
Two Tricks with Arithmetic – courtesy of Yakov Perelman and Martin Gardner

William Chen

The first trick is due to Yakov Perelman. Ask someone to choose a 3-digit number abc, repeat the digits to
obtain the 6-digit number abcabc, write it down on a piece of paper and pass it on to a second person. Ask the
second person whether the number is divisible by 7, then do the division, write down the answer and pass it on
to a third person. Ask the third person whether the number is divisible by 11, then do the division, write down
the answer and pass it on to a fourth person. Ask the fourth person whether the number is divisible by 13, then
do the division, write down the answer and pass it back to the first person who may be a little surprised to find
the number abc being handed back to him.

The second trick is due to Martin Gardner. Ask someone to write down a number comprising quite a few digits,
such as a telephone number (but not starting with 0). A second person will now scramble the order of the digits
in any way to obtain a new number with the same number of digits. A third person now subtracts the smaller
of the two numbers from the larger one, and then add up all the digits of the difference, and obtain a number
that is divisible by 9.

The solution of the second problem leads us to the theory of congruences. We shall study a few problems in this
area.

The solution of the first puzzle is very simple arithmetic. Suppose that abc has value x. Then abcabc, being
the sum of abc000 and abc, has value 1001x. This is the value of the number that the second person gets. The
second person divides it by 7 and obtains the value 143x. The third person divides this by 11 and obtains the
value 13x. Finally, the fourth person divides this by 13 and recovers the value x. So the whole trick is based on
the simple fact that 1001 = 7× 11× 13.

The solution of the second puzzle is based on the following well known result.

Theorem 1. An integer is divisible by 9 if and only if the sum of its digits is divisible by 9.

Example. Consider the numbers 2358 and 3457. Since 2 + 3 + 5 + 8 = 18 is divisible by 9 and 3 + 4 + 5 + 7 = 19
is not, it follows that 2358 is divisible by 9, but 3457 is not.

Sketch of Proof. Suppose that the digits of a number are given by abcd. Let V be its true value, S be the sum
of the digits, and D = V − S be their difference. Then

V = 1000a + 100b + 10c + d and S = a + b + c + d.

Then

D = (1000a + 100b + 10c + d)− (a + b + c + d) = 999a + 99b + 9c.

Clearly D is divisible by 9. Now if S is divisible by 9, then V = S + D, being the sum of two numbers which
are both divisible by 9, must be divisible by 9. On the other hand, if V is divisible by 9, then S = V −D, being
the difference of two numbers which are both divisible by 9, must be divisible by 9. ©

We can now attempt to understand the second puzzle. Suppose that the first person comes up with a number
with value x and sum of digits s. The second person scrambles the digits to obtain a new number with value
y, but the sum of the digits remains s. By interchanging the roles of x and y if necessary, we may assume that
x ≥ y. By Theorem 1 above, the numbers

x− s and y − s
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are both divisible by 9, and so their difference

(x− s)− (y − s) = x− y

is divisible by 9. But then the difference obtained by the third person is precisely x− y. By Theorem 1 above,
the number obtained by adding the digits of x− y is divisible by 9.

We also the the following results concerning divisibility.

Theorem 2. An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

Example. Consider the numbers 2358 and 3457. Since 2 + 3 + 5 + 8 = 18 is divisible by 3 and 3 + 4 + 5 + 7 = 19
is not, it follows that 2358 is divisible by 3, but 3457 is not.

For a criterion for divisibility by 11, we need to make the following convention. Suppose that a positive integer
has decimal representation abcdef . . . . Let us say that the digits a, c, e, . . . are called the odd-positioned digits,
while the digits b, d, f, . . . are called the even-positioned digits.

Theorem 3. A positive integer with decimal representation abcdef . . . is divisible by 11 if and only if the difference
between the sum of the odd-positioned digits and the sum of the even-positioned digits is divisible by 11; in other
words, if and only if

(a + c + e + . . .)− (b + d + f + . . .)

is divisible by 11.

Example. Consider the number 48035279358. We have

(4 + 0 + 5 + 7 + 3 + 8)− (8 + 3 + 2 + 9 + 5) = 27− 27 = 0

which is clearly divisible by 11, so 48035279358 is divisible by 11.

Let us return to the sketch of the proof of Theorem 1. There we have made use of the fact that the difference of
the two numbers V and S is a multiple of 9. Using this fact, we carry the divisibility of S by 9 over to establish
divisibility of V by 9, and vice versa. In other words, either both V and S are divisible by 9, or neither of them
is divisible by 9. We recognize this fact by saying that V and S are congruent modulo 9.

We say that two integers x and y are congruent modulo 9 if the difference x − y is divisible by 9. In this case,
we write

x ≡ y (mod 9).

For example, 3 ≡ 12 (mod 9), but 4 6≡ 8 (mod 9). Imagine an infinite 9-level “staircase” shown below, where we
assign a step to each integer in an orderly fashion as shown. Then two integers are congruent modulo 9 if their
steps are at the same level.
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Of course, there is no need to restrict our discussion to modulo 9. Indeed, for every positive integer m, we say
that two integers x and y are congruent modulo m if the difference x− y is divisible by m. In this case, we write

x ≡ y (mod m).

We can imagine an infinite m-level “staircase” where we assign a step to each integer in an orderly fashion in
the same spirit as in the case when m = 9 above. Then two integers are congruent modulo m if their steps are
at the same level.

We can even do arithmetic modulo m. Suppose that x and y are two integers. Then we can find the sum x + y
modulo m by finding a number s from 0, 1, 2, . . . ,m− 1 such that

x + y ≡ s (mod m).

We can also find the product xy modulo m by finding a number p from 0, 1, 2, . . . ,m− 1 such that

xy ≡ p (mod m).

Example. Consider the case when m = 9 again. Let x = 4 and y = 7. To find the sum x + y modulo 9, we first
realize that x + y = 11 in ordinary arithmetic. We now look at the numbers 0, 1, 2, . . . , 8 and see which one of
these is congruent to 11 modulo 9. A little trial and error tells us that 2 ≡ 11 (mod 9), so we conclude that
4+7 ≡ 2 (mod 9). On the other hand, to find the product xy modulo 9, we first realize that xy = 28 in ordinary
arithmetic. We now look at the numbers 0, 1, 2, . . . , 8 and see which one of these is congruent to 28 modulo 9.
A little trial and error tells us that 1 ≡ 28 (mod 9), so we conclude that 4× 7 ≡ 1 (mod 9). We can check that
we have the following addition and multiplication tables modulo 9.

+ 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8 0

2 2 3 4 5 6 7 8 0 1

3 3 4 5 6 7 8 0 1 2

4 4 5 6 7 8 0 1 2 3

5 5 6 7 8 0 1 2 3 4

6 6 7 8 0 1 2 3 4 5

7 7 8 0 1 2 3 4 5 6

8 8 0 1 2 3 4 5 6 7

× 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 4 6 8 1 3 5 7

3 0 3 6 0 3 6 0 3 6

4 0 4 8 3 7 2 6 1 5

5 0 5 1 6 2 7 3 8 4

6 0 6 3 0 6 3 0 6 3

7 0 7 5 3 1 8 6 4 2

8 0 8 7 6 5 4 3 2 1

We can even establish a few simple results concerning arithmetic modulo m.
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Theorem 4. Suppose that x1 ≡ x2 (mod m) and y1 ≡ y2 (mod m). Then
(i) x1 + y1 ≡ x2 + y2 (mod m); and
(ii) x1y1 ≡ x2y2 (mod m).

Sketch of Proof. The assumptions tell us that both x1− x2 and y1− y2 are divisible by m. To prove (i), we need
to show that (x1 + y1)− (x2 + y2) is divisible by m. To prove (ii), we need to show that x1y1 − x2y2 is divisible
by m. Now

(x1 + y1)− (x2 + y2) = (x1 − x2) + (y1 − y2)

is the sum of two numbers which are both divisible by m, and so is also divisible by m. On the other hand, we
have

x1y1 − x2y2 = x1y1 − x2y1 + x2y1 − x2y2 = (x1y1 − x2y1) + (x2y1 − x2y2) = (x1 − x2)y1 + x2(y1 − y2).

Note that (x1 − x2)y1 is divisible by m, since x1 − x2 is. Also x2(y1 − y2) is divisible by m, since y1 − y2 is.
Hence the sum (x1 − x2)y1 + x2(y1 − y2) is also divisible by m. ©

Example. Consider the case when m = 9 again. We have 2488 ≡ 4 (mod 9) and 6476 ≡ 5 (mod 9). It follows
that

2488 + 6476 ≡ 4 + 5 ≡ 0 (mod 9) and 2488× 6476 ≡ 4× 5 ≡ 2 (mod 9).

There is no need to find the sum 2488 + 6476 or the product 2488× 6476. Of course, sometimes we are simply
given the problem of finding the sum and product of 2488 and 6476 modulo 9 without the knowledge that
2488 ≡ 4 (mod 9) and 6476 ≡ 5 (mod 9). However, if we divide 2488 and 6476 by 9, then we can see quite easily
that we have remainders 4 and 5 respectively, so that 2488 ≡ 4 (mod 9) and 6476 ≡ 5 (mod 9). We can then
proceed to find the sum and product of 2488 and 6476 modulo 9 as shown above.

We can also solve simple linear congruence equations. We illustrate the simple technique by some simple exam-
ples, and make some comments along the way.

Example. Consider the congruence equation 5 + x ≡ 3 (mod 9). If there is any solution, then there must a
solution from among x = 0, 1, 2, . . . , 8. We have the following table:

x 0 1 2 3 4 5 6 7 8
5 + x 5 6 7 8 0 1 2 3 4

From this, we conclude that the solution required is x = 7. Alternatively, we can subtract 5 from both sides of
the given congruence equation to obtain x ≡ −2 (mod 9), and then note that −2 ≡ 7 (mod 9).

Example. Consider the congruence equation 5x ≡ 3 (mod 9). If there is any solution, then there must a solution
from among x = 0, 1, 2, . . . , 8. We have the following table:

x 0 1 2 3 4 5 6 7 8
5x 0 5 1 6 2 7 3 8 4

From this, we conclude that the solution required is x = 6. Note that we cannot work as if we were dealing with
an equation like 5x = 3 and divide both sides by 5, for then we end up with a fraction and a mess!

Example. Consider the congruence equation 6x ≡ 2 (mod 8). If there is any solution, then there must a solution
from among x = 0, 1, 2, . . . , 7. We have the following table:

x 0 1 2 3 4 5 6 7
6x 0 6 4 2 0 6 4 2

From this, we conclude that the solutions required are x = 3 and x = 7. Note that the solution is not unique
even when we impose the restriction that x comes from the range 0, 1, 2, . . . , 7.
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Example. Consider the congruence equation 2x ≡ 1 (mod 8). If there is any solution, then there must a solution
from among x = 0, 1, 2, . . . , 7. We have the following table:

x 0 1 2 3 4 5 6 7
2x 0 2 4 6 0 2 4 6

From this, we conclude that the congruence equation has no solution.

Our last two examples send us the very important message that great care must be exercised when we study
linear congruence equations. When we look at a linear equation of the form

ax = b,

where a is non-zero, then we have precisely one solution, namely

x =
b

a
.

However, suppose that we look at a linear congruence equation of the form

ax ≡ b (mod m).

First of all, we must not divide both sides by a under any circumstances. Secondly, we must be aware that there
may be more than one solution x from the range 0, 1, 2, . . . ,m−1, or there may be no solution at all. The correct
way to handle this congruence equation is then to work out ax for every x = 0, 1, 2, . . . ,m, and then determine
what the solutions of the congruence are, if any.

We mention the following result which is beyond the scope of our present lectures. The linear congruence

ax ≡ b (mod m)

is soluble precisely when b is divisible by the greatest common divisor (a,m) of a and m. In this case, the number
of solutions x in the range 0, 1, 2, . . . ,m− 1 is equal to the greatest common divisor (a,m).
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