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We consider the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

of positive integers where, apart from the first two terms, every term is the sum of the previous two terms. The
sequence was first studied by Leonardo de Pisa, whose nickname was Fibonacci.

We show that this sequence is related to geometry and the golden ratio, and also comment on natural occurrences
of the numbers in this fascinating sequence.

If we let Fn denote the n-th term of this sequence, then we clearly have

Fn = Fn−1 + Fn−2 for every n = 3, 4, 5, . . . ,

with F1 = F2 = 1. This is the recursive definition of the sequence. In principle, we can find the value of Fn for
any positive integer n. For example, after a lot of calculation, we may arrive at the conclusion that

F100 = 354224848179261915075.

An alternative way of evaluating this sequence is the Binet formula
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)n
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5

for every n = 1, 2, 3, . . . ,

first discovered by Euler. This gives Fn explicitly for every positive integer n, without reference to earlier terms.
However, this formula is given in terms of three irrational numbers

a =
1 +

√
5

2
, b =

1−
√

5
2

and c =
√

5,

and raising irrational numbers to high powers is not a pleasant exercise. We note the abbreviation

Fn =
an − bn

c
for every n = 1, 2, 3, . . . ,

where a, b and c are given above.

The terms of the Fibonacci sequence can be found in nature in surprising and interesting ways:

◦ The number of petals in certain varieties of flowers can be 3 (lily, iris), 5 (buttercup, columbine), 8 (cosmo),
13 (yellow daisy, marigold), 21 (English daisy) or 34 (oxeye daisy).

◦ Bracts in a pine cone spiral in different directions in 8 and 13 rows. Scales in pineapples spiral in different
directions in 8, 13 and 21 rows. Seeds in the centre of a sunflower spiral in different directions in 55 and 89
rows.

These relationships with the Fibonacci sequence, though, are not fully understood.
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Let us return to the mathematical aspects of the Fibonacci sequence. We have already observed that finding the
value of Fn is not a very pleasant problem, so let us concentrate on other aspects of the sequence.

We first ask how the irrational numbers

a =
1 +

√
5

2
and b =

1−
√

5
2

arise. These two numbers are “conjugates”, in the sense that they are the two solutions of the quadratic equation

x2 = x + 1.

Note that a > 0, b < 0, and a + b = 1. We have

a =
1 +

√
5

2
= 1.61803 . . . and b =

1−
√

5
2

= −0.61803 . . .

as reasonable approximations. The number a is known as the golden ratio or golden section, and is often denoted
by Φ, so that we write

Φ =
1 +

√
5

2
.

Note that

Φ2 = Φ + 1,

Φ3 = ΦΦ2 = Φ(Φ + 1) = Φ2 + Φ = Φ + 1 + Φ = 2Φ + 1,

Φ4 = Φ2Φ2 = Φ2(Φ + 1) = Φ3 + Φ2 = 2Φ + 1 + Φ + 1 = 3Φ + 2,

Φ5 = Φ3Φ2 = Φ3(Φ + 1) = Φ4 + Φ3 = 3Φ + 2 + 2Φ + 1 = 5Φ + 3,

Φ6 = Φ4Φ2 = Φ4(Φ + 1) = Φ5 + Φ4 = 5Φ + 3 + 3Φ + 2 = 8Φ + 5,

and so on. Note now that

Φ2 = F2Φ + F1,

Φ3 = F3Φ + F2,

Φ4 = F4Φ + F3,

Φ5 = F5Φ + F4,

Φ6 = F6Φ + F5,

and in general, we have

(2) Φn = FnΦ + Fn−1 for every n = 2, 3, 4, . . . .

Note that formulas (1) and (2) have somewhat reverse roles. The Binet formula (1) gives Fn in terms of powers
of the irrational numbers a and b, whereas the formula gives powers of Φ in terms of terms of the Fibonacci
sequence.

It is also interesting to study the ratio of successive terms of the Fibonacci sequence. For every positive integer
n ≥ 2, we have evaluate the ratio Fn/Fn−1. The table below gives some useful data:

n Fn Fn/Fn−1 n Fn Fn/Fn−1

1 1 7 13 13/8 = 1.625
2 1 1/1 = 1 8 21 21/13 = 1.61538 . . .
3 2 2/1 = 2 9 34 34/21 = 1.61904 . . .
4 3 3/2 = 1.5 10 55 55/34 = 1.61764 . . .
5 5 5/3 = 1.666 . . . 11 89 89/55 = 1.61818 . . .
6 8 8/5 = 1.6 12 144 144/89 = 1.61797 . . .
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Note that Fn/Fn−1 > Φ when n = 3, 5, 7, 9, 11 and Fn/Fn−1 < Φ when n = 2, 4, 6, 8, 10, 12. In fact, Fn/Fn−1 > Φ
for every odd integer n ≥ 3 and Fn/Fn−1 < Φ for every even positive integer. And the ratio Fn/Fn−1 gets
arbitrarily close to Φ if n is very large. Formally, we say that the sequence Fn/Fn−1 has limit Φ as n→∞. This
also means that for large positive integers n, we have a reasonably good approximation Fn ≈ ΦFn−1.

We next study the relationship of the golden ratio Φ with geometry. Consider a rectangle of sides 1 and x. We
now wish to attach a square of side x to this rectangle to form a bigger rectangle with sides x and x + 1. In the
picture below, the original rectangle is shaded.

1

x

x

We now ask for which values of x will the larger rectangle be similar to the smaller rectangle.

We say that two rectangles are similar if the sides are proportional. In other words, we need

short side of big rectangle
long side of big rectangle

=
short side of small rectangle
long side of small rectangle

.

In our case, we need

x

x + 1
=

1
x

, or x2 = x + 1.

The only positive solution of this quadratic equation is

x = Φ =
1 +

√
5

2
.

Such rectangles are called golden rectangles.

1 1

! 1/ !

Rectangles with sides being successive terms of the Fibonacci sequence give good approximations to golden
triangles.

89

34 55

55
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We conclude our discussion with a description of spiralling Fibonacci rectangles. We start with the first approx-
imation to a golden rectangle, given by a rectangle of sides F1 = 1 and F2 = 1 which is labelled 1 in the pictures
below. We then attach the square labelled 2 to this to obtain a rectangle of sides F2 = 1 and F3 = 2. We follow
this by attaching the square labelled 3 to this to obtain a rectangle of sides F3 = 2 and F4 = 3.

1 1 2 1 2

3

first
generation

second
generation

third
generation

We continue by attaching the square labelled 4 to obtain a rectangle of sides F4 = 3 and F5 = 5, and then
attaching the square labelled 5 to obtain a rectangle of sides F5 = 5 and F6 = 8.

fourth
generation

fifth
generation

1 2

3

4

1 2

3
4

5

Then we continue by attaching the square labelled 6 to obtain a rectangle of sides F6 = 8 and F7 = 13.

sixth
generation

1 2

3
4

5

6

And so on.
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We next add a circular arc to each square as shown. For the first three steps, we have the following.

1 1 2 1 2

3

first
generation

second
generation

third
generation

Note that we have been a little careful in placing each new square so that we actually get a smooth arc. Continuing
in this way, the next two steps are as shown.

fourth
generation

fifth
generation

1 2

3

4

1 2

3
4

5

The sixth step leads to the following.

sixth
generation

1 2

3
4

5

6

5



The picture below shows the arc after ten steps.

The rectangle has sides F10 = 55 and F11 = 89.

6


