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7.1. Introduction

Suppose that w = w(z) is a complex valued function of a complex variable z. We are interested in

a differential equation of the form
d?w dw
(7.1) 2 Tl g takw=0,
where p(z) and ¢(z) are given complex valued functions. The purpose of this chapter is to attempt
to find a solution of (7.1) of the form

(7.2) w(z) = (2 — 20)" Z an(z — 20)",
n=0

where the power series in (7.2) converges in some neighbourhood of the point z = 2.
Recall that a complex valued function f(z) of a complex variable z is said to be analytic at z = z
if f(z) has a Taylor series expansion

1) =S bz — z)"
n=0

which converges in some neighbourhood of z = zp. Recall also that a complex valued function f(z)
of a complex variable z is said to have a pole of order k € N at z = zg if g(z) = f(2)(z — 20)* is
analytic at z = z¢ and g(zg) # 0.

7.2. The Singular Case
Let us return to the differential equation (7.1).

DEFINITION. We say that a point z = 2 is a singular point of the differential equation (7.1) if p(z)
or ¢(z) is not analytic at z = zy. Furthermore, we say that the singular point z = zq is regular if the
following extra conditions are satisfied:

(i) if p(z) has a pole at z = zg, then the pole is of order 1; and
(ii) if g(z) has a pole at z = zg, then the pole is of order 1 or 2.

It follows that if z = zg is a regular singular point of the equation (7.1), then (7.1) can be rewritten
in the form
d2w P(z) dw Q(2)
d22 T (z—z) dz | (2 — 20)2

where the functions P(z) and Q(z) are analytic at z = zo. Write

(7.4) P(2) =Y palz—20)" and Q(z) =Y qu(z—2)",
n=0 n=0

(7.3) w=0

where the series (7.4) converge for |z — zo| < a, where a > 0.
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50 7. SERIES SOLUTIONS OF SECOND ORDER LINEAR EQUATIONS

PROPOSITION 7.1. Suppose that z = zg is a reqular singular point of the differential equation (7.1),
so that (7.1) can be rewritten in the form (7.3), and the series (7.4) converges for |z — z9| < a, where
a > 0. Then there exists a solution of (7.1) of the form (7.2), valid in a punctured neighbourhood of
zZ=2Zz0-

Let us substitute the expressions (7.2) and (7.4) into (7.3). Then

Z ann+r)n+r—1)(z— zo)"“*2

(Gt G
(S o) (S )

n=0

Multiplying by (z — 29)?~", we have

(7.5) Zan(n+r)(n+r—1)z—zo (anz—zo )(Zann—l—r z—zo)>

(zqnz_zo )(Z— ):0.

Note that the left hand side of (7.5) is analytic in |z2—zg| < a if the series (7.2) converges in |z—z| < a.
Take any n € NU {0}. Then the coefficient of (z — z5)™ on the left hand side of (7.5) is

(7.6) an(n+r)n+r—1) Jerkan r(n+r—k Jqukan r=0.
k=0

Write
G(n+r)=(n+71)°+ (o~ (n+7)+ g
Then the left hand side of (7.6) becomes
anG(n+r)+ H,,,
where

(7.7) Hy,=H, (a0, ., 0n—1,D1, - sPns 1y - -« s n) Zpkan r(n+r—k —i—quan k-
k=1

Furthermore, in the case n = 0, (7.6) becomes aoG(r) = 0. If we choose any ag # 0, then
(7.8) G(r) =1+ (po — )r +go = 0.

The equation (7.8) is known as the indicial equation of (7.3) at z = zy. Suppose that its roots are
given by 1 and ro. Assume, without loss of generality, that fe(ry — r2) > 0. Since G(r1) = 0 and
po—1=—(r1 +r2) =—=2r; + (r; — r2), it follows that for all n € N,

Gn+7r)—G(r1)=n+r)*+ (po—D)(n+r) —7F — (po — 1)r1 = n? +2nry + (po — 1)n,
so that
Gn+r)=G(r)+n*+2nr1+ (po— )n=n*+n(po—1+2r) =n(n+r —re) #0
since |n + 11 — r2| = n. With this fixed value 71, we can now solve the recurrence equations
(7.9) anG(n+r)+H, =0

for a, in terms of ag,...,Gn—1,P1,---,PnsqQ1,---,4qn, Where H, = Hy ., . It follows that (7.2) with
r = r1 represents a formal solution of (7.3), and hence of (7.1). Naturally we may choose ap = 1 if
we so wish.
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PROOF OF PROPOSITION 7.1. Suppose that we have carried out the calculation above with the
solution ry of the indicial equation. Then it remains to show that the series

(7.10) > an(z = z)"

has positive radius of convergence. The functions p(z) and ¢(z) are analytic in 0 < |z — 29| < a, so
that the solution (7.2) is valid and defined in 0 < |z — 29| < a. Now choose a € (0,a). Then by the
Convergence theorem for power series, both

oo o0
> lpale” and Y fgale”
n=1 n=1

converge, so that |p,|a™ and |g,|a™ are bounded. It follows that there exists K > 1 such that
max{|pn|, [r1pn + qnl, lao(ripn + ¢a)|} < Ka™"

for every n € N. We shall prove by induction on n that

(7.11) lan| < K"a™™ for all n € N.

For n = 1, note that by (7.7)—(7.9),

H, ao(p1m1 +q1) —1
al| = = < Ka
i ’G(1+7”1)‘ 1+7r —re
Suppose now that |a,| < K"a~™ for every n =1,...,m — 1. Then
Hy,
|am| = | Z——
G(m+ry)

Zk am—kllrioe + arl + 22021 (m — k)| am |||
m|m+r1—r2|

< Z Kmfkakmeafk + Z(m o k)Kmfkakmeafka
k=1 k=1
_ (Z;n_l Klik + Z;cnzl(m — k)K1k> KMma~™

m2

Do 11+Zk 1 (m— k)>Kma—m

m? +m

2m?

It now follows from (7.11) that if 0 < 8 < o/ K, then for every n € N, we have
K

—

(07

> Km —m < KWL —m

Clearly

oo

> (KpB/a)"

n=1

converges, so that
oo
i3
> a3
n=1

converges absolutely. It follows that the series (7.10) has radius of convergence at least a/K. O

Proposition 7.1 gives rise to one solution of the equation (7.1). To determine a fundamental system
of solutions of (7.1), we need to find another solution. To do this, we try to make use of the root
ro of the indicial equation (7.8). In most instances, this is a simple exercise, as is evident from the
following result.
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PROPOSITION 7.2. Suppose that z = zg is a reqular singular point of the differential equation (7.1),
so that (7.1) can be rewritten in the form (7.3), and the series (7.4) converges for |z — z| < a,
where a > 0. Suppose further that r1 and ro are the two roots of the indicial equation (7.8), with
Re(ry —rq) 2 0. Ifry —ry € NU {0}, then there exists a second solution of (7.1) of the form

w(z) = (z— 20)"™ Z bn(z — 20)",
n=0

valid in a punctured neighbourhood of z = zy and with by # 0.
PROOF. Since r; — ro & NU {0}, it is clear that
G(n+mry) =n+n(po—14+2r) =n? —n(ry —re) #0,
so that we can solve the recurrence equations
anG(n+re) + Hy, =0.
The proof now proceeds as in the proof of Proposition 7.1. (O

Note that if 11 —ro = 0, then 11 = ry, so we clearly cannot follow our argument in Proposition 7.2.
If r1 —re € N, then let 71 — 72 = m. Then G(m +12) = m? — m(ry —r2) = 0, so we cannot solve the
recurrence equations that arise. It follows that much more work needs to be done if r; —ry € NU{0}.
This case is summarized by the following result.

PROPOSITION 7.3. Suppose that z = zq is a reqular singular point of the differential equation (7.1),
so that (7.1) can be rewritten in the form (7.3), and the series (7.4) converges for |z — 29| < a,
where a > 0. Suppose further that r1 and ro are the two roots of the indicial equation (7.8), with
Re(ry —ra) = 0. If 1y — o € NU {0}, then there exists a second solution of (7.1) of the form

w(z) = wi(z)Blog(z — 20) + (2 — 20)"™ Z bn(z — 20)",
n=0

valid in a punctured neighbourhood of z = zy. Here 3 is a constant, and wi(z) is the solution given
by Proposition 7.1 corresponding to the root r1 of the indicial equation (7.8). Furthermore, 3 # 0 if
T =T2.

To find a second solution, we now use the method of reduction of order, and try for a solution of
the form

(7.12) wo(2) = wy(z) /Z ¢(u) du,

where the function ¢(u) will be determined as the solution of a first order differential equation. Here

w1 (2) is the solution given by Proposition 7.1 corresponding to the root 71 of the indicial equation
(7.8).
Substituting (7.12) into (7.3), we obtain

113 (0@ +204:)66) +ui(e) [ otwdu)
L (w0 + ui(a) [ otwan) + 2 () [Cotwan) <o

(z — 20
Since w1 (z) is a root of (7.3), the equation (7.13) can now be reduced to the form
P(z
W)/ (2) + 20 ()0(2) + U ()9() =0,
(z— 20)
i.e.
do P(z)  2wi(z)
14 — =
(7.14) der<Z—zoJr w(2) ¢
Note now that
P(Z) _ Po - n—1
zfzo_zfz()_‘_gpn(z )"
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and

o0
> palz—20)"
n=1

is analytic at z = zg. On the other hand, note that wy(z) = (z — 29)™ f(z), where f(z) is analytic at
z =29 and f(z9) # 0. Hence

wiz) _ (zmz) (@)t —20)" T ) fR)  n
wi(2) (z—20)" f(2) fz2) 2=z

Clearly f'(z)/f(2) is analytic at z = 2. It now follows that

P(z 2w} +2
(2) 4 wi(2) _ Po 1 n
z—zo wi(z) z— 20

9(2),

where ¢(z) is analytic at z = z.
We now solve the equation (7.14) for ¢. Clearly we can separate the variables ¢ and z, and it is
easy to see that a solution is given by

o) = (- [ (22 4 g au)
= exp(—(po + 2r1) log(z — 2z0)) exp ( / g9(u) dU>
= (2 — 20) PO R(2) = (2 — 29) "D IR(2),

where h(z) is analytic at z = zg. Write

h(z) =Y Bulz — 20)"

n=0

Then since r; —ro € NU {0}, we have

G(2) = Bry—ra(z = 20) "+ (2= 20) "7 DT Bz — 20)™
n=0
n#ry—ra

Hence
[ 60 du = B1og(z — ) + (2 — 20" k(a),
where 8 = ,,_r, and where k(z) is analytic at z = z;. We therefore have
wo(2) = wi(z) /z o(u) du

= w1 (2)Blog(z — z0) + (2 — 20) " D k(2) (2 — 20)™ Z an(z — 20)"
n=0
=wy(2)Blog(z — 2z0) + (2 — 20)"4(2),
where

Lz) = Z bn(z — 20)"
n=0

is analytic at z = zg. Note finally that it is possible that 8 = 0. However, if r; = ro, then clearly

B =00 =h(z) #0 (why?).
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7.3. The Analytic Case
Let us again return to the differential equation (7.1).

PROPOSITION 7.4. Suppose that the functions p(z) and q(z) are analytic at z = zy. Then there
exists a solution of (7.1) of the form

(715) Zan(zfzoyz

n=0

valid in a neighbourhood of z = zg.

Since p(z) and ¢(z) are analytic at z = zg, we can write
o0
(7.16) p(z) = an(z —zo)" and q(z Z an(z — 20)"
n=0

Subsitiuting (7.15) and (7.16) into (7.1), we obtain

S — Dan(z — 20)" (zpnzzo><gy%zw 1)

n=2 n=0

(z S

i.€.

(7.17) Z(n +2)(n+ D)anpy2(z — 20)" (Z pn(z — 20) > (Z(n + 1Dany1(z — ZO)”)
n=0 n=0
(anzzo )(Zanzzo )O.
n=0 n=0

Then the coefficient of (z — 2z9)™ on the left hand side of (7.17) is

(7.18) (n+2)(n+ Dansa + Y (k+ Darr1poi + Y argni = 0.
k=0 k=0

It follows that if we are given ag and a1, determined by given initial conditions, we can then solve
the recurrence equations (7.18) for as,as, ... in terms of the given values of ag and a;.

PROOF OF PROPOSITION 7.4. Suppose that we have carried out the calculation above with given
ap and a;. Then it remains to show that the series (7.15) has positive radius of convergence. Note
that since the functions p(z) and ¢(z) are analytic at z = zg, the series (7.16) have positive radius of
convergence a, say. Now choose a € (0,a). Then by the Convergence theorem for power series, both

oo o0
Y lpala™ and > lgala”
n=0 n=0

converge, so that |p,|a™ and |g,|a™ are bounded. It follows that there exists K > 1 such that
max{[pal, lgal} < Ko™

for every n € NU {0}. Furthermore, we may assume without loss of generality that

(7.19) K >lapg| and a<1.

We shall prove by induction on n that

(7.20) lan| < K"a™™ for alln € N.

For n = 1, we simply have to make sure that K is chosen to be sufficiently large and « is assumed
to be sufficiently small. Suppose now that |a,| < K"« " for every n =1,...,m+ 1. Then it follows
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from (7.18) and (7.19) that

(l{? + 1>Kk+1a—k—1Kak—m + Z Kk+1a—kKak—m
k=0

NE

(m +2)(m + 1)|am+2| <

=
Il
=]

(k+ K2 m=t 43 " gkt2q™m

k=0 k=0
< Kmt2qmm—t Z(k + 1)+ Km™2q™ Z 1
k=0 k=0
1 2
— Km+2047m71 (TL + )2(TL + ) + (n + ]_)}'{17’Hr2oéfm7
so that
e a?
m e Km+2 —m—2 Km+2 —m—2.
la +2|<(2+m+2> a < @
It now follows from (7.20) that if 0 < § < a/ K, then for every n € N, we have
K n
|an|ﬂn < Knainﬂn = (6> .
e
Clearly

> (%)

converges, so that

Z an,["

n=0

converges absolutely. It follows that the series (7.15) has radius of convergence at least a/K. O

7.4. An Example

To illustrate the singular case, consider the differential equation

d?w z dw 1
(IS T TS L
around the regular singular point z = —1. In the notation of Section 7.2, we have
P(z)==14(z4+1) and Q(z)=z+1,
sothat pg = -1, p1 =1, po =ps=...=0and g =0,¢1 =1, ¢ = q3 = ... = 0. The indicial

equation (7.8) is of the form 72 — 2r = 0, with roots r; = 2 and ro = 0. Corresponding to 11 = 2, we
now assume a solution of the form

wi(z) = (z+1)* Y an(z+1)".

n=0
Then the recurrence equations (7.9) are of the form

n

n(n+2)a, = — Z(n +2—k)pran—k — Grtn—t = —(n+ 2)an—1,

k=1 k=1
so that na, = —an,—_1. It follows that if we take ag = 1, then a,, = (—1)"/n! for every n € N. Tt
follows that
G (_1)n n —z—
(7.21) wi(e) =+ 1)?) S E D= (2 )%

n=0

Next, we assume a second solution of the form

wal) = wi(2) [ ow)d
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where wy (z) is given by (7.21). Then equation (7.14) is of the form
de z 4
i = _2)¢=0.
dz+(z+l+z+1 )¢

This has a solution given by ¢(z) = e*(z + 1) 73, leading to a second solution of the form

wa(z) = %(z +1)2e* tlog(z + 1) + Z bn(z 4+ 1)™.

n=0
To illustrate the analytic case, consider the same differential equation

d?w z dw 1 —0

dz2 +z+1dz +z+1w_
around the point z = 0, where both functions p(z) and ¢(z) are analytic. In the notation of Section 7.3,
wehave p(z) =1—(1+2) ' =z2—-224+22 24+ . andq(z) = (1+2) " t=1-2+4+22-23+.. . s0
that pp = 0 and p,, = (—1)""! for every n € N, and ¢, = (—1)" for every n € NU {1}. Now suppose
that ag = 0 and a; = 1. Then

n—1 n
(7.22) (n+2)(n+Dansa ==Y (k+1)(=1)" gy — > (=1)" Fay
k=0 k=1
n—1 n—1
== (k+)(=D"" e = Y ()" g
k=0 k=0
n—1
= Z(k +2)(=D)" Fapy.
k=0
Note also that as = 0. We can now calculate as, aq4,.... Here that the calculation can be somewhat

simplified if we note that

n

(7.23) (n+3)(n+ 2angs = S0k +2)(—1)" gy
k=0
Adding (7.22) and (7.23) and then dividing by (n + 2), we have
(n + 3)an+3 = _(n + 1)an+2 — Qn+1

for every n € NU{0}. This gives ag = —1/3, ay = 1/6, a5 = —1/30, etc.
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Problems for Chapter 7

1. For each of the following cases, find two linearly independent solutions of the differential equation

d?w dw
ao(z)@ + al(z)g +az(z)w=0
near the point z = 0:
(i) ao(z) =222, a1(2) = —z, as(z) = 22 + 1
(i) ap(2) = 2z, a1(2) = 2, az(z) = 22
(iii) ap(2) = 7, a1(2) =1, az(z) = —=
(iv) ao(z) =222, a1(2) = —2, az(2) = 1 — 22
(v) ao(z) =z, a1(2) = 2 — 1, az(z) = -1
(vi) ao(z) = 2, a1(2) =1, az(z) = 22
(vii) ao(2) = 22, a1(z) = 3z, az(2) =1+ 2
(viii) ao(2) = 22, a1(2) = z, az(z) = 2% — a?, where o ¢ NU {0}
(

(ix) ao(z) =1 — 22, a1(2) = —22, az(2) = a(a + 1), where « is constant
[Remark: This is known as Legendre’s equation.]



