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Chapter 3

CONGRUENCES

3.1. Introduction

Example 3.1.1. We all know that the sum of two even integers is even, the sum of two odd integers is
even, and the sum of an even integer and an odd integer is odd. Here we do not need to know the precise
values of the numbers involved. Suppose that the number 0 is chosen to represent all even integers, and
that the number 1 is chosen to represent all odd integers. Then the information above can be represented
in the form 0 + 0 = 0, 1 + 1 = 0 and 0 + 1 = 1. Of course, the + sign does not represent ordinary
addition as we know it. In fact, it represents addition modulo 2. Integer multiples of 2 are ignored.

Example 3.1.2. Alfred always deposits money into and withdraws money from his bank account in
integer multiples of 99 dollars. On the other hand, he always keeps less than 99 dollars with him. He
currently has 53 dollars. Now he sells his car for 5250 dollars and buys a computer for 2579 dollars.
After visiting the bank, how much money does he have with him? To solve this problem, note that
before he visits the bank, he must have 53 + 5250− 2579 = 2724 dollars. Suppose that after visiting the
bank, he has r dollars left. Then the integer r must satisfy 0 ≤ r < 99 and r = 2724 − 99q for some
integer q. Note that the difference between r and 2724 is an integer multiple of 99. One can check that
it is possible to take q = 27 and r = 51. This is an example of arithmetic modulo 99. Integer multiples
of 99 are ignored.

Example 3.1.3. In decimal representation for an integer, we know that if the right most digit is equal
to 5 or 0, then the integer is divisible by 5, irrespective of any of the other digits. The contribution of
the other digits gives rise to an integer which is a multiple of 5, which we then choose to ignore. This is
an example of arithmetic modulo 5.

Example 3.1.4. In decimal representation for an integer, it is well known that the integer is divisible by
3 precisely when the sum of the digits is divisible by 3. We shall study later this example of arithmetic
modulo 3.
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Let us now investigate questions like these in greater detail.

Definition. Suppose that m, c ∈ Z and m 6= 0. Then we say that m divides c, denoted by m | c, if
there exists q ∈ Z such that c = mq. In this case, we also say that m is a divisor of c, or that c is a
multiple of m.

Example 3.1.5. For every m ∈ Z \ {0}, m | m and m | −m.

Example 3.1.6. For every c ∈ Z, 1 | c and −1 | c.

Example 3.1.7. If m | c and c | k, then m | k. To see this, note that if m | c and c | k, then there exist
q, s ∈ Z such that c = mq and k = cs, so that k = mqs. Clearly qs ∈ Z.

Example 3.1.8. If m | c and m | k, then for every x, y ∈ Z, m | (cx + ky). To see this, note that if m | c
and m | k, then there exist q, s ∈ Z such that c = mq and k = ms, so that cx + ky = mqx + msy =
m(qx + sy). Clearly qx + sy ∈ Z.

Definition. Suppose that m ∈ N and a, b ∈ Z. Then we say that a is congruent to b modulo m, denoted
by a ≡ b (mod m), if m | (a− b).

Example 3.1.9. We have 1999 ≡ 135 (mod 8), since 1999− 135 = 1864 is divisible by 8.

Example 3.1.10. Every even integer is congruent to every other even integer modulo 2.

Example 3.1.11. The square of every odd integer is congruent to 1 modulo 8. To see this, note that every
odd integer n can be written in the form n = 2k + 1, where k ∈ Z. Then n2 = (2k + 1)2 = 4k2 + 4k + 1,
so that n2 − 1 = 4k2 + 4k = 4k(k + 1) is a multiple of 8, since k(k + 1) is clearly even.

Example 3.1.12. Let us return to Example 3.1.2 concerning Alfred. We need to find an integer r such
that 0 ≤ r < 99 and 2724 ≡ r (mod 99). A naive way to do this is to keep on subtracting 99 from 2724
until we arrive at such an integer; in other words,

2724−99− 99− . . .− 99︸ ︷︷ ︸
how many times?

= r.

To understand this, let us introduce the integer part function. For every x ∈ R, let [x] ∈ Z be defined
by [x] ≤ x < [x] + 1. It is not difficult to see that the integer [x] is uniquely defined; in fact, it is the
greatest integer not exceeding x. Now let x = 2724/99. Then[

2724
99

]
≤ 2724

99
<

[
2724
99

]
+ 1,

so that

0 ≤ 2724
99
−
[

2724
99

]
< 1.

Multiplying throughout by 99, we obtain

0 ≤ 2724− 99
[

2724
99

]
< 99.

Now let

r = 2724− 99
[

2724
99

]
.
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Clearly 2724− r is a multiple of 99, so that 2724 ≡ r (mod 99). Simple calculation gives r = 51. Note
also that [2724/99] = 27 = q.

To formalize the calculation described in our last example, we have the following result.

PROPOSITION 3A. Suppose that m ∈ N and c ∈ Z. Then there exist unique q, r ∈ Z such that
c = mq + r and 0 ≤ r < m.

First Proof. We shall first of all show the existence of such numbers q, r ∈ Z. Let q = [c/m]. Then
clearly q ∈ Z and [ c

m

]
≤ c

m
<
[ c

m

]
+ 1.

It follows that

0 ≤ c

m
−
[ c

m

]
< 1;

multiplying by m, we obtain 0 ≤ c−mq < m. Write r = c−mq. Clearly r ∈ Z and 0 ≤ r < m. Next we
show that such numbers q, r ∈ Z are unique. Suppose that c = mq1 + r1 = mq2 + r2 with 0 ≤ r1 < m
and 0 ≤ r2 < m. Then m|q1− q2| = |r2− r1| < m. Since |q1− q2| ∈ N∪ {0}, we must have |q1− q2| = 0,
so that q1 = q2 and so r1 = r2 also. ©

Second Proof. To show the existence of such numbers q, r ∈ Z, consider the set

S = {c−ms ≥ 0 : s ∈ Z}.

Then it is easy to see that S is a non-empty subset of N∪{0}. It follows from the Principle of induction
that S has a smallest element. Let r be the smallest element of S, and let q ∈ Z such that c−mq = r.
Clearly r ≥ 0, so it remains to show that r < m. Suppose on the contrary that r ≥ m. Then

c−m(q + 1) = (c−mq)−m = r −m ≥ 0,

so that c −m(q + 1) ∈ S. Clearly c −m(q + 1) < r, contradicting that r is the smallest element of S.
Uniqueness can be established similarly as before. ©

Definition. Suppose that m ∈ N and c ∈ Z. The unique integer r satisfying

0 ≤ r < m and c ≡ r (mod m)

is called the residue of c modulo m.

Remark. By Proposition 3A, the residue of c modulo m is the remainder when we divide c by m.

A simple consequence of our definition is the following result.

PROPOSITION 3B. Suppose that m ∈ N and a, b ∈ Z. Then a ≡ b (mod m) if and only if a and b
have the same residue modulo m.

Proof. (⇒) Suppose that r ∈ Z and 0 ≤ r < m, and that a has residue r modulo m. Then there exists
q1 ∈ Z such that a = mq1 + r. Since a ≡ b (mod m), there exists q ∈ Z such that b = a + mq. It follows
that b = m(q1 + q) + r, so that b also has residue r modulo m.

(⇐) Suppose that both a and b have the same residue r modulo m. Then 0 ≤ r < m. Furthermore,
there exist q1, q2 ∈ Z such that a = mq1 + r and b = mq2 + r. It follows that a− b = m(q1 − q2), and so
m | (a− b). ©
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3.2. Arithmetic of Congruences

Example 3.2.1. We can check that 76 ≡ 122 (mod 23) and 29 ≡ 98 (mod 23). We can also check that

76 + 29 ≡ 122 + 98 (mod 23) and 76× 29 ≡ 122× 98 (mod 23).

In other words, congruence modulo 23 is preserved by addition and multiplication.

Formally, we have the following result.

PROPOSITION 3C. Suppose that m ∈ N, and that a1, a2, b1, b2 ∈ Z. Suppose further that a1 ≡ b1

(mod m) and a2 ≡ b2 (mod m). Then
(a) a1 + a2 ≡ b1 + b2 (mod m); and
(b) a1a2 ≡ b1b2 (mod m).

Proof. Clearly m | (a1− b1) and m | (a2− b2). Hence m | ((a1− b1) + (a2− b2)) = (a1 + a2)− (b1 + b2)
and m | ((a1 − b1)a2 + b1(a2 − b2)) = a1a2 − b1b2. ©

Example 3.2.2. Suppose that m, r ∈ Z and 0 < r < m. It is easy to see that 0 < m − r < m and
r + (m− r) ≡ 0 (mod m). In other words, m− r is the additive inverse of r modulo m. Also, we have
0 + 0 ≡ 0 (mod m), so that 0 is its own additive inverse modulo m.

Example 3.2.3. To find a multiplicative inverse of 5 modulo 7, we need to find an integer x which
satisfies 5x ≡ 1 (mod 7). We can do this by exhaustion, since we can impose the restriction 0 ≤ x < 7
in view of Proposition 3C(b). It is easy to check that x = 3 is the only solution under our restriction.

Example 3.2.4. To find a multiplicative inverse of 4 modulo 8, we need to find an integer x which
satisfies 4x ≡ 1 (mod 8). This is impossible, since for every x ∈ Z, the integer 4x − 1 is odd, and so
never a multiple of 8. Hence 4 has no multiplicative inverse modulo 8.

Example 3.2.5. To find a multiplicative inverse of 71 modulo 113, we need to find an integer x which
satisfies 71x ≡ 1 (mod 113). We may impose the restriction 0 ≤ x < 113. However, trying to find a
solution by exhaustion is still a very unpleasant task.

Clearly, we have two problems. The first is to decide whether a multiplicative inverse exists. The
second is to develop a technique for finding it systematically.

To address the first problem, we introduce the idea of the greatest common divisor of two natural
numbers, and state here without proof the following result concerning its existence and uniqueness. The
interested reader may refer to Section 3.5 for a proof and further discussion.

PROPOSITION 3D. Suppose that a, m ∈ N. Then there exists a unique d ∈ N such that
(a) d | a and d | m; and
(b) if x ∈ N satisfies x | a and x | m, then x | d.

Definition. The number d is called the greatest common divisor (GCD) of a and m, and is denoted by
d = (a, m).

The answer to our first problem is given by the following result.

PROPOSITION 3E. Suppose that a, m ∈ N. Then there exists a unique x ∈ Z satisfying 0 ≤ x < m
and ax ≡ 1 (mod m), if and only if the greatest common divisor (a, m) = 1.

Proposition 3E is a special case of Proposition 3G which we shall study in the next section.
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A simple way of determining the greatest common divisor (a, m) is given by Euclid’s algorithm. In
the case when (a, m) = 1, Euclid’s algorithm also provides a systematic way of finding the multiplicative
inverse of a modulo m. We state below Euclid’s algorithm without proof. Again, the interested reader
may refer to Section 3.5 for a proof and further discussion.

PROPOSITION 3F. (EUCLID’S ALGORITHM) Suppose that a, m ∈ N and a < m. Suppose further
that q1, . . . , qn+1 ∈ Z and r1, . . . , rn ∈ N satisfy 0 < rn < rn−1 < . . . < r1 < a and

m = aq1 + r1,

a = r1q2 + r2,

r1 = r2q3 + r3,

...
rn−2 = rn−1qn + rn,

rn−1 = rnqn+1.

Then (a, m) = rn.

Example 3.2.6. Consider the congruence 589x ≡ 1 (mod 5111). In the notation of Euclid’s algorithm,
we have a = 589 and m = 5111. Then

5111 = 589× 8 + 399,

589 = 399× 1 + 190,

399 = 190× 2 + 19,

190 = 19× 10.

It follows that (589, 5111) = 19, and so 589 does not have a multiplicative inverse modulo 5111.

Example 3.2.7. Consider the congruence 71x ≡ 1 (mod 113). In the notation of Euclid’s algorithm, we
have a = 71 and m = 113. Then

113 = 71× 1 + 42,

71 = 42× 1 + 29,

42 = 29× 1 + 13,

29 = 13× 2 + 3,

13 = 3× 4 + 1,

3 = 1× 3.

It follows that (71, 113) = 1, and so 71 has a multiplicative inverse modulo 113. To find the multiplicative
inverse, we work backwards from the second last line to get

1 = 13 + 3× (−4)
= 13 + (29 + 13× (−2))× (−4) = 29× (−4) + 13× 9
= 29× (−4) + (42 + 29× (−1))× 9 = 42× 9 + 29× (−13)
= 42× 9 + (71 + 42× (−1))× (−13) = 71× (−13) + 42× 22
= 71× (−13) + (113 + 71× (−1))× 22 = 113× 22 + 71× (−35).

It follows that 71(−35) ≡ 1 (mod 113). Next, the residue of −35 modulo 113 is equal to

−35− 113
[
− 35

113

]
= 78.

Hence x = 78.
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3.3. Linear Congruences

Example 3.3.1. Consider the congruence 5x ≡ 2 (mod 7). This can be solved by exhaustion, since we
can impose the restriction 0 ≤ x < 7. It is easy to check that x = 6 is the only solution under our
restriction.

Example 3.3.2. Consider the congruence 2x ≡ 4 (mod 8). Again, this can be solved by exhaustion,
since we can impose the restriction 0 ≤ x < 8. It is easy to check that x = 2 and x = 6 are the two
solutions under our restriction.

Example 3.3.3. Consider the congruence 2x ≡ 3 (mod 8). Again, this can be solved by exhaustion,
since we can impose the restriction 0 ≤ x < 8. It is easy to check that the congruence has no solutions
under our restriction. Indeed, for every x ∈ Z, the integer 2x− 3 is odd, and so never a multiple of 8.

Example 3.3.4. Consider the congruence 71x ≡ 19 (mod 113). We may try to impose the restriction
0 ≤ x < 113. However, trying to find a solution by exhaustion is still a very unpleasant task.

As in the case of finding multiplicative inverses, we again have two problems. The first is to decide
whether a solution exists. The second is to develop a technique for finding all the solutions systematically.

We shall show that our task is a simple generalization of the task of determining multiplicative inverses.
The first problem is answered by the following generalization of Proposition 3E. Then we shall extend
the use of Euclid’s algorithm to find an effective technique for solving the second problem.

PROPOSITION 3G. Suppose that m ∈ N and a, b ∈ Z. Then the congruence

ax ≡ b (mod m) (1)

is soluble if and only if (a, m) | b. In this case, the congruence (1) is the same as the congruence

a

(a, m)
x ≡ b

(a, m)

(
mod

m

(a, m)

)
(2)

which is satisfied by precisely one value x = x0 in the range 0 ≤ x < m/(a, m). Furthermore, the
congruence (1) is satisfied by precisely all the integers x ≡ x0 (mod m/(a, m)).

The interested reader may refer to Section 3.5 for a proof of this result.

Remarks. (1) By Proposition 3E, the congruence

a

(a, m)
y ≡ 1

(
mod

m

(a, m)

)
(3)

has a unique solution satisfying 0 ≤ y < m/(a, m). Clearly the residue x0 of by/(a, m) modulo m/(a, m)
is a solution of the congruence (2), and hence the unique solution of the congruence (2) in the range
0 ≤ x < m/(a, m). Note that

x0 =
by

(a, m)
− m

(a, m)

[
by

(a, m)

/
m

(a, m)

]
=

by

(a, m)
− m

(a, m)

[
by

m

]
. (4)

(2) In other words, to study a congruence of the type (1), we can first of all calculate the greatest
common divisor (a, m) by Euclid’s algorithm. If (a, m) | b, then we concentrate on the congruence (2).
To find the unique solution of (2), we first solve the congruence (3) and then use the formula (4) to
complete our task.
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Example 3.3.5. Consider the congruence 71x ≡ 19 (mod 113). Recall from Example 3.2.7 that
(71, 113) = 1. Hence (71, 113) | 19, and so the congruence has a unique solution in the range 0 ≤ x < 113.
Recall also that y = 78 is the unique solution to the congruence 71y ≡ 1 (mod 113). Hence

x = 19y − 113
[

19y

113

]
= 1482− 113

[
1482
113

]
= 13

is the unique solution of the congruence 71x ≡ 19 (mod 113) in the range 0 ≤ x < 113, and the
congruence 71x ≡ 19 (mod 113) is satisfied by precisely all the integers x ≡ 13 (mod 113).

Example 3.3.6. Consider the congruence 96x ≡ 36 (mod 324). Using Euclid’s algorithm, we have

324 = 96× 3 + 36,

96 = 36× 2 + 24,

36 = 24× 1 + 12,

24 = 12× 2.

It follows that (96, 324) = 12, a divisor of 36. We next concentrate on the congruence 8x ≡ 3 (mod 27),
and try to find the unique solution in the range 0 ≤ x < 27. To do this, we consider the congruence
8y ≡ 1 (mod 27). Using Euclid’s algorithm, we have

27 = 8× 3 + 3,

8 = 3× 2 + 2,

3 = 2× 1 + 1,

2 = 1× 2.

Working backwards, we obtain

1 = 3 + 2× (−1)
= 3 + (8 + 3× (−2))× (−1) = 8× (−1) + 3× 3
= 8× (−1) + (27 + 8× (−3))× 3 = 27× 3 + 8× (−10).

It follows that 8(−10) ≡ 1 (mod 27). Next, the residue of −10 modulo 27 is equal to

−10− 27
[
−10

27

]
= 17.

Hence y = 17. Since 8(17) ≡ 1 (mod 27), it follows that 8(51) ≡ 3 (mod 27), and the residue of 51
modulo 27 is given by

51− 27
[

51
27

]
= 24.

Hence x = 24 is the unique solution of the congruence 8x ≡ 3 (mod 27) in the range 0 ≤ x < 27, and
the congruence 96x ≡ 36 (mod 324) is satisfied by precisely all the integers x ≡ 24 (mod 27).

3.4. Special Divisibility Rules

Throughout this section, we shall consider natural numbers with decimal representation

n = xkxk−1 . . . x3x2x1,
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where x1, . . . , xk ∈ {0, 1, 2, . . . , 9} and xk 6= 0, and true value

n = 10k−1xk + 10k−2xk−1 + . . . + 102x3 + 10x2 + x1.

Remarks. (1) We know that n is a multiple of 5 precisely when x1 ∈ {0, 5}. Indeed,

n− x1 = 10k−1xk + 10k−2xk−1 + . . . + 102x3 + 10x2

is always divisible by 5. In other words, we have n ≡ x1 (mod 5), and so n is divisible by 5 precisely
when x1 is divisible by 5.

(2) We know that n is a multiple of 2 precisely when x1 is even. Indeed,

n− x1 = 10k−1xk + 10k−2xk−1 + . . . + 102x3 + 10x2

is always divisible by 2. In other words, we have n ≡ x1 (mod 2), and so n is divisible by 2 precisely
when x1 is divisible by 2.

(3) We know that n is a multiple of 4 precisely when x2x1 is a multiple 4. Indeed,

n− x2x1 = 10k−1xk + 10k−2xk−1 + . . . + 102x3

is always divisible by 4. In other words, we have n ≡ x2x1 (mod 4), and so n is divisible by 4 precisely
when x2x1 is divisible by 4.

PROPOSITION 3H. The natural number n is a multiple of 3 precisely when the sum of its digits in
decimal representation is a multiple of 3.

Proof. Note that

n− (xk + xk−1 + . . . + x3 + x2 + x1) = (10k−1 − 1)xk + (10k−2 − 1)xk−1 + . . . + (102 − 1)x3 + (10− 1)x2

is always divisible by 3. In other words, we have n ≡ xk + xk−1 + . . . + x3 + x2 + x1 (mod 3), and so n
is divisible by 3 precisely when xk + xk−1 + . . . + x3 + x2 + x1 is divisible by 3. ©

The proof of the following result is almost identical.

PROPOSITION 3J. The natural number n is a multiple of 9 precisely when the sum of its digits in
decimal representation is a multiple of 9.

We state without proof the following result concerning divisibility by 11.

PROPOSITION 3K. The natural number n is a multiple of 11 precisely when the number

(x1 + x3 + x5 + . . .)− (x2 + x4 + x6 + . . .)

is a multiple of 11.

Example 3.4.1. The number 38562907 is not a multiple of 3, since the sum of its digits is equal to 40,
not a multiple of 3.

Example 3.4.2. Consider the number 26348410x278, where x ∈ {0, 1, 2, . . . , 9}. The sum of its digits
is equal to 45 + x. It follows that the number is divisible by 9 precisely when x = 0 or x = 9.
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Example 3.4.3. Consider the number 26348410x278 again, where x ∈ {0, 1, 2, . . . , 9}. For the number
to be divisible by 11, the number

(8 + 2 + 0 + 4 + 4 + 6)− (7 + x + 1 + 8 + 3 + 2) = 3− x

must be a multiple of 11. This is satisfied precisely when x = 3.

Example 3.4.4. Consider the number 37x2469y2z, where x, y, z ∈ {0, 1, 2, . . . , 9}. We wish to determine
all values of x, y and z such that the number is a multiple of 5, 8, 9 and 11 simultaneously. For the
number to be a multiple of 5, we must have z ∈ {0, 5}. For the number to be a multiple of 8, we must
have z 6= 5, and so z = 0 is the only possibility. In this case, the number y20 must be a multiple of 8.
This is satisfied precisely when y ∈ {1, 3, 5, 7, 9}. For the number to be a multiple of 9, the number

3 + 7 + x + 2 + 4 + 6 + 9 + y + 2 + z = 33 + x + y + z = 33 + x + y

must be a multiple of 9. For the number to be a multiple of 11, the number

(z + y + 6 + 2 + 7)− (2 + 9 + 4 + x + 3) = z + y − x− 3 = y − x− 3

must be a multiple of 11. To summarize, we must have z = 0 and

y ∈ {1, 3, 5, 7, 9},
9 | (33 + x + y),
11 | (y − x− 3).

The only solution is (x, y, z) = (0, 3, 0).

3.5. Further Discussion

In this section, we shall first establish the existence and uniqueness of the greatest common divisor of
two given natural numbers, and prove Euclid’s algorithm. We first need some results on primes.

Definition. Suppose that a ∈ N and a > 1. Then we say that a is prime if it has exactly two positive
divisors, namely 1 and a. We also say that a is composite if it is not prime.

Remark. Note that 1 is neither prime nor composite. There is a good reason for not including 1 as a
prime. See the remark following Proposition 3N.

Throughout this section, the symbol p, with or without suffices, denotes a prime.

PROPOSITION 3L. Suppose that a, b ∈ Z, and that p ∈ N is a prime. If p | ab, then p | a or p | b.

Proof. If a = 0 or b = 0, then the result is trivial. We may also assume, without loss of generality, that
a > 0 and b > 0. Suppose that p - a. Let

S = {b ∈ N : p | ab and p - b}.

Clearly it is sufficient to show that S = ∅. Suppose, on the contrary, that S 6= ∅. Then since S ⊆ N, it
follows from the Principle of induction that S has a smallest element. Let c ∈ N be the smallest element
of S. Then in particular,

p | ac and p - c.
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Since p - a, we must have c > 1. On the other hand, we must have c < p; for if c ≥ p, then c > p,
and since p | ac, we must have p | a(c − p), so that c − p ∈ S, a contradiction. Hence 1 < c < p. By
Proposition 3A, there exist q, r ∈ Z such that p = cq + r and 0 ≤ r < c. Since p is a prime, we must
have r ≥ 1, so that 1 ≤ r < c. However, ar = ap− acq, so that p | ar. We now have

p | ar and p - r.

But r < c and r ∈ N, contradicting that c is the smallest element of S. ©

Using Proposition 3L a finite number of times, we have the following extension.

PROPOSITION 3M. Suppose that a1, . . . , ak ∈ Z, and that p ∈ N is a prime. If p | a1 . . . ak, then
p | aj for some j = 1, . . . , k.

We remarked earlier that we do not include 1 as a prime. The following result is one justification.

PROPOSITION 3N. (FUNDAMENTAL THEOREM OF ARITHMETIC) Suppose that n ∈ N and
n > 1. Then n is representable as a product of primes, uniquely up to the order of factors.

Remark. If 1 were to be included as a prime, then we would have to rephrase the Fundamental theorem
of arithmetic to allow for different representations like 6 = 2 × 3 = 1 × 2 × 3. Note also then that the
number of prime factors of 6 would not be unique.

Proof of Proposition 3N. We shall first of all show by induction that every integer n ≥ 2 is
representable as a product of primes. Clearly 2 is a product of primes. Assume now that n > 2 and
that every m ∈ N satisfying 2 ≤ m < n is representable as a product of primes. If n is a prime, then
it is obviously representable as a product of primes. If n is not a prime, then there exist n1, n2 ∈ N
satisfying 2 ≤ n1 < n and 2 ≤ n2 < n such that n = n1n2. By our induction hypothesis, both n1 and
n2 are representable as products of primes, so that n must be representable as a product of primes.

Next we shall show uniqueness. Suppose that

n = p1 . . . pr = p′1 . . . p′s, (5)

where p1 ≤ . . . ≤ pr and p′1 ≤ . . . ≤ p′s are primes. Now p1 | p′1 . . . p′s, so it follows from Proposition 3M
that p1 | p′j for some j = 1, . . . , s. Since p1 and p′j are both primes, we must then have p1 = p′j . On the
other hand, p′1 | p1 . . . pr, so again it follows from Proposition 3M that p′1 | pi for some i = 1, . . . , r, so
again we must have p′1 = pi. It now follows that p1 = p′j ≥ p′1 = pi ≥ p1, so that p1 = p′1. It now follows
from (5) that

p2 . . . pr = p′2 . . . p′s.

Repeating this argument a finite number of times, we conclude that r = s and pi = p′i for every
i = 1, . . . , r. ©

Grouping together equal primes, we can reformulate Proposition 3N as follows.

PROPOSITION 3P. Suppose that n ∈ N and n > 1. Then n is representable uniquely in the form

n = pm1
1 . . . pmr

r , (6)

where p1 < . . . < pr are primes, and where mj ∈ N for every j = 1, . . . , r.

Definition. The representation (6) is called the canonical decomposition of n.
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Proof of Proposition 3D. If a = 1 or m = 1, then take d = 1. Suppose now that a > 1 and m > 1.
Let p1 < . . . < pr be all the distinct prime factors of a and m. Then by Proposition 3P, we can write

a = pu1
1 . . . pur

r and m = pv1
1 . . . pvr

r , (7)

where u1, . . . , ur, v1, . . . , vr ∈ N∪{0}. Note that in the representations (7), when pj is not a prime factor
of a (resp. m), then the corresponding exponent uj (resp. vj) is zero. Now write

d =
r∏

j=1

p
min{uj ,vj}
j .

Clearly d | a and d | m. Suppose now that x ∈ N and x | a and x | m. Then x = pw1
1 . . . pwr

r , where
0 ≤ wj ≤ uj and 0 ≤ wj ≤ vj for every j = 1, . . . , r. Clearly x | d. Finally, note that the representations
(7) are unique in view of Proposition 3P, so that d is uniquely defined. ©

Proof of Proposition 3F. We shall first of all prove that

(a, m) = (a, r1). (8)

Note that (a, m) | a and (a, m) | (m − aq1) = r1, so that (a, m) | (a, r1). On the other hand, (a, r1) | a
and (a, r1) | (aq1 + r1) = m, so that (a, r1) | (a, m). (8) follows. Similarly

(a, r1) = (r1, r2) = (r2, r3) = . . . = (rn−1, rn). (9)

Note now that

(rn−1, rn) = (rnqn+1, rn) = rn. (10)

The result follows on combining (8)–(10). ©

We next establish Proposition 3G concerning the solution of linear congruences. We begin by making
a couple of simple observations.

PROPOSITION 3Q. Suppose that m ∈ N, and that a, b, c ∈ Z with c 6= 0.
(a) If ac ≡ bc (mod m), then a ≡ b (mod m/(c, m)), where (c, m) denotes the greatest common divisor

of c and m.
(b) Furthermore, if (c, m) = 1, then a ≡ b (mod m).

Sketch of Proof. We have (a− b)c = ac− bc = mq for some q ∈ Z, so that

(a− b)
c

(c, m)
=

m

(c, m)
q.

The integers c/(c, m) and m/(c, m) have no common factors apart from ±1. It follows that m/(c, m)
cannot divide into c/(c, m) and so must divide a− b, proving part (a). Part (b) is clearly obvious from
part (a). ©

Example 3.5.1. Note that 18 ≡ 14 (mod 4) implies 9 ≡ 7 (mod 2) and not 9 ≡ 7 (mod 4).

Definition. Suppose that m ∈ N. A set S of m integers is said to be a complete set of residues modulo
m if for every integer a ∈M = {0, 1, 2, . . . ,m− 1}, there exists a unique element x ∈ S such that x ≡ a
(mod m).

Remark. Suppose that S is a set of m integers. Then S is a complete set of residues modulo m if and
only if for any distinct x, y ∈ S, we have x 6≡ y (mod m).
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Example 3.5.2. The set {1, 12, 8, 19,−15} is a complete set of residues modulo 5.

PROPOSITION 3R. Suppose that m ∈ N and k ∈ Z \ {0}, and that (k, m) = 1. As x runs through a
complete set of residues modulo m, kx runs through a complete set of residues modulo m.

Proof. By Proposition 3Q(b), if x 6≡ y (mod m), then kx 6≡ ky (mod m). The result follows from the
Remark above. ©

Proof of Proposition 3G. The result is trivial if a = 0, so we assume without loss of generality
that a 6= 0. Suppose that (1) is soluble. Then there exist x0, y0 ∈ Z such that ax0 + my0 = b, and so
(a, m) | b. On the other hand, suppose that (a, m) | b. Since (a/(a, m), m/(a, m)) = 1, it follows from
Proposition 3R that

0,
a

(a, m)
,

2a

(a, m)
, . . . ,

(
m

(a, m)
− 1
)

a

(a, m)

form a complete set of residues modulo m/(a, m). Hence one of the numbers x0 in the set{
0, 1, . . . ,

m

(a, m)
− 1
}

satisfies

a

(a, m)
x0 ≡

b

(a, m)

(
mod

m

(a, m)

)
, (11)

whence

ax0 ≡ b (mod m), (12)

and so (1) is soluble. Furthermore, if x ≡ x0 (mod m/(a, m)), then (11) and hence also (12) hold with
x0 replaced by x. To show that the residue class x0 modulo m/(a, m) gives all the solutions, let x be any
solution of (1). Then a(x− x0) ≡ 0 (mod m). By Proposition 3Q, we have x− x0 ≡ 0 (mod m/(a, m)).
©

We complete this chapter by establishing the following famous result concerning simultaneous linear
congruences.

PROPOSITION 3S. (CHINESE REMAINDER THEOREM) Suppose that n > 1, and that the num-
bers m1, . . . ,mn ∈ N are pairwise coprime; in other words, (mi, mj) = 1 whenever 1 ≤ i < j ≤ n.
Suppose further that a1, . . . , an ∈ Z. Then the simultaneous congruences

x ≡ a1 (mod m1)
...

x ≡ an (mod mn)

are satisfied by precisely the members of a unique residue class modulo m1 . . . mn.

Proof. For every j = 1, . . . , n, write qj = m1 . . . mj−1mj+1 . . . mn. Then (qj , mj) = 1. By Proposition
3G, there exists kj ∈ Z such that qjkj ≡ aj (mod mj). Now let

x0 =
n∑

j=1

qjkj .

If x ≡ x0 (mod m1 . . . mn), then x ≡ x0 ≡ qiki ≡ ai (mod mi) for every i = 1, . . . , n. On the other hand,
if x is a solution to the simultaneous congruences, then x ≡ ai ≡ x0 (mod mi) for every i = 1, . . . , n.
Hence x ≡ x0 (mod m1 . . . mn). ©
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Problems for Chapter 3

1. Prove the following version of Proposition 3A: Suppose that m ∈ N and c ∈ Z. Then there exist
unique q, r ∈ Z such that c = mq + r and 1 ≤ r ≤ m.

2. a) Find the multiplicative inverse of each of the numbers 1, 2, 3, 4, 5, 6 modulo 7, if it exists.
b) Find the multiplicative inverse of each of the numbers 1, 2, 3, 4, 5, 6, 7 modulo 8, if it exists.
c) Can you comment on the above?

3. For each of the following congruences, find all solutions x satisfying 0 ≤ x < 10:
a) 3x ≡ 1 (mod 10) b) 2x ≡ 4 (mod 10)
c) 5x ≡ 2 (mod 10)

4. For each of the following linear congruences, find by exhaustion all the solutions, if any:
a) 6x ≡ 1 (mod 7) b) 6x ≡ 2 (mod 7)
c) 6x ≡ 1 (mod 8) d) 6x ≡ 2 (mod 8)

5. Solve the congruence 6x ≡ 7 (mod 13).

6. Solve the congruence z2 + 3z + 2 ≡ 0 (mod 5).

7. Solve each of the following congruences modulo 5 and modulo 6:
a) x2 + 2x + 2 ≡ 0 b) x2 + 2x + 3 ≡ 0

8. Solve each of the following congruences:
a) x75 + 6x49 + 3x2 + 1 ≡ 0 (mod 7) b) x47 + 3x22 + 4x7 + 3x2 + 1 ≡ 0 (mod 5)

9. This is one of those rare occasions when you will find a calculator useful in mathematics. So take
out your toy and have a go.

a) Find the residue of 274659278 modulo 1687.
b) Find the residue of −274659287 modulo 1687.
c) Find the residue of the sum of 289574837, −146827648 and 127048729 modulo 3.
d) Find the residue of the product of 289574837, −146827648 and 127048729 modulo 3.
[Hint: For part (d), it may be a little tricky to find the product of the three numbers, even though
you may have a state-of-the-art toy. Try to use some theory instead, with the help of your calculator.]

10. Find the remainder of 2123456789 × 5123456789 × 7123456789 × 11123456789 × 13123456789 on
division by 3. Explain your argument carefully, quoting relevant results.
[Hint: The product contains 50 digits, so your calculator is unlikely to cope. Nevertheless, your
calculator will be of some help.]

11. Suppose that a, b, n ∈ N,
a) Show that if a ≡ b (mod 2n), then a2 ≡ b2 (mod 4n).
b) Suppose that k ∈ N. Show that if a ≡ b (mod kn), then ak ≡ bk (mod k2n).

12. Use Euclid’s algorithm to find the gcd of 35 and 79.

13. For each of the following, use Euclid’s algorithm to determine whether the multiplicative inverse
exists, and if so, determine its value:

a) 13 (mod 29) b) 74 (mod 111) c) 113 (mod 549) d) 279 (mod 303)

14. You are given that 4× 79− 9× 35 = 1.
a) Find the inverse of 35 (mod 79).
b) Use part (a) to solve the congruence 35x ≡ 3 (mod 79).
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15. a) Show that 28−1 ≡ 4 (mod 37).
b) Hence solve the congruence 28x ≡ 19 (mod 37).

16. a) Use Euclid’s algorithm to show that (136, 311) = 1.
b) Find an integer y satisfying 0 ≤ y < 311 and 136y ≡ 1 (mod 311).
c) Find an integer x satisfying 0 ≤ x < 311 and 136x ≡ 2 (mod 311).

17. a) Use Euclid’s algorithm to show that (219, 313) = 1.
b) Find a positive integer y < 313 which satisfies 219y ≡ 1 (mod 313).
c) Use part (b) to find a positive integer x < 313 which satisfies 219x ≡ 4 (mod 313).
d) Are your solutions in parts (b) and (c) unique?

18. a) Use Euclid’s algorithm to show that (121, 391) = 1.
b) Find a positive integer y < 391 which satisfies 121y ≡ 1 (mod 391).
c) Use part (b) to find a positive integer x < 391 which satisfies 121x ≡ 3 (mod 391).
d) Are your solutions in parts (b) and (c) unique?

19. a) Use Euclid’s algorithm to show that (152, 333) = 1.
b) Find a positive integer y < 333 which satisfies 152y ≡ 1 (mod 333).
c) Use part (b) to find a positive integer x < 333 which satisfies 152x ≡ 3 (mod 333).
d) Are your solutions in parts (b) and (c) unique?

20. For each of the following congruences, use Euclid’s algorithm to determine whether the congruence
is soluble, and if so, determine also the solutions:

a) 377x ≡ 53 (mod 481) b) 377x ≡ 58 (mod 464)

21. Find n ∈ N for which 2n ≡ 1 (mod 5). Deduce the remainder when 250 + 1 is divided by 5.

22. Find n ∈ N for which 2n ≡ 1 (mod 31). Deduce the remainder when 2100 is divided by 31.

23. Follow the steps below to find all digit pairs (x, y) such that the integer 1x31y56 in decimal notation
is a multiple of both 3 and 11:

a) Show that the integer is a multiple of 11 precisely when x− y ≡ 4 (mod 11).
b) Find all the nine digit pairs (x, y) for which the integer is a multiple of 11.
c) Show that the integer is a multiple of 3 precisely when x + y ≡ 2 (mod 3).
d) Show that there are precisely three digit pairs (x, y) in part (b) for which the integer is a multiple

of 3.

24. The number 1974x17y940z is divisible by both 8 and 11, and has residue 1 modulo 3. Follow the
steps below to determine all the possible values of the triplet (x, y, z):

a) Explain why z = 0 or z = 8.
b) Consider the case when z = 0. Use arithmetic modulo 3 and modulo 11 to determine all the

possible values of the triplet (x, y, 0).
c) Consider the case when z = 8. Use arithmetic modulo 3 and modulo 11 to determine all the

possible values of the triplet (x, y, 8).
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