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Abstract. We give a brief survey on some of the main ideas that Klaus Roth

introduced into the study of irregularities of point distribution and, through a small

selection of results, indicate how some of these ideas have been developed by him
and others to obtain better understanding of this intriguing subject.

1. The Classical Problem

Although parts of it border on harmonic analysis, combinatorics and probability theory,
irregularities of point distribution began as a branch of the theory of uniform distribu-
tion, and may sometimes be described as a quantitative form of the theory. It originated
from a conjecture of van der Corput [20, 21] in 1935 that expresses the fact that no in-
finite sequence in [0, 1] can, in a certain sense, be too evenly distributed; see [6, page 3]
for a precise statement of the conjecture. This was confirmed in 1945 by van Aardenne-
Ehrenfest [1], who also gave a quantitative version [2] of this in 1949, with a relatively
weak bound.

In 1954, Roth [30] showed that van Aardenne-Ehrenfest’s quantitative version of the
problem is equivalent to a geometric discrepancy problem concerning the distribution
of a finite set of points in the unit square [0, 1]2. We shall now describe the multi-
dimensional version of this geometric discrepancy problem. In the sequel, the letter k
will denote a positive integer greater than 1.

Let P be a distribution of N points, not necessarily distinct, in the unit cube [0, 1]k.
For any point x = (x1, . . . , xk), let1 B(x) = [0, x1)× . . .× [0, xk) denote the rectangular
box anchored at the origin and with opposite vertex x. Let Z[P;B(x)] denote the
number of points of P that lie in B(x), and consider the discrepancy

D[P;B(x)] = Z[P;B(x)]−Nx1 . . . xk.

Roth showed that2 ∫
[0,1]k

|D[P;B(x)]|2 dx�k (logN)k−1, (1)

1The assumption that the boxes B(x) are half-open is introduced purely for convenience.
2Throughout, we adopt Vinogradov notation � and �. For any two functions f and g, we write

f � g to denote |f | 6 Cg for some positive absolute constant C. If f and g are non-negative, then we
write f � g to denote f > Cg for some positive absolute constant C. Furthermore, we use the notation
� and � with subscripts; in this case, the implicit constant C may then depend on those subscripts.

Any deviation from this convention will be indicated beforehand.
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from which it follows easily that

sup
x∈[0,1]k

|D[P;B(x)]| �k (logN)(k−1)/2. (2)

Roth’s deduction of the inequality (1) contains two crucial ideas. For the benefit of
the reader, we illustrate them in the special case k = 2.

Trivial Discrepancy. Since the point set P is arbitrary, we have essentially no infor-
mation about it, making it hard if not impossible to extract the discrepancy from those
parts of the square [0, 1]2 that are near the points of P. On the other hand, those parts
of the square that are short of points of P give rise to “trivial discrepancies” which we
then exploit. One can make parts of the square deficient of points of P in a very simple
way. If we partition the square into more than 2N subsets, then given that there are
only N points, at least half of these subsets are devoid of points of P. More precisely,
we can partition the square into similar rectangles of area 2−n, where the integer n is
chosen to satisfy 2N 6 2n < 4N . Then there are 2n such rectangles, at least half of
which contain no points of P. Roth then proceeded to extract the discrepancy from
such “empty” rectangles.

A typical rectangle of area 2−n under consideration is of the form

B = [m12−r1 , (m1 + 1)2−r1)× [m22−r2 , (m2 + 1)2−r2) ⊂ [0, 1]2, (3)

where m1,m2, r1, r2 are non-negative integers satisfying r1 + r2 = n. Consider the
smaller rectangle of area 2−n−2 given by

B′ = [m12−r1 , (m1 + 1
2 )2−r1)× [m22−r2 , (m2 + 1

2 )2−r2) ⊂ [0, 1]2,

made up of the bottom left quarter of B. For any x = (x1, x2) ∈ B′, the rectangle

B′(x) = [x1, x1 + 2−r1−1)× [x2, x2 + 2−r2−1)

is similar to B′ and contained in B, and so does not contain any point of P if neither
does B. In this case, the rectangle B′(x) has trivial discrepancy N2−n−2.

A device to pick up this trivial discrepancy is given by the Rademacher function
defined locally on such an empty rectangle B by

Rr1,r2(x) =


+1 if x ∈ B′,
−1 if x ∈ B′ + (2−r1−1, 0),
−1 if x ∈ B′ + (0, 2−r2−1),
+1 if x ∈ B′ + (2−r1−1, 2−r2−1),

depending on which quadrant of B the point x falls into. Now∫
B

x1x2Rr1,r2(x) dx =

∫
B′

1∑
ε1=0

1∑
ε2=0

(−1)ε1+ε2(x1 + ε12−r1−1)(x2 + ε22−r2−1) dx.

But then the integrand on the right hand side is equal to 2−n−2, the area of the rectangle
B′(x). It follows that writing D(x) = D[P;B(x)], we have∫

B

D(x)Rr1,r2(x) dx = −N2−2n−4.

Note that the function Rr1,r2 has picked out the trivial discrepancy created by the
rectangle B′(x) not containing any point of P.
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Let us keep r1 and r2 fixed. For every rectangle B of the form (3), we write

fr1,r2(x) =

{
−Rr1,r2(x) if B ∩ P = ∅,
0 if B ∩ P 6= ∅.

Then ∫
B

D(x)fr1,r2(x) dx =

{
N2−2n−4 if B ∩ P = ∅,
0 if B ∩ P 6= ∅.

Summing over all similar rectangles B, we obtain3∫
[0,1]2

D(x)fr1,r2(x) dx = N2−2n−4#{B : B ∩ P = ∅} � 1, (4)

since 2N 6 2n < 4N and at least 2n−1 rectangles B satisfy B ∩ P = ∅.

Orthogonality. But then there are n + 1 choices of non-negative integers r1 and r2
satisfying r1 + r2 = n. Roth then proceeded to construct the auxiliary function

F (x) =
∑

r1,r2>0
r1+r2=n

fr1,r2(x). (5)

Note that F (x) depends on the distribution P. The Cauchy—Schwarz inequality then
gives ∣∣∣∣∣

∫
[0,1]2

D(x)F (x) dx

∣∣∣∣∣ 6
(∫

[0,1]2
|D(x)|2 dx

)1/2(∫
[0,1]2

|F (x)|2 dx

)1/2

. (6)

In view of (4) and (5), we clear have a lower bound∫
[0,1]2

D(x)F (x) dx� n+ 1,

so an upper bound of the form∫
[0,1]2

|F (x)|2 dx� n+ 1 (7)

will complete the proof of (1) in the case k = 2. Here we observe that the functions in
the summand of (5) are orthogonal, in the sense that∫

[0,1]2
fr′1,r′2(x)fr′′1 ,r′′2 (x) dx = 0

for distinct pairs (r′1, r
′
2) and (r′′1 , r

′′
2 ) satisfying r′1 + r′2 = r′′1 + r′′2 = n. The inequality

(7) follows easily.

We remark that the lower bound (2) in the special case k = 2 was improved by
Schmidt [35] in 1972 from (logN)1/2 to logN ; see also [6, Sections 4.1–4.2]. This is best
possible, in view of an old result of Lerch [27]. However, Schmidt studied the problem
in van Aardenne-Ehrenfest’s formulation which is more combinatorial in nature. A

3We use #S to denote the cardinality of a finite set S.
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different proof of Schmidt’s result was obtained by Halász [23], using Roth’s method
with an auxiliary function of the form

H(x) =
∏

r1,r2>0
r1+r2=n

(1 + αfr1,r2(x))− 1,

where α > 0 is a suitably chosen constant and the functions fr1,r2(x) are precisely
those used by Roth. In other words, Halász further exploited the orthogonality of these
functions.

Also, Schmidt [36] extended Roth’s lower bound (1) to∫
[0,1]k

|D[P;B(x)]|p dx�k,p (logN)(k−1)p/2, (8)

for every fixed exponent p ∈ (1,∞), using an auxiliary function of the form (5) but
with the functions fr1,r2(x) defined slightly differently from those of Roth, but never-
theless still using orthogonality to ensure that higher moment analogues of the inequality
(7) hold; see also [6, Lemma 2.4]. This enabled him to employ the Hölder inequality
generalization of the Cauchy–Schwarz inequality (6).

Roth’s orthogonal function technique also features in the various improvements to the
lower bound (2), first in dimension k = 3 by Beck [5], and more recently in dimension
k = 3 again by Bilyk and Lacey [8], and then in all dimensions k > 3 by Bilyk, Lacey
and Vagharshakyan [9], the last with the bound

sup
x∈[0,1]k

|D[P;B(x)]| �k (logN)(k−1)/2+δ(k)

for some constant δ(k) > 0 depending only on the dimension k.
It has been conjectured [6, page 6] for a long time that the exponent above may be

replaced by k − 1. However, more detailed analysis recently suggests that perhaps the
correct bound may instead be

sup
x∈[0,1]k

|D[P;B(x)]| �k (logN)k/2.

2. Measure and Geometry

Roth’s reformulation of van Aardenne-Ehrenfest’s problem to a more geometric setting
opened the subject of irregularities of distribution to many very interesting questions,
by replacing the collection of aligned rectangular boxes in the classical problem by
other collections of geometric objects. The challenge here is then to understand how
discrepancy is related to the geometry of these collections.

The difficulty here is that the discrepancy function is a somewhat complicated func-
tion which contains information about the geometry, through the characteristic function
of the geometric objects under investigation, as well as the measure, since discrepancy is
the difference between the discrete counting measure of the points of P and a continuous
measure arising from the volume.

To understand this point, consider a set A of finite volume in k-dimensional euclidean
space Rk. Let P be a distribution of N points in [0, 1]k. Then an appropriate discrepancy
function for the set A is given by

D[P;A] = #(P ∩A)−Nµ0(A),



ROTH’S IDEAS IN DISCREPANCY THEORY 5

where µ0 denotes the usual volume in Rk restricted to [0, 1]k. This can be written in
the form

D[P;A] =

∫
Rk

χA(y)(dZ0(y)−Ndµ0(y)),

where Z0 denotes the counting measure of the set P. Let us consider the translate A+x
of A, where x ∈ Rk. Then

D[P;A+ x] =

∫
Rk

χA+x(y)(dZ0(y)−Ndµ0(y))

=

∫
Rk

χA(x− y)(dZ0(y)−Ndµ0(y)),

if, for simplicity, we make the further assumption4 that A is symmetric across the origin.
In other words, discrepancy is a convolution of the characteristic function χA and the
discrepancy measure dZ0−Ndµ0. The characteristic function χA is purely geometric in
nature, depending only on the set A and not on the distribution P at all, whereas the
discrepancy measure dZ0 − Ndµ0 depends only on the distribution P and not on the
set A at all. If we write D(x) = D[P;A+ x], then

D = χA ∗ (dZ0 −Ndµ0). (9)

Fourier Transform. In his famous study of integer sequences relative to long arith-
metic progressions5, Roth [31] established a result sometimes affectionately known as
his 1/4-theorem, through the use of Fourier transform. This observation is the catalyst
that propelled József Beck to arguably the most fascinating results in irregularities of
distribution. Passing over to Fourier transform, the convolution (9) becomes

D̂ = χ̂A · ̂(dZ0 −Ndµ0),

an ordinary product of the Fourier transforms of the geometric part and of the measure
part, permitting them to be studied separately.

For lower bounds, since the distributions P are arbitrary, we have little useful informa-
tion on the measure term, so we concentrate on the term χ̂A or, more precisely, certain
averages of χ̂A over sets A belonging to some collection A with respect to some integral
geometric measure. Like in the classical problem, one searches for trivial discrepancy,
and seeks ways to blow them up.

For upper bounds, we have good information on the distributions P, so we have better

control over the measure term ̂(dZ0 −Ndµ0).

Using the Fourier transform technique, Beck was able to establish amongst others the
following results.

Consider the k-dimensional unit cube [0, 1]k, for convenience treated as a torus. Let
A be a compact and convex set in [0, 1]k satisfying a further technical condition6, and
consider all similar copies A(λ, τ,x) obtained from A by contraction λ ∈ [0, 1], proper
orthogonal transformation τ ∈ T and translation x ∈ [0, 1]k, where T denotes the group

4If we do not make this assumption, then we need to study instead the characteristic function of the
image of A across the origin.

5For a nice account of this work, the reader is referred to the paper of Sárközy and Stewart [34] in

this volume.
6The technical condition simply requires that A is not too thin; we omit the details here.
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of all proper orthogonal transformations in Rk, with normalized measure dτ so that the
total measure is equal to 1. Let

D[P;A(λ, τ,x)] = #(P ∩A(λ, τ,x))−Nµ(A(λ, τ,x))

denote the discrepancy of P in A(λ, τ,x). Beck [3] proved in 1987 the lower bound∫
[0,1]k

∫
T

∫ 1

0

|D[P;A(λ, τ,x)]|2 dλdτdx�A N
1−1/k. (10)

As there is only a very mild restriction on the set A and hence its similar copies, this
result suggests that the large lower bound is due essentially entirely to the presence of
the proper orthogonal transformations τ ∈ T .

Next, consider the unit square [0, 1]2, for convenience again treated as a torus. Let
A be a compact and convex set in [0, 1]2 again satisfying a further technical condition,
and consider all homothetic copies A(λ,x) obtained from A by contraction λ ∈ [0, 1]
and translation x ∈ [0, 1]2. Let

D[P;A(λ,x)] = #(P ∩A(λ,x))−Nµ(A(λ,x))

denote the discrepancy of P in A(λ,x). Beck [4] proved in 1988 the lower bound∫
[0,1]2

∫ 1

0

|D[P;A(λ,x)]|2 dλdx�A max{logN, ξ2N (A)}, (11)

where ξN (A) depends on the boundary curve ∂A of A. Roughly speaking, the function
ξN (A) varies from being a constant, in the case when A is a convex polygon, to being
a power of N , in the case when A is a circular disc. In fact, it is some sort of measure
of how well A can be approximated by an inscribed polygon with not too many sides.
Also, the term logN on the right hand side of (11) should be compared to the estimate
(1) in the classical problem with k = 2.

3. Some Upper Bounds

Not long after Roth’s initial breakthrough in 1954, Davenport [22] showed in 1956 that
Roth’s lower bound (1) is best possible in the case k = 2. Davenport made use of the

sequence of fractional parts {nθ}, where θ is a badly approximable number like
√

2, and
showed that the sawtooth function ψ(x) = x − [x] − 1/2, where [x] denotes the largest
integer not exceeding x, played a vital rôle in describing the discrepancy function. In
his proof, Davenport encountered a technical difficulty which he eventually overcame
by introducing an ingenious reflection argument. However, Davenport appeared to have
missed, or at the very least ignored, a more natural way to overcome the technical
difficulty that he encountered. But then7 it took more than twenty years for anyone to
realize that.

Periodicity and a Probabilistic Technique. Observing that the function ψ(x) is
periodic, Roth [32] introduced a probabilistic variable into Davenport’s argument, and
obtained an average of the square of the discrepancy function over an interval corre-
sponding to the period of ψ(x). This probabilistic variable, t ∈ [0, 1] say, is translation

7Perhaps one of the authors is getting a little mischievous here!
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in nature, and gives rise to a translated distribution P(t) from the original distribu-
tion P. Thus Roth was able to show that in dimension k = 2, there is a distribution P
of N points in [0, 1]2 such that∫ 1

0

∫
[0,1]2

|D[P(t);B(x)]|2 dxdt� logN,

from which one concludes that there exists t∗ ∈ [0, 1] such that∫
[0,1]2

|D[P(t∗);B(x)]|2 dx� logN.

Of course, this is purely an existence proof, since we have no information on the value
of t∗. Nevertheless, it provides an alternative proof of Davenport’s result that the lower
bound (1) is best possible in the case k = 2. Indeed, using an elaboration of his idea,
Roth was able to show in the same paper that the lower bound (1) is also best possible
in the case k = 3.

Unfortunately, neither Davenport’s construction nor Roth’s variant of it could be
made to work in higher dimensions. Indeed, it would require the falsity of a conjecture
of Littlewood concerning the existence, or otherwise, of a pair of irrational numbers ϑ
and ϕ with the property8 that ν‖νϑ‖ · ‖νϕ‖ is bounded away from zero for all positive
integers ν.

To show that the lower bound (1) is best possible for every k > 2, Roth made use of
the famous van der Corput sequence. Consider the set of 2n points in [0, 1]2, given in
dyadic expansion by

(0.a1 . . . an, 0.an . . . a1), a1, . . . , an ∈ {0, 1}. (12)

Such sets are very useful in showing that Schmidt’s lower bound

sup
x∈[0,1]2

|D[P;B(x)]| � logN

is best possible. On the other hand, multidimensional generalizations of these sets,
using the Chinese remainder theorem, by Halton [24] are very useful in showing that the
inequality9

sup
x∈[0,1]k

|D[P;B(x)]| �k (logN)k−1,

if true, would be best possible.
A natural first step would be to determine whether distributions P of N = 2n points

such as (12) in [0, 1]2 would satisfy an upper bound of the type∫
[0,1]2

|D[P;B(x)]|2 dx� n. (13)

8See [12] for an account of this problem. Also, ‖x‖ denotes the distance of x to the nearest integer.
9Present wisdom is that this inequality is too strong to be true. Perhaps the exponent should instead

be k/2. See the discussion at the end of Section 1 on attempts from below.
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However, with the set P of N = 2n points given by (12) in [0, 1]2, Halton and Zaremba
[25] showed instead that10∫

[0,1]2
|D[P;B(x)]|2 dx = 2−6n2 +O(n). (14)

Probability and Quasi-Orthogonality. In 1980, Roth [33] finally succeeded in show-
ing that the lower bound (1) is best possible for every k > 2. We shall briefly explain
his ideas by concentrating on the case k = 2 and using the set P of N = 2n points given
by (12). Let us consider a rectangle B(x) = B(x1, x2), where x1 is an integer multiple
of 2−n, and let us keep x1 fixed. Then we can write D[P;B(x1, x2)] in the form

D[P;B(x1, x2)] =
∑

i∈I(x1)

(
ai − ψ

(
x2 + bi
2i−n

))
, (15)

where I(x1) ⊂ {0, 1, . . . , n} is a collection of indices depending on x1 only and the real
numbers ai, bi are fixed. Since we need to study |D[P;B(x1, x2)]|2, the constants ai give
rise to terms of the form ai′ai′′ , where i′, i′′ ∈ I(x1), and these ultimately lead to the
term 2−6n2 in (14). To make progress, Roth proceeded in a way which led ultimately to
the removal of these problematic terms ai. It is not difficult to check that the functions

ψ

(
x2 + bi
2i−n

)
, i ∈ I(x1),

treated as functions of the single variable x2, are quasi-orthogonal.
Roth introduced, as in his earlier work in [32], a translation variable t ∈ [0, 1], this

time in the x2-direction. This has the effect of translating the points in P in the x2-
direction modulo 1 to create sets P(t). Then

D[P(t);B(x1, x2)] =
∑

i∈I(x1)

(
ψ

(
zi + t

2i−n

)
− ψ

(
wi + t

2i−n

))
, (16)

where the real numbers zi, wi are fixed and depend on x2. But now the functions

ψ

(
zi + t

2i−n

)
− ψ

(
wi + t

2i−n

)
, i ∈ I(x1),

are quasi-orthogonal in the new variable t. Squaring D[P(t);B(x1, x2)] and then inte-
grating over t ∈ [0, 1], we note that the off-diagonal terms contribute no more than the
diagonal terms, giving rise to an inequality of the form∫ 1

0

|D[P(t);B(x1, x2)]|2 dt� #(I(x1))� n.

This leads eventually to an upper bound of the desired form in the case k = 2.

There are other ways that one can overcome the difficulty created by those problematic
terms ai in (15); for a brief description of these techniques, see the survey article [16,
Section 5]. However, they do not all take advantage of the periodicity of the sawtooth
function. For instance, in Chen [14], digit shifts were introduced, taking advantage
instead of some group-like structure in the sets of the form (12) and many of their
generalizations. We shall return to this in Section 5.

10Halton and Zaremba actually calculated the precise value of the integral!
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Using different constructions and probabilistic techniques involving translation, Skrig-
anov [37, 38] was also able to show that the lower bound (1) is best possible for every
k > 2.

Using an elaboration of Roth’s ideas in [33] that involves substantial generalization
of the point sets under consideration, Chen [13] was able to show that Schmidt’s lower
bound (8) is best possible for every k > 2 and every fixed exponent p ∈ (1,∞); an
alternative proof was also given by Chen [14], using digit shifts.

To have a better understanding of some of these probabilistic techniques, we shall
return to these problems in Section 5, where we shall consider explicit constructions of
good point sets and also briefly discuss their relationship with probabilistic techniques
that involve digit shifts.

4. Other Probabilistic and Fourier Analytic Techniques

In the previous section, we discussed probabilistic techniques for obtaining upper bounds
in cases of small discrepancy, of order equal to powers of logN , where N is the number
of points. Now we turn our attention to upper bounds in cases of large discrepancy, of
order a power of N .

We begin with the lower bound (10) concerning similar copies of a given compact and
convex set in the torus [0, 1]k. In particular, it follows from (10) that

sup
λ∈[0,1]
τ∈T

x∈[0,1]k

|D[P;A(λ, τ,x)]| �A N
1/2−1/2k. (17)

For simplicity, let us assume that N = Mk for some integer M . We can partition the
torus [0, 1]k into Mk small cubes in a natural way, and place a random point in each of
these small cubes. We ensure that each random point is uniformly distributed within its
own small cube, and independent of the distribution of the random points in other small
cubes. Using a probabilistic model of this type, Beck was able to use large deviation type
results in probability theory to show that the lower bound (17) is sharp to within a factor
no more than (logN)1/2. Moreover, the technique gives a very good explanation for the
exponent 1/2 − 1/2k in the bounds. Discrepancy of good distributions tend to occur
near the boundary of sets. The quantity Mk−1 = N1−1/k is the order of magnitude of
the number of little cubes that intersect the boundary surface of a set A(λ, τ,x), and so
gives a trivial upper bound for the supremum of the discrepancy.

More detailed and careful analysis of the construction turns out to be sufficient to
show that the lower bound (10) is best possible for all k > 2, as shown by Beck and
Chen [7]. For a simpler proof and a stronger result, see [15].

Besides the probabilistic argument, one can also show that (10) is best possible for
all k > 2 by using a deterministic point set P = N−1/kZk ∩ [0, 1)k when N = Mk where
M is an integer. Then periodicity and a change of variables lead us to a lattice point
problem in Zk, namely an L2 upper bound, originally studied by Kendall [26], for the
function

x 7→ D∗(x, τ) = #(Zk ∩N1/kA(1, τ,x)),

which has Fourier series
N

∑
06=l∈Zk

χ̂A(N1/kτ(l))e2πil·x.
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We have ∫
[0,1]k

∫
T
|D∗(x, τ)|2 dτdx = N2

∑
06=l∈Zk

∫
T
|χ̂A(N1/kτ(l))|2 dτ

�A N
2
∑

06=l∈Zk

N1−1/k|l|−k−1 = cN1−1/k,

by the Parseval identity and the L2 average estimate [11]∫
T
|χ̂A(τ(ξ))|2 dτ �A (1 + |ξ|)−k−1, ξ ∈ Rk.

The average decay of the Fourier transform of χA, with respect to rotation and
possibly to contraction, is a basic ingredient in the argument for the probabilistic upper
bounds as well as for lower bounds such as (10) and others that were established by
Beck [3] and by Montgomery [28]. We may say that the study of the L2 discrepancy for
contracted, rotated and translated copies of a given convex set is essentially equivalent to
the study of the L2 average decay of the Fourier transform of the characteristic function
of the set; see [10, 41].

The two choices of distributions P in [0, 1]k, of random and of deterministic points in
small cubes of volume N−1 when N = Mk where M is an integer, which we have used to
establish upper bounds complementing the lower bound (10), can be seen as particular
cases of the following construction, which we now describe in the special case when A is
a ball in [0, 1]k. Let N = Mk, where M is an integer. Write

PN = {p1, . . . ,pN} = N−1/kZk ∩ [0, 1)k,

and let dµ be a probability measure on [0, 1]k, treated as a torus. For every j = 1, . . . , N ,
let dµj denote the translation of dµ by one of the points pj in PN , so that for any
integrable function f on [0, 1]k, we have∫

[0,1]k
f(t) dµj =

∫
[0,1]k

f(t− pj) dµ.

We now average the discrepancy function D[P;A + x] in L2([0, 1]k,dµj) for every
j = 1, . . . , N , defining

D2
dµ[P;A] =

∫
[0,1]k

. . .

∫
[0,1]k

∫
[0,1]k

|D[P;A+ x]|2 dxdµ1 . . . dµN .

Note that we have not considered contractions here and that, since A is a ball, we
need not consider orthogonal transformations. If we take dµ = δ0, the Dirac measure
concentrated at 0, then we have the discrepancy for the deterministic point set P = PN .
On the other hand, if we take dµ = dλ, where dλ = Nχ[0,N−1/k]k dµ0, the normalized
uniform measure in one of the small cubes we have described, then we are considering
the random points in the small cubes. Of course both D2

δ0
[P;A] and D2

dλ[P;A] have the

same order of growth N1−1/k = Mk−1 with respect to N = Mk, but it is not true that
one is always greater than the other. Indeed a Fourier analytic argument shows that for
small k 6≡ 1 mod 4, we have

D2
δ0 [P;A] < D2

dλ[P;A] for large values of M,
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while for large k 6≡ 1 mod 4, we have

D2
dλ[P;A] < D2

δ0 [P;A] for large values of M.

When k ≡ 1 mod 4, the situation becomes much more complicated, caused by the un-
usual distribution of lattice points in balls in euclidean space Rk for these dimensions k;
see [19] for the discrepancy result and [29] for a discussion on the distribution of lattice
points in euclidean space.

5. Fourier–Walsh Analysis

To show that the inequality (1) is essentially best possible, we need to find distributions
P of N points in [0, 1]k such that the upper bound∫

[0,1]k
|D[P;B(x)]|2 dx�k (logN)k−1 (18)

holds. Roth’s proof of this upper bound, as well as subsequent attempts by Chen and
Skriganov, amongst others, are all probabilistic in nature and do not give rise to an
explicit point set P satisfying (18).

Recall that near the end of Section 3, we mentioned group-like structure in the sets
of the form (12) and many of their generalizations. Indeed, the set (12) is isomorphic
to the group Zk2 , so it is natural to study its distribution via the characters of such
groups, and these are the classical Walsh functions, defined on [0, 1] and which can be
generalized to [0, 1]k in a natural way.

On the other hand, if we replace Z2 by a finite field Zp for some prime p, then
Skriganov [39] has shown that point distributions that possess the structure of vector
spaces over Zp are distributed very uniformly in the cube [0, 1]k with respect to the
supremum norm of the discrepancy function, provided that the corresponding vector
spaces have large weights relative to a special metric. Chen and Skriganov [17] then
extended this argument and showed that such point sets in fact satisfy the upper bound
(18), provided that the corresponding vector spaces have large weights simultaneously
relative to two special metrics, the well known Hamming metric and a new non-Hamming
metric arising recently in coding theory. Furthermore, they showed that the large weights
can be guaranteed if the prime p is taken large enough to satisfy p > 2k2. The problem
was studied later in greater detail by Chen and Skriganov [18].

To study the discrepancy of such distributions, one naturally appeals to the corre-
sponding characters. These are the Walsh functions base p, also known as Chrestenson
or Chrestenson–Levy functions if p > 2. They are defined on [0, 1] and take as their
values p–th roots of unity. Furthermore, their definitions can be generalized to [0, 1]k

in a natural way. For a fixed p, the collection of all Walsh functions in [0, 1]k form an
orthonormal basis for L2([0, 1]k), enabling us to do Fourier–Walsh analysis on [0, 1]k.

Consider a distribution P of N = pn points in [0, 1]k which possesses the vector
space structure that we mentioned earlier. Chen and Skriganov showed that a good
approximation of the discrepancy function D[P;B(x)] is given by some function

E[P;B(x)] = N
∑
l∈L

φl(x),

where L is a finite set depending on P and each term φl(x) is a product of certain
coefficients of the Fourier–Walsh series of the characteristic function of intervals of the
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type [0, xi), where x = (x1, . . . , xk). In [17], it was shown that if p is sufficiently large,
then the corresponding set L gives rise to a collection of functions φl(x) that are quasi-
orthogonal. In [18], it was shown that under the same condition for p, this collection of
functions is in fact orthogonal, so that∫

[0,1]k
|E[P;B(x)]|2 dx = N2

∑
l∈L

∫
[0,1]k

|φl(x)|2 dx. (19)

On the other hand, if p is not large enough to guarantee the orthogonality of the collection
of functions φl(x), then consider a group T of digit shifts t, as for instance in Chen [14].
Then it was shown in [18] that for each modified point set P ⊕ t under a digit shift t,
we have

E[P ⊕ t;B(x)] = N
∑
l∈L

Wl(t)φl(x),

where Wl(t) is a k-dimensional Walsh function. It follows easily that∑
t∈T
|E[P ⊕ t;B(x)]|2 = N2

∑
l′,l′′∈L

(∑
t∈T

Wl′(t)Wl′′(t)

)
φl′(x)φl′′(x).

By the orthogonality property∑
t∈T

Wl′(t)Wl′′(t) =

{
#(T ) if l′ = l′′,
0 otherwise,

(20)

of the Walsh functions, we conclude that

1

#(T )

∑
t∈T
|E[P ⊕ t;B(x)]|2 = N2

∑
l∈L

|φl(x)|2. (21)

In other words, if the orthogonality property (19) is not satisfied, then one can still
achieve orthogonality by probabilistic techniques and create orthogonality (21) by im-
porting it from the orthogonality property (20) that is actually present in the construc-
tion.

We conclude by mentioning that Skriganov [40] has succeeded in taking these ideas
further to obtain an explicit construction P that shows that Schmidt’s lower bound (8)
is best possible for every k > 2 and every fixed exponent p ∈ (1,∞), superseding the
earlier probabilistic efforts of Chen [13, 14].
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