CHAPTER 8

Existence and Uniqueness of Solutions

© W W L Chen, 1991, 2013.

This chapter is available free to all individuals,
on the understanding that it is not to be used for financial gain,
and may be downloaded and/or photocopied,
with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system
without permission from the author,
unless such system is not accessible to any individuals other than its owners.

8.1. Introduction

Our method of proving the Theorem is known as the method of successive approximations. We choose a first approximation $x_0(t)$ to a solution, using the initial data. We then devise an algorithm and use this to construct successive approximations $x_1(t), x_2(t), \ldots, x_n(t), \ldots$ to a solution. Note here that each $x_n(t)$ may not be a solution of the given system at all. However, we shall show that the sequence of approximations $x_n(t)$ converges, in some suitable sense, to a solution x(t) as $n \to \infty$.

To illustrate the method, let us consider the following example.

EXAMPLE. Note that the function $x = 3e^t$ satisfies the differential equation

(8.1)
$$x' = x \text{ and } x(0) = 3.$$

We shall now try to show that $x = 3e^t$ is the limit of a "convergent" sequence of functions. Since x' = x, any solution x(t) must satisfy

$$\int_0^t x'(s) \, \mathrm{d}s = \int_0^t x(s) \, \mathrm{d}s,$$

so that

$$x(t) = 3 + \int_0^t x(s) \, \mathrm{d}s.$$

To construct a sequence $x_n(t)$ to "converge" to a solution x(t), we may perhaps choose $x_n(t)$ to satisfy the recurrence equations

$$x_{n+1}(t) = 3 + \int_0^t x_n(s) \, ds.$$

Choose, for example, $x_0(t) = 3$. Then it is easy to show by induction on n that

$$x_n(t) = 3\left(1 + t + \frac{t^2}{2!} + \ldots + \frac{t^n}{n!}\right)$$

for every $n \in \mathbb{N} \cup \{0\}$. Note that $x_n(t)$ "converges" to $x(t) = 3e^t$.

8.2. A Metric Space Setting

We shall now look at the situation more formally. First of all, in order to show that $x_n(t)$ "converges" to x(t), we need a formal definition of the distance between functions, as the convergence cannot depend on any particular choice of t.

Suppose that $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$ satisfying a < b are fixed. Denote by C[a, b] the collection of all n-dimensional vector functions $x(t) = (x_1(t), \dots, x_n(t))$ which are continuous on [a, b], *i.e.* every $x_j(t), j = 1, \dots, n$, is continuous on [a, b].

DEFINITION. For every function $x \in C[a,b]$, we define the norm N(x) of x by

$$||x(t)|| = \sum_{j=1}^{n} |x_j(t)|$$
 and $N(x) = \sup_{t \in [a,b]} ||x(t)||$.

REMARK. Suppose that $x \in C[a, b]$. Given $t \in [a, b]$, we may think of ||x(t)||, the sum of the moduli of the coordinates of x(t), as the "size" of x(t). Then N(x) can be interpreted as the maximum "size" of x(t) as t runs over [a, b].

DEFINITION. For any two functions $x, y \in C[a, b]$, we define the distance d(x, y) between x and y by d(x, y) = N(x - y).

Proposition 8.1. The set C[a,b], together with the function $d:C[a,b]\times C[a,b]\to \mathbb{R}$, forms a metric space.

REMARK. A set C, together with a function $d: C \times C \to \mathbb{R}$, is said to form a metric space, denoted by (C, d), if for every $x, y, z \in C$,

- (M1) $d(x,y) \geqslant 0$;
- (M2) d(x,y) = 0 if and only if x = y;
- (M3) d(x, y) = d(y, x); and
- (M4) $d(x,z) \le d(x,y) + d(y,z)$.

PROOF OF PROPOSITION 8.1. Note that for every $x, y \in C[a, b]$

$$d(x,y) = N(x - y) = \sum_{j=1}^{n} |x_j(t) - y_j(t)|.$$

(M1), (M2) and (M3) follow easily. To prove (M4), note that if $x, y, z \in C[a, b]$, then by the usual traingle inequality, we have

$$d(x,z) = \sum_{j=1}^{n} |x_j(t) - z_j(t)| \le \sum_{j=1}^{n} (|x_j(t) - y_j(t)| + |y_j(t) - z_j(t)|)$$
$$= \sum_{j=1}^{n} |x_j(t) - y_j(t)| + \sum_{j=1}^{n} |y_j(t) - z_j(t)| = d(x,y) + d(y,z),$$

as required. ()

PROPOSITION 8.2. The metric space (C[a,b],d) is complete. In other words, every Cauchy sequence in C[a,b] converges to a limit in C[a,b].

PROOF. Suppose that x_s is a Cauchy sequence in C[a, b]. Then

$$\lim_{r,s\to\infty} d(x_r,x_s) = 0.$$

Write $x_r(t) = (y_{r1}(t), \dots, y_{rn}(t))$ and $x_s(t) = (y_{s1}(t), \dots, y_{sn}(t))$. Then

$$d(x_r, x_s) = \sup_{t \in [a,b]} ||x_r(t) - x_s(t)|| \geqslant \sup_{t \in [a,b]} |y_{rj}(t) - y_{sj}(t)|$$

for every $j = 1, \ldots, n$, so that

$$\lim_{r,s \to \infty} \sup_{t \in [a,b]} |y_{rj}(t) - y_{sj}(t)| = 0.$$

By the General principle of uniform convergence, the sequence $y_{sj}(t)$ converges uniformly to a function $y_j(t)$. Furthermore, $y_j(t)$ is continuous on [a,b]. Let $x(t)=(y_1(t),\ldots,y_n(t))$. Then

$$d(x_s, x) = \sup_{t \in [a,b]} ||x_s(t) - x(t)|| \le \sum_{j=1}^n \sup_{t \in [a,b]} |y_{sj}(t) - y_j(t)|,$$

so that

$$\lim_{s \to \infty} d(x_s, x) = 0,$$

as required.

Suppose that the real constant c > 0 and the point $x_0 \in \mathbb{R}^n$ are fixed. Consider a continuous function $f: E \to \mathbb{R}^n$ defined on the open set

$$E = \{(t, x) : a < t < b \text{ and } ||x - x_0|| < c\}.$$

Suppose that the function x = x(t) is continuous on [a, b], and that the point $(t, x(t)) \in E$ for $r_1 \le t \le r_2$. Suppose further that $r_1 < t_0 < r_2$. Then the function $\mathfrak{A}x : [r_1, r_2] \to \mathbb{R}^n$, defined by

$$\mathfrak{A}x = x_0 + \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s,$$

is continuous on $[r_1, r_2]$. We may therefore draw the following two conclusions:

- (1) We may interpret \mathfrak{A} as a mapping from $C[r_1, r_2]$ into itself.
- (2) Since $(\mathfrak{A}x)(t_0) = x_0$, there is a neighbourhood G of t_0 such that $(t,(\mathfrak{A}x)(t)) \in E$ for every $t \in G$.

We now consider the first order n-dimensional system

$$(8.2) x' = f(t, x).$$

Note that any solution x = x(t) defined on $[r_1, r_2]$ and satisfying $x(t_0) = x_0$ must also satisfy

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds, \quad t \in [r_1, r_2].$$

In other words, any solution x = x(t) defined on $[r_1, r_2]$ and satisfying $x(t_0) = x_0$ must also satisfy (8.3) $x = \mathfrak{A}x$.

Clearly $x \in C[r_1, r_2]$. Hence the mapping \mathfrak{A} "fixes" any solution x = x(t) of (8.2) defined on $[r_1, r_2]$.

8.3. A Stronger Version of the Theorem

In this section, we shall prove the following slightly stronger version of the Theorem.

STRONGER THEOREM. Consider the differential equation

$$(8.4) x' = f(t, x),$$

where the function f(t,x) is defined on some domain $\mathcal{B} \subseteq \mathbb{R}^{n+1}$. Suppose further that

- (i) f is continuous on \mathcal{B} ; and
- (ii) there exists a constant k > 0 such that

(8.5)
$$||f(t,x_1) - f(t,x_2)|| \le k||x_1 - x_2||$$

for every pair of points $(t, x_1), (t, x_2) \in \mathcal{B}$.

Then for every point $(t_0, x_0) \in \mathcal{B}$, there exists a unique solution $x = \varphi(t)$ of (8.4) satisfying $x_0 = \varphi(t_0)$ and defined in some neighbourhood of (t_0, x_0) .

Remark. The condition (8.5) is usually called a Lipschitz condition.

We now begin the proof of the Stronger Theorem.

STEP 1. Since $(t_0, x_0) \in \mathcal{B}$, there exist a, b > 0 such that the closed and bounded set

$$\Gamma = \{(t, x) : |t - t_0| \le a \text{ and } ||x - x_0|| \le b\} \subset \mathcal{B}.$$

It follows that there exists m > 0 such that

$$(8.6) ||f(t,x)|| \leqslant m$$

for all $(t, x) \in \Gamma$.

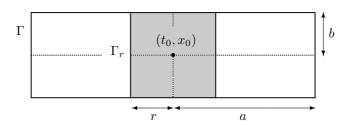
Step 2. Let

$$(8.7) r \in (0, a],$$

to be chosen later, and let

(8.8)
$$\Gamma_r = \{(t, x) : |t - t_0| \le r \text{ and } ||x - x_0|| \le b\} \subset \Gamma.$$

Clearly Γ_r is closed and bounded.



STEP 3. Denote by C_r the collection of all functions $x(t) = (x_1(t), \dots, x_n(t))$ such that

- (i) x(t) is continuous on $[t_0 r, t_0 + r]$, so that $C_r \subseteq C[t_0 r, t_0 + r]$; and
- (ii) $(t, x(t)) \in \Gamma_r$ for every $t \in [t_0 r, t_0 + r]$, i.e. $|t t_0| \le r$ and $||x x_0|| \le b$.

In other words, C_r is a subset of $C[t_0 - r, t_0 + r]$, and the graphs of the functions in C_r all lie in Γ_r .

STEP 4. For every function $x \in C_r$, define the function $\mathfrak{A}x$ by

(8.9)
$$\mathfrak{A}x = x_0 + \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s$$

for every $t \in [t_0 - r, t_0 + r]$.

Lemma 8.3. Suppose that

$$(8.10) r \leqslant b/m.$$

Then \mathfrak{A} is a mapping from C_r into itself. Furthermore, $(\mathfrak{A}x)(t_0) = x_0$.

PROOF. Clearly

$$\|\mathfrak{A}x - x_0\| = \left\| \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s \right\| = \sum_{j=1}^n \left| \int_{t_0}^t f_j(s, x(s)) \, \mathrm{d}s \right| \leqslant \sum_{j=1}^n \int_{t_0}^t |f_j(s, x(s))| \, \mathrm{d}s$$
$$= \int_{t_0}^t \sum_{j=1}^n |f_j(s, x(s))| \, \mathrm{d}s = \int_{t_0}^t \|f(s, x(s))\| \, \mathrm{d}s \leqslant mr \leqslant b,$$

in view of (8.6) and (8.10). \bigcirc

Step 5. For any function $x \in C[t_0 - r, t_0 + r]$, let

$$N(x) = \sup_{t \in [t_0 - r, t_0 + r]} ||x(t)||.$$

Furthermore, for any functions $x_1, x_2 \in C_r$, write

$$d(x_1, x_2) = N(x_1 - x_2).$$

Lemma 8.4. Suppose that

(8.11)
$$r < 1/k$$
.

Then there exists $\alpha \in (0,1)$ such that for any functions $x_1, x_2 \in C_r$,

$$d(\mathfrak{A}x_1,\mathfrak{A}x_2) \leqslant \alpha d(x_1,x_2).$$

In other words, \mathfrak{A} contracts distances in C_r .

PROOF. Note that in view of (8.5),

$$\|\mathfrak{A}x_1 - \mathfrak{A}x_2\| = \left\| \int_{t_0}^t (f(s, x_1(s)) - f(s, x_2(s))) \, \mathrm{d}s \right\| \le \int_{t_0}^t \|f(s, x_1(s)) - f(s, x_2(s))\| \, \mathrm{d}s$$

$$\le k \int_{t_0}^t \|x_1(s) - x_2(s)\| \, \mathrm{d}s \le k|t - t_0| \sup_{t \in [t_0 - r, t_0 + r]} \|x_1(s) - x_2(s)\|$$

$$\le krd(x_1, x_2).$$

The result follows if we take $\alpha = kr$. \bigcirc

STEP 6. We now choose r to satisfy (8.7), (8.10) and (8.11) and keep it fixed, and write $\alpha = kr$, so that $\alpha \in (0,1)$.

STEP 7. Define the function $x_0(t) = x_0$ identically for $t \in [t_0 - r, t_0 + r]$. We then define the sequence of functions x_s inductively by writing $x_s = \mathfrak{A}x_{s-1}$ for every $s \in \mathbb{N}$. Note that the functions $x_0, x_1, x_2, \ldots \in C_r$, and that $x_0(t_0) = x_1(t_0) = x_2(t_0) = \ldots = x_0$.

LEMMA 8.5. The sequence of functions x_s is a Cauchy sequence in $C[t_0 - r, t_0 + r]$.

PROOF. Suppose that $s_1, s_2 \in \mathbb{N}$ and $s_1 < s_2$. Then

$$\begin{split} d(x_{s_1},x_{s_2}) &= d(\mathfrak{A}x_{s_1-1},\mathfrak{A}x_{s_2-1}) \leqslant \alpha d(x_{s_1-1},x_{s_2-1}) \leqslant \ldots \leqslant \alpha^{s_1} d(x_0,x_{s_2-s_1}) \\ &\leqslant \alpha^{s_1} (d(x_0,x_1) + d(x_1,x_2) + \ldots + d(x_{s_2-s_1-1} - x_{s_2-s_1})) \\ &\leqslant \alpha^{s_1} (d(x_0,x_1) + \alpha d(x_0,x_1) + \ldots + \alpha^{s_2-s_1-1} d(x_0,x_1)) \\ &= \alpha^{s_1} d(x_0,x_1) \left(1 + \alpha + \ldots + \alpha^{s_2-s_1-1}\right) < \frac{\alpha^{s_1}}{1-\alpha} d(x_0,x_1) \to 0 \end{split}$$

as $s_1, s_2 \to \infty$. \bigcirc

STEP 8. Since $C[t_0-r, t_0+r]$ is a complete metric space and x_s is a Cauchy sequence in $C[t_0-r, t_0+r]$, it follows from Proposition 8.2 and Lemma 8.3 that there exists a function x=x(t), continuous on $[t_0-r, t_0+r]$, such that

- (i) $x_s(t) \rightarrow x(t)$ uniformly on $[t_0 r, t_0 + r]$;
- (ii) $(t, x(t)) \in \Gamma_r$ for every $t \in [t_0 r, t_0 + r]$; and
- $(iii) x(t_0) = t_0.$

In other words, $x \in C_r$. On the other hand,

$$0 \leqslant d(\mathfrak{A}x, \mathfrak{A}x_s) \leqslant \alpha d(x, x_s) \to 0$$

as $s \to \infty$. Hence

$$\mathfrak{A}x = \lim_{s \to \infty} \mathfrak{A}x_s = \lim_{s \to \infty} x_{s+1} = x.$$

Existence is therefore established.

STEP 9. To prove uniqueness, suppose that y = y(t) is another solution of the differential equation (8.4) defined on $[t_0 - r_1, t_0 + r_1]$, and that $y(t_0) = x_0$. Then there exists $R \leq \min\{r, r_1\}$ such that $(t, x(t)), (t, y(t)) \in \Gamma_R$ if $t \in [t_0 - R, t_0 + R]$. Hence

$$d(x, y) = d(\mathfrak{A}x, \mathfrak{A}y) \leqslant \alpha d(x, y).$$

This implies d(x, y) = 0, so that x = y. Uniqueness is therefore established.