole is of order 1 or 2.

It follows that if z = z0 is a regular singular point of the equation (7.1), then (7.1) can be rewritten
in the form

(7.3)
d2w

dz2
+

P (z)
(z − z0)

dw

dz
+

Q(z)
(z − z0)2

w = 0

where the functions P (z) and Q(z) are analytic at z = z0. Write

(7.4) P (z) =
∞∑

n=0

pn(z − z0)n and Q(z) =
∞∑

n=0

qn(z − z0)n,

where the series (7.4) converge for |z − z0| < a, where a > 0.
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50 7. SERIES SOLUTIONS OF SECOND ORDER LINEAR EQUATIONS

Proposition 7.1. Suppose that z = z0 is a regular singular point of the differential equation (7.1),
so that (7.1) can be rewritten in the form (7.3), and the series (7.4) converges for |z− z0| < a, where
a > 0. Then there exists a solution of (7.1) of the form (7.2), valid in a punctured neighbourhood of
z = z0.

Let us substitute the expressions (7.2) and (7.4) into (7.3). Then
∞∑

n=0

an(n + r)(n + r − 1)(z − z0)n+r−2

+ (z − z0)−1

( ∞∑

n=0

pn(z − z0)n

) ( ∞∑

n=0

an(n + r)(z − z0)n+r−1

)

+ (z − z0)−2

( ∞∑

n=0

qn(z − z0)n

) ( ∞∑

n=0

an(z − z0)n+r

)
= 0.

Multiplying by (z − z0)2−r, we have
∞∑

n=0

an(n + r)(n + r − 1)(z − z0)n +

( ∞∑

n=0

pn(z − z0)n

) ( ∞∑

n=0

an(n + r)(z − z0)n

)
(7.5)

+

( ∞∑

n=0

qn(z − z0)n

) ( ∞∑

n=0

an(z − z0)n

)
= 0.

Note that the left hand side of (7.5) is analytic in |z−z0| < a if the series (7.2) converges in |z−z0| < a.
Take any n ∈ N ∪ {0}. Then the coefficient of (z − z0)n on the left hand side of (7.5) is

(7.6) an(n + r)(n + r − 1) +
n∑

k=0

pkan−k(n + r − k) +
n∑

k=0

qkan−k = 0.

Write

G(n + r) = (n + r)2 + (p0 − 1)(n + r) + q0.

Then the left hand side of (7.6) becomes

anG(n + r) + Hn,r,

where

(7.7) Hn,r = Hn,r(a0, . . . , an−1, p1, . . . , pn, q1, . . . , qn) =
n∑

k=1

pkan−k(n + r − k) +
n∑

k=1

qkan−k.

Furthermore, in the case n = 0, (7.6) becomes a0G(r) = 0. If we choose any a0 #= 0, then

(7.8) G(r) = r2 + (p0 − 1)r + q0 = 0.

The equation (7.8) is known as the indicial equation of (7.3) at z = z0. Suppose that its roots are
given by r1 and r2. Assume, without loss of generality, that Re(r1 − r2) ! 0. Since G(r1) = 0 and
p0 − 1 = −(r1 + r2) = −2r1 + (r1 − r2), it follows that for all n ∈ N,

G(n + r1)−G(r1) = (n + r1)2 + (p0 − 1)(n + r1)− r2
1 − (p0 − 1)r1 = n2 + 2nr1 + (p0 − 1)n,

so that

G(n + r1) = G(r1) + n2 + 2nr1 + (p0 − 1)n = n2 + n(p0 − 1 + 2r1) = n(n + r1 − r2) #= 0

since |n + r1 − r2| ! n. With this fixed value r1, we can now solve the recurrence equations

(7.9) anG(n + r1) + Hn = 0

for an in terms of a0, . . . , an−1, p1, . . . , pn, q1, . . . , qn, where Hn = Hn,r1 . It follows that (7.2) with
r = r1 represents a formal solution of (7.3), and hence of (7.1). Naturally we may choose a0 = 1 if
we so wish.
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Proof of Proposition 7.1. Suppose that we have carried out the calculation above with the
solution r1 of the indicial equation. Then it remains to show that the series

(7.10)
∞∑

n=1

an(z − z0)n

has positive radius of convergence. The functions p(z) and q(z) are analytic in 0 < |z − z0| < a, so
that the solution (7.2) is valid and defined in 0 < |z − z0| < a. Now choose α ∈ (0, a). Then by the
Convergence theorem for power series, both

∞∑

n=1

|pn|αn and
∞∑

n=1

|qn|αn

converge, so that |pn|αn and |qn|αn are bounded. It follows that there exists K > 1 such that

max{|pn|, |r1pn + qn|, |a0(r1pn + qn)|} < Kα−n

for every n ∈ N. We shall prove by induction on n that

(7.11) |an| < Knα−n for all n ∈ N.

For n = 1, note that by (7.7)–(7.9),

|a1| =
∣∣∣∣

H1

G(1 + r1)

∣∣∣∣ =
∣∣∣∣
a0(p1r1 + q1)
1 + r1 − r2

∣∣∣∣ < Kα−1.

Suppose now that |an| < Knα−n for every n = 1, . . . ,m− 1. Then

|am| =
∣∣∣∣

Hm

G(m + r1)

∣∣∣∣

"
∑m

k=1 |am−k||r1pk + qk| +
∑m

k=1(m− k)|am−k||pk|
m|m + r1 − r2|

"
m∑

k=1

Km−kαk−mKα−k +
m∑

k=1

(m− k)Km−kαk−mKα−km2

=
(∑m

k=1 K1−k +
∑m

k=1(m− k)K1−k

m2

)
Kmα−m

"
(∑m

k=1 1 +
∑m

k=1(m− k)
m2

)
Kmα−m

=
(

m2 + m

2m2

)
Kmα−m " Kmα−m.

It now follows from (7.11) that if 0 < β < α/K, then for every n ∈ N, we have

|an|βn " Knα−nβn =
(

Kβ

α

)n

.

Clearly
∞∑

n=1

(Kβ/α)n

converges, so that
∞∑

n=1

anβn

converges absolutely. It follows that the series (7.10) has radius of convergence at least α/K. ©

Proposition 7.1 gives rise to one solution of the equation (7.1). To determine a fundamental system
of solutions of (7.1), we need to find another solution. To do this, we try to make use of the root
r2 of the indicial equation (7.8). In most instances, this is a simple exercise, as is evident from the
following result.
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Proposition 7.2. Suppose that z = z0 is a regular singular point of the differential equation (7.1),
so that (7.1) can be rewritten in the form (7.3), and the series (7.4) converges for |z − z0| < a,
where a > 0. Suppose further that r1 and r2 are the two roots of the indicial equation (7.8), with
Re(r1 − r2) ! 0. If r1 − r2 #∈ N ∪ {0}, then there exists a second solution of (7.1) of the form

w(z) = (z − z0)r2

∞∑

n=0

bn(z − z0)n,

valid in a punctured neighbourhood of z = z0 and with b0 #= 0.

Proof. Since r1 − r2 #∈ N ∪ {0}, it is clear that

G(n + r2) = n2 + n(p0 − 1 + 2r2) = n2 − n(r1 − r2) #= 0,

so that we can solve the recurrence equations

anG(n + r2) + Hn = 0.

The proof now proceeds as in the proof of Proposition 7.1. ©

Note that if r1− r2 = 0, then r1 = r2, so we clearly cannot follow our argument in Proposition 7.2.
If r1 − r2 ∈ N, then let r1 − r2 = m. Then G(m + r2) = m2 −m(r1 − r2) = 0, so we cannot solve the
recurrence equations that arise. It follows that much more work needs to be done if r1−r2 ∈ N∪{0}.
This case is summarized by the following result.

Proposition 7.3. Suppose that z = z0 is a regular singular point of the differential equation (7.1),
so that (7.1) can be rewritten in the form (7.3), and the series (7.4) converges for |z − z0| < a,
where a > 0. Suppose further that r1 and r2 are the two roots of the indicial equation (7.8), with
Re(r1 − r2) ! 0. If r1 − r2 ∈ N ∪ {0}, then there exists a second solution of (7.1) of the form

w(z) = w1(z)β log(z − z0) + (z − z0)r2

∞∑

n=0

bn(z − z0)n,

valid in a punctured neighbourhood of z = z0. Here β is a constant, and w1(z) is the solution given
by Proposition 7.1 corresponding to the root r1 of the indicial equation (7.8). Furthermore, β #= 0 if
r1 = r2.

To find a second solution, we now use the method of reduction of order, and try for a solution of
the form

(7.12) w2(z) = w1(z)
∫ z

φ(u) du,

where the function φ(u) will be determined as the solution of a first order differential equation. Here
w1(z) is the solution given by Proposition 7.1 corresponding to the root r1 of the indicial equation
(7.8).

Substituting (7.12) into (7.3), we obtain
(

w1(z)φ′(z) + 2w′1(z)φ(z) + w′′1 (z)
∫ z

φ(u) du

)
(7.13)

+
P (z)

(z − z0)

(
w1(z)φ(z) + w′1(z)

∫ z

φ(u) du

)
+

Q(z)
(z − z0)2

(
w1(z)

∫ z

φ(u) du

)
= 0.

Since w1(z) is a root of (7.3), the equation (7.13) can now be reduced to the form

w1(z)φ′(z) + 2w′1(z)φ(z) +
P (z)

(z − z0)
w1(z)φ(z) = 0,

i.e.

(7.14)
dφ

dz
+

(
P (z)
z − z0

+
2w′1(z)
w1(z)

)
φ = 0.

Note now that
P (z)
z − z0

=
p0

z − z0
+

∞∑

n=1

pn(z − z0)n−1,
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and
∞∑

n=1

pn(z − z0)n−1

is analytic at z = z0. On the other hand, note that w1(z) = (z − z0)r1f(z), where f(z) is analytic at
z = z0 and f(z0) #= 0. Hence

w′1(z)
w1(z)

=
(z − z0)r1f ′(z) + r1(z − z0)r1−1f(z)

(z − z0)r1f(z)
=

f ′(z)
f(z)

+
r1

z − z0
.

Clearly f ′(z)/f(z) is analytic at z = z0. It now follows that

P (z)
z − z0

+
2w′1(z)
w1(z)

=
p0 + 2r1

z − z0
+ g(z),

where g(z) is analytic at z = z0.
We now solve the equation (7.14) for φ. Clearly we can separate the variables φ and z, and it is

easy to see that a solution is given by

φ(z) = exp
(
−

∫ z (
p0 + 2r1

u− z0
+ g(u)

)
du

)

= exp(−(p0 + 2r1) log(z − z0)) exp
(
−

∫ z

g(u) du

)

= (z − z0)−(p0+2r1)h(z) = (z − z0)−(r1−r2)−1h(z),

where h(z) is analytic at z = z0. Write

h(z) =
∞∑

n=0

βn(z − z0)n.

Then since r1 − r2 ∈ N ∪ {0}, we have

φ(z) = βr1−r2(z − z0)−1 + (z − z0)−(r1−r2)−1
∞∑

n=0
n %=r1−r2

βn(z − z0)n.

Hence
∫ z

φ(u) du = β log(z − z0) + (z − z0)−(r1−r2)k(z),

where β = βr1−r2 and where k(z) is analytic at z = z0. We therefore have

w2(z) = w1(z)
∫ z

φ(u) du

= w1(z)β log(z − z0) + (z − z0)−(r1−r2)k(z)(z − z0)r1

∞∑

n=0

an(z − z0)n

= w1(z)β log(z − z0) + (z − z0)r2$(z),

where

$(z) =
∞∑

n=0

bn(z − z0)n

is analytic at z = z0. Note finally that it is possible that β = 0. However, if r1 = r2, then clearly
β = β0 = h(z0) #= 0 (why?).
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7.3. The Analytic Case

Let us again return to the differential equation (7.1).

Proposition 7.4. Suppose that the functions p(z) and q(z) are analytic at z = z0. Then there
exists a solution of (7.1) of the form

(7.15)
∞∑

n=0

an(z − z0)n,

valid in a neighbourhood of z = z0.

Since p(z) and q(z) are analytic at z = z0, we can write

(7.16) p(z) =
∞∑

n=0

pn(z − z0)n and q(z) =
∞∑

n=0

qn(z − z0)n.

Subsitiuting (7.15) and (7.16) into (7.1), we obtain
∞∑

n=2

n(n− 1)an(z − z0)n−2 +

( ∞∑

n=0

pn(z − z0)n

) ( ∞∑

n=1

nan(z − z0)n−1

)

+

( ∞∑

n=0

qn(z − z0)n

) ( ∞∑

n=0

an(z − z0)n

)
= 0,

i.e.
∞∑

n=0

(n + 2)(n + 1)an+2(z − z0)n +

( ∞∑

n=0

pn(z − z0)n

) ( ∞∑

n=0

(n + 1)an+1(z − z0)n

)
(7.17)

+

( ∞∑

n=0

qn(z − z0)n

) ( ∞∑

n=0

an(z − z0)n

)
= 0.

Then the coefficient of (z − z0)n on the left hand side of (7.17) is

(7.18) (n + 2)(n + 1)an+2 +
n∑

k=0

(k + 1)ak+1pn−k +
n∑

k=0

akqn−k = 0.

It follows that if we are given a0 and a1, determined by given initial conditions, we can then solve
the recurrence equations (7.18) for a2, a3, . . . in terms of the given values of a0 and a1.

Proof of Proposition 7.4. Suppose that we have carried out the calculation above with given
a0 and a1. Then it remains to show that the series (7.15) has positive radius of convergence. Note
that since the functions p(z) and q(z) are analytic at z = z0, the series (7.16) have positive radius of
convergence a, say. Now choose α ∈ (0, a). Then by the Convergence theorem for power series, both

∞∑

n=0

|pn|αn and
∞∑

n=0

|qn|αn

converge, so that |pn|αn and |qn|αn are bounded. It follows that there exists K > 1 such that

max{|pn|, |qn|} < Kα−n

for every n ∈ N ∪ {0}. Furthermore, we may assume without loss of generality that

(7.19) K > |a0| and α < 1.

We shall prove by induction on n that

(7.20) |an| < Knα−n for all n ∈ N.

For n = 1, we simply have to make sure that K is chosen to be sufficiently large and α is assumed
to be sufficiently small. Suppose now that |an| < Knα−n for every n = 1, . . . ,m + 1. Then it follows
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from (7.18) and (7.19) that

(m + 2)(m + 1)|am+2| "
m∑

k=0

(k + 1)Kk+1α−k−1Kαk−m +
m∑

k=0

Kk+1α−kKαk−m

=
m∑

k=0

(k + 1)Kk+2α−m−1 +
m∑

k=0

Kk+2α−m

< Km+2α−m−1
m∑

k=0

(k + 1) + Km+2α−m
m∑

k=0

1

= Km+2α−m−1 (n + 1)(n + 2)
2

+ (n + 1)Km+2α−m,

so that

|am+2| <

(
α

2
+

α2

m + 2

)
Km+2α−m−2 < Km+2α−m−2.

It now follows from (7.20) that if 0 < β < α/K, then for every n ∈ N, we have

|an|βn " Knα−nβn =
(

Kβ

α

)n

.

Clearly
∞∑

n=1

(
Kβ

α

)n

converges, so that
∞∑

n=0

anβn

converges absolutely. It follows that the series (7.15) has radius of convergence at least α/K. ©

7.4. An Example

To illustrate the singular case, consider the differential equation
d2w

dz2
+

z

z + 1
dw

dz
+

1
z + 1

w = 0

around the regular singular point z = −1. In the notation of Section 7.2, we have

P (z) = −1 + (z + 1) and Q(z) = z + 1,

so that p0 = −1, p1 = 1, p2 = p3 = . . . = 0 and q0 = 0, q1 = 1, q2 = q3 = . . . = 0. The indicial
equation (7.8) is of the form r2 − 2r = 0, with roots r1 = 2 and r2 = 0. Corresponding to r1 = 2, we
now assume a solution of the form

w1(z) = (z + 1)2
∞∑

n=0

an(z + 1)n.

Then the recurrence equations (7.9) are of the form

n(n + 2)an = −
n∑

k=1

(n + 2− k)pkan−k −
n∑

k=1

qkan−k = −(n + 2)an−1,

so that nan = −an−1. It follows that if we take a0 = 1, then an = (−1)n/n! for every n ∈ N. It
follows that

(7.21) w1(z) = (z + 1)2
∞∑

n=0

(−1)n

n!
(z + 1)n = (z + 1)2e−z−1.

Next, we assume a second solution of the form

w2(z) = w1(z)
∫ z

φ(u) du,
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where w1(z) is given by (7.21). Then equation (7.14) is of the form
dφ

dz
+

(
z

z + 1
+

4
z + 1

− 2
)

φ = 0.

This has a solution given by φ(z) = ez(z + 1)−3, leading to a second solution of the form

w2(z) =
1
2
(z + 1)2e−z−1 log(z + 1) +

∞∑

n=0

bn(z + 1)n.

To illustrate the analytic case, consider the same differential equation
d2w

dz2
+

z

z + 1
dw

dz
+

1
z + 1

w = 0

around the point z = 0, where both functions p(z) and q(z) are analytic. In the notation of Section 7.3,
we have p(z) = 1− (1 + z)−1 = z− z2 + z3 − z4 + . . . and q(z) = (1 + z)−1 = 1− z + z2 − z3 + . . ., so
that p0 = 0 and pn = (−1)n−1 for every n ∈ N, and qn = (−1)n for every n ∈ N ∪ {1}. Now suppose
that a0 = 0 and a1 = 1. Then

(n + 2)(n + 1)an+2 = −
n−1∑

k=0

(k + 1)(−1)n−k−1ak+1 −
n∑

k=1

(−1)n−kak(7.22)

= −
n−1∑

k=0

(k + 1)(−1)n−k−1ak+1 −
n−1∑

k=0

(−1)n−k−1ak+1

=
n−1∑

k=0

(k + 2)(−1)n−kak+1.

Note also that a2 = 0. We can now calculate a3, a4, . . .. Here that the calculation can be somewhat
simplified if we note that

(7.23) (n + 3)(n + 2)an+3 =
n∑

k=0

(k + 2)(−1)n+1−kak+1.

Adding (7.22) and (7.23) and then dividing by (n + 2), we have

(n + 3)an+3 = −(n + 1)an+2 − an+1

for every n ∈ N ∪ {0}. This gives a3 = −1/3, a4 = 1/6, a5 = −1/30, etc.
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Problems for Chapter 7

1. For each of the following cases, find two linearly independent solutions of the differential equation

a0(z)
d2w

dz2
+ a1(z)

dw

dz
+ a2(z)w = 0

near the point z = 0:
(i) a0(z) = 2z2, a1(z) = −z, a2(z) = z2 + 1
(ii) a0(z) = z, a1(z) = 2, a2(z) = z2

(iii) a0(z) = z, a1(z) = 1, a2(z) = −z
(iv) a0(z) = 2z2, a1(z) = −z, a2(z) = 1− z2

(v) a0(z) = z, a1(z) = z − 1, a2(z) = −1
(vi) a0(z) = z, a1(z) = 1, a2(z) = z2

(vii) a0(z) = z2, a1(z) = 3z, a2(z) = 1 + z
(viii) a0(z) = z2, a1(z) = z, a2(z) = z2 − α2, where α #∈ N ∪ {0}

[Remark : This is known as Bessel’s equation.]
(ix) a0(z) = 1− z2, a1(z) = −2z, a2(z) = α(α + 1), where α is constant

[Remark : This is known as Legendre’s equation.]


