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8.1. Introduction

Our method of proving the Theorem is known as the method of successive approximations. We
choose a first approximation x0(t) to a solution, using the initial data. We then devise an algorithm
and use this to construct successive approximations x1(t), x2(t), . . . , xn(t), . . . to a solution. Note here
that each xn(t) may not be a solution of the given system at all. However, we shall show that the
sequence of approximations xn(t) converges, in some suitable sense, to a solution x(t) as n→∞.

To illustrate the method, let us consider the following example.

Example. Note that the function x = 3et satisfies the differential equation

(8.1) x′ = x and x(0) = 3.

We shall now try to show that x = 3et is the limit of a “convergent” sequence of functions. Since
x′ = x, any solution x(t) must satisfy

∫ t

0
x′(s) ds =

∫ t

0
x(s) ds,

so that

x(t) = 3 +
∫ t

0
x(s) ds.

To construct a sequence xn(t) to “converge” to a solution x(t), we may perhaps choose xn(t) to satisfy
the recurrence equations

xn+1(t) = 3 +
∫ t

0
xn(s) ds.

Choose, for example, x0(t) = 3. Then it is easy to show by induction on n that

xn(t) = 3
(

1 + t +
t2

2!
+ . . . +

tn

n!

)

for every n ∈ N ∪ {0}. Note that xn(t) “converges” to x(t) = 3et.

8.2. A Metric Space Setting

We shall now look at the situation more formally. First of all, in order to show that xn(t) “con-
verges” to x(t), we need a formal definition of the distance between functions, as the convergence
cannot depend on any particular choice of t.

Suppose that n ∈ N and a, b ∈ R satisfying a < b are fixed. Denote by C[a, b] the collection of
all n-dimensional vector functions x(t) = (x1(t), . . . , xn(t)) which are continuous on [a, b], i.e. every
xj(t), j = 1, . . . , n, is continuous on [a, b].
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Definition. For every function x ∈ C[a, b], we define the norm N(x) of x by

‖x(t)‖ =
n∑

j=1

|xj(t)| and N(x) = sup
t∈[a,b]

‖x(t)‖.

Remark. Suppose that x ∈ C[a, b]. Given t ∈ [a, b], we may think of ‖x(t)‖, the sum of the moduli
of the coordinates of x(t), as the “size” of x(t). Then N(x) can be interpreted as the maximum “size”
of x(t) as t runs over [a, b].

Definition. For any two functions x, y ∈ C[a, b], we define the distance d(x, y) between x and y
by d(x, y) = N(x− y).

Proposition 8.1. The set C[a, b], together with the function d : C[a, b] × C[a, b] → R, forms a
metric space.

Remark. A set C, together with a function d : C×C → R, is said to form a metric space, denoted
by (C, d), if for every x, y, z ∈ C,

(M1) d(x, y) ! 0;
(M2) d(x, y) = 0 if and only if x = y;
(M3) d(x, y) = d(y, x); and
(M4) d(x, z) " d(x, y) + d(y, z).

Proof of Proposition 8.1. Note that for every x, y ∈ C[a, b],

d(x, y) = N(x− y) =
n∑

j=1

|xj(t)− yj(t)|.

(M1), (M2) and (M3) follow easily. To prove (M4), note that if x, y, z ∈ C[a, b], then by the usual
traingle inequality, we have

d(x, z) =
n∑

j=1

|xj(t)− zj(t)| "
n∑

j=1

(|xj(t)− yj(t)| + |yj(t)− zj(t)|)

=
n∑

j=1

|xj(t)− yj(t)| +
n∑

j=1

|yj(t)− zj(t)| = d(x, y) + d(y, z),

as required. ©

Proposition 8.2. The metric space (C[a, b], d) is complete. In other words, every Cauchy sequence
in C[a, b] converges to a limit in C[a, b].

Proof. Suppose that xs is a Cauchy sequence in C[a, b]. Then

lim
r,s→∞

d(xr, xs) = 0.

Write xr(t) = (yr1(t), . . . , yrn(t)) and xs(t) = (ys1(t), . . . , ysn(t)). Then

d(xr, xs) = sup
t∈[a,b]

‖xr(t)− xs(t)‖ ! sup
t∈[a,b]

|yrj(t)− ysj(t)|

for every j = 1, . . . , n, so that

lim
r,s→∞

sup
t∈[a,b]

|yrj(t)− ysj(t)| = 0.

By the General principle of uniform convergence, the sequence ysj(t) converges uniformly to a function
yj(t). Furthermore, yj(t) is continuous on [a, b]. Let x(t) = (y1(t), . . . , yn(t)). Then

d(xs, x) = sup
t∈[a,b]

‖xs(t)− x(t)‖ "
n∑

j=1

sup
t∈[a,b]

|ysj(t)− yj(t)|,

so that

lim
s→∞

d(xs, x) = 0,

as required. ©
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Suppose that the real constant c > 0 and the point x0 ∈ Rn are fixed. Consider a continuous
function f : E → Rn defined on the open set

E = {(t, x) : a < t < b and ‖x− x0‖ < c}.
Suppose that the function x = x(t) is continuous on [a, b], and that the point (t, x(t)) ∈ E for
r1 " t " r2. Suppose further that r1 < t0 < r2. Then the function Ax : [r1, r2]→ Rn, defined by

Ax = x0 +
∫ t

t0

f(s, x(s)) ds,

is continuous on [r1, r2]. We may therefore draw the following two conclusions:
(1) We may interpret A as a mapping from C[r1, r2] into itself.
(2) Since (Ax)(t0) = x0, there is a neighbourhood G of t0 such that (t, (Ax)(t)) ∈ E for every

t ∈ G.
We now consider the first order n-dimensional system

(8.2) x′ = f(t, x).

Note that any solution x = x(t) defined on [r1, r2] and satisfying x(t0) = x0 must also satisfy

x(t) = x0 +
∫ t

t0

f(s, x(s)) ds, t ∈ [r1, r2].

In other words, any solution x = x(t) defined on [r1, r2] and satisfying x(t0) = x0 must also satisfy

(8.3) x = Ax.

Clearly x ∈ C[r1, r2]. Hence the mapping A “fixes” any solution x = x(t) of (8.2) defined on [r1, r2].

8.3. A Stronger Version of the Theorem

In this section, we shall prove the following slightly stronger version of the Theorem.

Stronger Theorem. Consider the differential equation

(8.4) x′ = f(t, x),

where the function f(t, x) is defined on some domain B ⊆ Rn+1. Suppose further that
(i) f is continuous on B; and
(ii) there exists a constant k > 0 such that

(8.5) ‖f(t, x1)− f(t, x2)‖ " k‖x1 − x2‖
for every pair of points (t, x1), (t, x2) ∈ B.

Then for every point (t0, x0) ∈ B, there exists a unique solution x = ϕ(t) of (8.4) satisfying x0 = ϕ(t0)
and defined in some neighbourhood of (t0, x0).

Remark. The condition (8.5) is usually called a Lipschitz condition.

We now begin the proof of the Stronger Theorem.

Step 1. Since (t0, x0) ∈ B, there exist a, b > 0 such that the closed and bounded set

Γ = {(t, x) : |t− t0| " a and ‖x− x0‖ " b} ⊂B .

It follows that there exists m > 0 such that

(8.6) ‖f(t, x)‖ " m

for all (t, x) ∈ Γ.

Step 2. Let

(8.7) r ∈ (0, a],

to be chosen later, and let

(8.8) Γr = {(t, x) : |t− t0| " r and ‖x− x0‖ " b} ⊂ Γ.

Clearly Γr is closed and bounded.
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#

$!(t0, x0)
Γ

Γr

r a

b

1

Step 3. Denote by Cr the collection of all functions x(t) = (x1(t), . . . , xn(t)) such that
(i) x(t) is continuous on [t0 − r, t0 + r], so that Cr ⊆ C[t0 − r, t0 + r]; and
(ii) (t, x(t)) ∈ Γr for every t ∈ [t0 − r, t0 + r], i.e. |t− t0| " r and ‖x− x0‖ " b.

In other words, Cr is a subset of C[t0 − r, t0 + r], and the graphs of the functions in Cr all lie in Γr.

Step 4. For every function x ∈ Cr, define the function Ax by

(8.9) Ax = x0 +
∫ t

t0

f(s, x(s)) ds

for every t ∈ [t0 − r, t0 + r].

Lemma 8.3. Suppose that

(8.10) r " b/m.

Then A is a mapping from Cr into itself. Furthermore, (Ax)(t0) = x0.

Proof. Clearly

‖Ax− x0‖ =
∥∥∥∥
∫ t

t0

f(s, x(s)) ds

∥∥∥∥ =
n∑

j=1

∣∣∣∣
∫ t

t0

fj(s, x(s)) ds

∣∣∣∣ "
n∑

j=1

∫ t

t0

|fj(s, x(s))|ds

=
∫ t

t0

n∑

j=1

|fj(s, x(s))|ds =
∫ t

t0

‖f(s, x(s))‖ds " mr " b,

in view of (8.6) and (8.10). ©

Step 5. For any function x ∈ C[t0 − r, t0 + r], let

N(x) = sup
t∈[t0−r,t0+r]

‖x(t)‖.

Furthermore, for any functions x1, x2 ∈ Cr, write

d(x1, x2) = N(x1 − x2).

Lemma 8.4. Suppose that

(8.11) r < 1/k.

Then there exists α ∈ (0, 1) such that for any functions x1, x2 ∈ Cr,

d(Ax1,Ax2) " αd(x1, x2).

In other words, A contracts distances in Cr.

Proof. Note that in view of (8.5),

‖Ax1 − Ax2‖ =
∥∥∥∥
∫ t

t0

(f(s, x1(s))− f(s, x2(s))) ds

∥∥∥∥ "
∫ t

t0

‖f(s, x1(s))− f(s, x2(s))‖ds

" k

∫ t

t0

‖x1(s)− x2(s)‖ds " k|t− t0| sup
t∈[t0−r,t0+r]

‖x1(s)− x2(s)‖

" krd(x1, x2).

The result follows if we take α = kr. ©

Step 6. We now choose r to satisfy (8.7), (8.10) and (8.11) and keep it fixed, and write α = kr,
so that α ∈ (0, 1).
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Step 7. Define the function x0(t) = x0 identically for t ∈ [t0 − r, t0 + r]. We then define the
sequence of functions xs inductively by writing xs = Axs−1 for every s ∈ N. Note that the functions
x0, x1, x2, . . . ∈ Cr, and that x0(t0) = x1(t0) = x2(t0) = . . . = x0.

Lemma 8.5. The sequence of functions xs is a Cauchy sequence in C[t0 − r, t0 + r].

Proof. Suppose that s1, s2 ∈ N and s1 < s2. Then

d(xs1 , xs2) = d(Axs1−1,Axs2−1) " αd(xs1−1, xs2−1) " . . . " αs1d(x0, xs2−s1)
" αs1(d(x0, x1) + d(x1, x2) + . . . + d(xs2−s1−1 − xs2−s1))

" αs1(d(x0, x1) + αd(x0, x1) + . . . + αs2−s1−1d(x0, x1))

= αs1d(x0, x1)
(
1 + α + . . . + αs2−s1−1

)
<

αs1

1− α
d(x0, x1)→ 0

as s1, s2 →∞. ©

Step 8. Since C[t0−r, t0+r] is a complete metric space and xs is a Cauchy sequence in C[t0−r, t0+
r], it follows from Proposition 8.2 and Lemma 8.3 that there exists a function x = x(t), continuous
on [t0 − r, t0 + r], such that

(i) xs(t)→ x(t) uniformly on [t0 − r, t0 + r];
(ii) (t, x(t)) ∈ Γr for every t ∈ [t0 − r, t0 + r]; and
(iii) x(t0) = t0.

In other words, x ∈ Cr. On the other hand,

0 " d(Ax,Axs) " αd(x, xs)→ 0

as s→∞. Hence

Ax = lim
s→∞

Axs = lim
s→∞

xs+1 = x.

Existence is therefore established.

Step 9. To prove uniqueness, suppose that y = y(t) is another solution of the differential equation
(8.4) defined on [t0 − r1, t0 + r1], and that y(t0) = x0. Then there exists R " min{r, r1} such that
(t, x(t)), (t, y(t)) ∈ ΓR if t ∈ [t0 −R, t0 + R]. Hence

d(x, y) = d(Ax,Ay) " αd(x, y).

This implies d(x, y) = 0, so that x = y. Uniqueness is therefore established.


