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Abstract We discuss some of the ideas behind the study of upper bound questions
in classical discrepancy theory. The many ideas involved come from diverse areas
of mathematics and include diophantine approximation, probability theory, number
theory and various forms of Fourier analysis. We illustrate these ideas by largely
restricting our discussion to two dimensions.

1 Introduction

Classical discrepancy theory, or irregularities of distribution, began as a branch of
the theory of uniform distribution but has independent interest. It is often viewed
as a quantitative and substantially more precise version of the theory of uniform
distribution, in the sense that one seeks to obtain very accurate bounds on various
quantities arising from the difference between the discrete and the continuous. Here
the discrete concerns the actual point count in a given region, which clearly takes
integer values, whereas the continuous refers to the expectation of the point count,
which depends on the area or volume of the region concerned and therefore can take
non-integer values.

We shall first state the problem in a rather general form. Let k ≥ 2 be a fixed
integer. Our domain U will be a set of unit Lebesgue measure in k-dimensional
euclidean space Rk.

Suppose that A is a set of measurable subsets of U , endowed with an integral
geometric measure, normalized so that the total measure is equal to unity. Suppose
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further that P is a set of N points in U . For every subset A ∈A of U , let

Z[P;A] = #(P ∩A)

denote the number of points of P that fall into A. This is the actual point count of
P in A, with corresponding expectation Nµ(A). By the discrepancy of P in A, we
mean the difference

D[P;A] = Z[P;A]−Nµ(A).

Often, we consider the extreme discrepancy of P in U , taken to be the L∞-norm

‖D[P]‖∞ = sup
A∈A
|D[P;A]|. (1)

However, for upper bound considerations, it is far more interesting and challenging
to consider the corresponding L2-norm

‖D[P]‖2 =
(∫

A
|D[P;A]|2 dA

)1/2

, (2)

as well as the corresponding Lq-norms where 2 < q < ∞.
For any given choice of U and A , we are interested in studying the growth of

the functions (1) and (2) as a function of N, the number of points of P . It is the
cornerstone of discrepancy theory that these quantities become arbitrarily large in
many interesting cases, following the early conjecture of van der Corput [17, 18]
and the pioneering work of van Aardenne-Ehrenfest [1, 2] and Roth [33]. A lower
bound result is thus of the form

‖D[P]‖∞ > f (N) for all sets P of N points in U ,

or of the form

‖D[P]‖2 > f (N) for all sets P of N points in U .

For upper bounds, we first make a simple observation. Consider a set P of N
points, where all the points coincide. Then clearly any subset A ∈ A of U either
contains all points of P or contains no point of P . In either case, we expect the
discrepancy D[P;A] to have rather large absolute value for many of these sets A.
This is an example of an extremely badly distributed point set. Such examples must
never be allowed to play a role in upper bound considerations. After all, if the lower
bound asserts that all distributions are bad, then a complementary upper bound must
say that some distributions are close to as good as they possibly can be. Hence an
upper bound result must be of the form

‖D[P]‖∞ < g(N) for some sets P of N points in U ,

or of the form
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‖D[P]‖2 < g(N) for some sets P of N points in U .

Our task is therefore to construct such a point set P , or to show that one exists.
Of course, the ultimate task is to establish lower and upper bounds where the two

functions f (N) and g(N) have the same order of magnitude. This has been achieved
in a few instances, and we shall discuss the upper bound aspects of some of these in
some detail in this article.

There are well known choices of U and A where the quantities (1) and (2) exceed
Nδ for some positive exponent δ . We refer to these as large discrepancy phenomena.
On the other hand, there are also well known choices of U and A where, for suitably
chosen point sets P , the quantities (1) and (2) can be bounded above by (logN)δ

for some positive exponent δ . We refer to these as small discrepancy phenomena.
As a general rule, upper bound questions are somewhat harder for small discrepancy
phenomena, as we shall attempt to illustrate in the course of this article.

Notation. For any complex-valued function f and any positive function g, we write
f = O(g) to denote that there exists a positive constant C such that | f | ≤ Cg, and
write f = Oδ (g) if the positive constant C may depend on a parameter δ . We also
use the Vinogradov notation, where f � g if f = O(g), and f �δ g if f = Oδ (g). We
also write f � g and f �δ g to denote respectively g� f and g�δ f , but here both
f and g must be positive functions. The letters N, Z and R denote respectively the
set of all natural numbers, i.e. positive integers, the set of all integers and the set of
all real numbers. We also write N0 to denote the set of all non-negative integers. For
any real number z, we write e(z) = e2πiz, and write [z] and {z} to denote respectively
the integer part and the fractional part of z, i.e.

[z] = max{n ∈ Z : n≤ z} and {z}= z− [z].

For any finite set S , we denote by #S the cardinality of S . For any probabilistic
variable ξ , we denote by Eξ the expected value of ξ .

Acknowledgment. The research of the second author has been supported by RFFI
Project No. 08-01-00182.

2 Large Discrepancy – Main Results

The work on large discrepancy problems can best be summarized by the following
ground-breaking result of Beck [4]. Consider the k-dimensional euclidean space Rk.
We take as our domain U the unit cube [0,1]k, treated as a torus for simplicity. Let
B⊆ [0,1]k be a compact and convex set that satisfies a technical condition

r(B)≥ N−1/k, (3)

where r(B) denotes the radius of the largest inscribed ball in B, and N is the cardi-
nality of the point sets P under consideration. While this technical condition does
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not really affect the argument in a serious way, it is nevertheless necessary in order
for us to avoid degenerate cases. Let T denote the group of all orthogonal trans-
formations in Rk, normalized so that the total measure is equal to unity. For any
contraction λ ∈ [0,1], orthogonal transformation τ ∈ T and translation x ∈ [0,1]k,
we consider the similar copy

B(λ ,τ,x) = λ (τB)+x

of B. We then consider the collection

A = {B(λ ,τ,x) : λ ∈ [0,1], τ ∈T , x ∈ [0,1]k}

of all similar copies of B, where the integral geometric measure is given by a natural
combination of the standard Lebesgue measures of λ and x and the measure of T .
More precisely, for any set P of N points in [0,1]k, we have the L2-norm

‖D[P]‖2 =
(∫

[0,1]k

∫
T

∫ 1

0
|D[P;B(λ ,τ,x)]|2 dλ dτ dx

)1/2

. (4)

We also have the simpler L∞-norm

‖D[P]‖∞ = sup
λ∈[0,1]
τ∈T

x∈[0,1]k

|D[P;B(λ ,τ,x)]|. (5)

The following result is due to Beck [4].

Theorem 1. Suppose that B ⊆ [0,1]k is a compact and convex set that satisfies the
condition (3). Then for every set P of N points in [0,1]k, we have

‖D[P]‖2�B N1/2−1/2k. (6)

This leads immediately to the corresponding statement for the L∞-norm.

Theorem 2. Suppose that B ⊆ [0,1]k is a compact and convex set that satisfies the
condition (3). Then for every set P of N points in [0,1]k, we have

‖D[P]‖∞�B N1/2−1/2k. (7)

The lower bound (6) is essentially best possible, in view of the following result
of Beck and Chen which can be established as a simple case of their more general
result in [6].

Theorem 3. Suppose that B ⊆ [0,1]k is a compact and convex set. Then for every
natural number N, there exists a set P of N points in [0,1]k such that

‖D[P]‖2�B N1/2−1/2k. (8)
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The proof of Theorem 3 is an extension of the original ideas needed to establish
the following result using ideas in Beck [3]; see also Beck and Chen [5, Section
8.1].

Theorem 4. Suppose that B ⊆ [0,1]k is a compact and convex set. Then for every
natural number N ≥ 2, there exists a set P of N points in [0,1]k such that

‖D[P]‖∞�B N1/2−1/2k(logN)1/2. (9)

We shall discuss Beck’s ideas in Section 4 and sketch a proof of the special case
k = 2 of Theorem 4. Most important of all, however, the argument gives us a very
good understanding of the exponent in the estimates (6)–(9).

We shall then sketch a proof of the special case k = 2 of Theorem 3 in Section 5.

3 A Seemingly Trivial Argument

We start by making an inadequate attempt to establish the special case k = 2 of
Theorem 4. Such simple and perhaps naive attempts often play an important role in
the study of upper bounds. Remember that we need to find a good set of points, and
we often start by toying with some specific set of points which we hope will be good.
Often it is not, but sometimes it permits us to bring in some stronger techniques at a
later stage of the argument.

For simplicity, let us assume that the number of points is a perfect square, so that
N = M2 for some natural number M. We may then choose to split the unit square
[0,1]2 in the natural way into a union of N = M2 little squares of side length M−1,
and then place a point in the centre of each little square, as shown in Figure 1 below.

q q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q q

Fig. 1 A basic construction of N = M2 points in the unit square

Suppose that A = B(λ ,τ,x), where λ ∈ [0,1], τ ∈ T and x ∈ [0,1]2, is a similar
copy of a given fixed compact and convex set B. We now attempt to estimate the
discrepancy D[P;A]. Let S denote the collection of the N = M2 little squares S of
side length M−1. The additive property of the discrepancy function then gives

D[P;A] = ∑
S∈S

D[P;S∩A]. (10)
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Next, we make the simple observation that

D[P;S∩A] = 0 if S⊆ A or S∩A = /0.

The identity (10) then becomes

D[P;A] = ∑
S∈S

S∩∂A6= /0

D[P;S∩A], (11)

where ∂A denotes the boundary of A. Finally, observe that both 0≤ Z[P;S∩A]≤ 1
and 0≤ Nµ(S∩A)≤ 1, so that |D[P;S∩A]| ≤ 1, and it follows from (11) and the
triangle inequality that

|D[P;A]| ≤ #{S ∈S : S∩∂A 6= /0}�M = N1/2. (12)

This estimate is almost trivial, but very far from the upper bound N1/4(logN)1/2

alluded to in Theorem 4.
We make an important observation here that the term #{S ∈ S : S∩ ∂A 6= /0}

in (12) is intricately related to the length of the boundary curve ∂B of B; note that
the set A is a similar copy of the given compact and convex set B. Indeed, in the
general case of the problem in k-dimensional space, the corresponding term is in-
tricately related to the (k− 1)-dimensional volume of the boundary surface ∂B of
B. It is worthwhile to record the important role played by boundary surface in large
discrepancy problems.

4 A Large Deviation Technique

In this section, we continue our study of the special case k = 2 of Theorem 4. Again,
let us assume that the number of points is a perfect square, so that N = M2 for some
natural number M. Again, we choose to split the unit square [0,1]2 in the natural
way into a union of N = M2 little squares of side length M−1. As before, let S
denote the collection of the N = M2 little squares S of side length M−1.

For every little square S ∈ S , instead of placing a point in the centre of the
square, we now associate a random point p̃S ∈ S, uniformly distributed within the
little square S and independent of all the other random points in the other little
squares. We thus obtain a random point set

P̃ = {p̃S : S ∈S }. (13)

Suppose that a fixed compact and convex set B⊆ [0,1]2 is given. Let

G =
{

B(λ ,τ,x) : λ ∈
[

0,
11
10

]
, τ ∈T , x ∈ [0,1]2

}
.
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Note that the collection G contains the collection A and permits some similar copies
of B which are a little bigger than B. Then one can find a subset H of G such that

#H ≤ NC1 ,

where C1 is a positive constant depending at most on B, and such that for every
A ∈A , there exist A−,A+ ∈H such that

A− ⊆ A⊆ A+ and µ(A+ \A−)≤ N−1. (14)

We comment that such a set H may not exist if we make the restriction H ⊆ A
instead of the more generous restriction H ⊆ G .

Suppose that A ∈H is fixed. Then, analogous to the discrepancy function (10),
we now consider the discrepancy function

D[P̃;A] = ∑
S∈S

D[P̃;S∩A] = ∑
S∈S

S∩∂A 6= /0

D[P̃;S∩A], (15)

and note as before that

#{S ∈S : S∩∂A 6= /0}�M = N1/2. (16)

For every S ∈S , let

φS =
{

1, if p̃S ∈ A,
0, otherwise.

The observation

D[P̃;A] = ∑
S∈S

(φS−EφS) = ∑
S∈S

S∩∂A 6= /0

(φS−EφS) (17)

sets us up to appeal to large deviation type inequalities in probability theory. For
instance, we can use the following result attributed to Hoeffding; see, for instance,
Pollard [31, Appendix B].

Lemma 1. Suppose that φ1, . . . ,φm are independent random variables that satisfy
0≤ φi ≤ 1 for every i = 1, . . . ,m. Then for every real number γ > 0, we have

Prob

(∣∣∣∣∣ m

∑
i=1

(φi−Eφi)

∣∣∣∣∣≥ γ

)
≤ 2e−2γ2/m.

In view of (17), we now apply Lemma 1 with

m = #{S ∈S : S∩∂A 6= /0} ≤C2N1/2,

where C2 is a positive constant depending at most on the given set B, and with
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γ = C3N1/4(logN)1/2,

where C3 is a sufficiently large positive constant. Indeed,

γ2

m
≥

C2
3

C2
logN,

and it follows therefore that

2e−2γ2/m ≤ 1
2

N−C1 ≤ 1
2
(#H )−1

provided that C3 is chosen sufficiently large in terms of C1 and C2. Then

Prob
(
|D[P̃;A]| ≥C3N1/4(logN)1/2

)
≤ 1

2
(#H )−1,

and so

Prob
(
|D[P̃;A]| ≥C3N1/4(logN)1/2 for some A ∈H

)
≤ 1

2
,

whence

Prob
(
|D[P̃;A]| ≤C3N1/4(logN)1/2 for all A ∈H

)
≥ 1

2
.

In other words, there exists a set P∗ of N = M2 points in [0,1]2 such that

|D[P∗;A]| ≤C3N1/4(logN)1/2 for every A ∈H .

Suppose now that A ∈A is given. Then there exist A−,A+ ∈H such that (14)
is satisfied. It is not difficult to show that

|D[P∗;A]| ≤ max
{
|D[P∗;A−]|, |D[P∗;A+]|

}
+Nµ(A+ \A−)

≤ C3N1/4(logN)1/2 +1.

Theorem 4 for k = 2 in the special case when N = M2 is therefore established.
Finally, we can easily lift the restriction that N is a perfect square. By Lagrange’s

theorem, every positive integer N can be written as a sum

N = M2
1 +M2

2 +M2
3 +M2

4

of the squares of four non-negative integers. We can therefore superimpose up to
four point distributions in [0,1]2 where the number of points in each is a perfect
square. This completes the proof of Theorem 4 for k = 2.
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5 An Averaging Argument

In this section, we indicate how the argument in the previous section can be adapted
to establish Theorem 3 in the case k = 2.

We construct the random point set P , given by (13), as before. Suppose that a
fixed compact and convex set B ⊆ [0,1]2 is given. Let A ∈ A be fixed. Then (15),
(16) and (17) are valid. If we write ηS = φS−EφS, then

|D[P̃;A]|2 = ∑
S1,S2∈S
S1∩∂A 6= /0
S2∩∂A 6= /0

ηS1ηS2 .

Taking expectation over all the N = M2 random points, we have

E
(
|D[P̃;A]|2

)
= ∑

S1,S2∈S
S1∩∂A6= /0
S2∩∂A6= /0

E(ηS1ηS2) . (18)

The random variables ηS, where S ∈ S , are independent since the distribution of
the random points are independent of each other. If S1 6= S2, then

E(ηS1ηS2) = E(ηS1)E(ηS2) = 0.

It follows that the only non-zero contributions to the sum (18) come from those
terms where S1 = S2, so that

E
(
|D[P̃;A]|2

)
≤ #{S ∈S : S∩∂A 6= /0}�B N1/2.

Integrating now over all A ∈A and changing the order of integration, we obtain

E
(∫

A
|D[P̃;A]|2 dA

)
�B N1/2.

It follows that there exists a set P∗ of N = M2 points in [0,1]2 such that∫
A
|D[P∗;A]|2 dA�B N1/2,

establishing Theorem 3 for k = 2 in the special case when N = M2.
The generalization to all positive integers N follow from Lagrange’s theorem as

before, and this completes the proof of Theorem 3 for k = 2.
We remark that the argument in Sections 3–5 can be extended in a reasonably

straightforward manner to arbitrary dimensions k ≥ 2. Also the argument in this
section on Theorem 3 can be extended to Lq-norms for all even positive integers q,
and hence all positive real numbers q, without too many complications.
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6 A Comparison of Deterministic and Probabilistic Techniques

In this section, we make a digression and use Fourier transform techniques to try
to understand and relate various approaches to upper bounds in large discrepancy
problems.

Consider the unit cube U = [0,1]k, treated as a torus, in euclidean space Rk.
Suppose that a natural number N is given, and that N = Mk for some natural number
M. We shall partition U into a union of N = Mk cubes of sidelength M−1 in the
natural way, and denote by S the collection of these small cubes. For every cube
S ∈S , we denote by pS the point in the centre of S. Then

P = {pS : S ∈S } (19)

is a collection of N = Mk points in U = [0,1]k.
Let ν be a probabilistic measure on U . For every cube S ∈S , let νS denote the

translation of ν by pS, so that∫
U

f (u)dνS =
∫

U
f (u−pS)dν

for any integrable function f . Furthermore, let ξξS denote the probabilistic variable
associated with the probabilistic measure νS. Then

P̃ = {ξξS : S ∈S }

is a random set of N = Mk points in U = [0,1]k.
Let A denote a compact and convex set in U = [0,1]k. For every x ∈ [0,1]k, let

A(x) = A+x denote the translation of A by x. Now consider the average

D2
ν(N;A) =

∫
U

. . .
∫

U

(∫
[0,1]k
|D[P̃;A(x)]|2 dx

)
∏

S∈S
dνS. (20)

In other words, for every realization of P̃ , we consider the mean square average
of the discrepancy function over all translations of A. We then average over all the
different realizations of P̃ , with the understanding that the probabilistic measures
νS, where S ∈S , are independent.

We can describe D2
ν(N;A) rather precisely in terms of the Fourier transforms of

the measure ν and of the characteristic function χA of the set A.

Proposition 1. For any natural number N = Mk, any compact and convex set A in
U = [0,1]k and any probabilistic measure ν on U, we have

D2
ν(N;A) = N ∑

06=t∈Zk

|χ̂A(t)|2(1−|ν̂(t)|2)+N2
∑

06=t∈Zk

|χ̂A(Mt)|2|ν̂(Mt)|2. (21)
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Before we proceed to establish this proposition, we shall first of all endeavour to
understand the significance of the each of the two terms on the right hand side of
(21).

Suppose first of all that ν is the Dirac measure δ0 concentrated at the origin. Then
the Fourier transform ν̂(t) = 1 identically, so the first term on the right hand side of
the identity (21) vanishes, and we have

D2
δ0

(N;A) = N2
∑

06=t∈Zk

|χ̂A(Mt)|2. (22)

On the other hand, note that under this measure δ0, the only realization of the ran-
dom set P̃ is the set P given by (19). This represents a deterministic model.

Suppose next that ν is the uniform measure λ supported by the cube[
− 1

2M
,

1
2M

]k

, (23)

so that dλ = λ (u)du, where

λ (u) = Nχ[−1/2M,1/2M]k(u)

denotes the characteristic function of the cube (23), suitably normalized. It is well
known that for every t = (t1, . . . , tk) ∈ Zk, the Fourier transform

λ̂ (t) = N
k

∏
i=1

sin(πM−1ti)
πti

,

with suitable modification when ti = 0 for some i = 1, . . . ,k. Since λ̂ (Mt) = 0 for
every non-zero t ∈ Zk, the second term on the right hand side of the identity (21)
vanishes, and we have

D2
λ
(N;A) = N ∑

06=t∈Zk

|χ̂A(t)|2(1−|λ̂ (t)|2).

On the other hand, note that under this uniform measure λ , each of the probabilistic
variables ξξS, where S ∈S , represents a random point uniformly distributed within
the cube S. This represents a probabilistic model the special case k = 2 of which has
been described earlier in Sections 4–5.

In summary, the two terms on the right hand side of the identity (21) may be
interpreted as respectively the probabilistic and the deterministic part of the quantity
D2

ν(N;A).

Proof of Proposition 1. Applying Parseval’s identity to the inner integral in (20),
we obtain
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D2
ν(N;A) =

∫
U

. . .
∫

U
∑

06=t∈Zk

|χ̂A(t)|2
∣∣∣∣∣ ∑
X∈S

e(t ·ξξX )

∣∣∣∣∣
2

∏
S∈S

dνS

= ∑
0 6=t∈Zk

|χ̂A(t)|2
∫

U
. . .
∫

U
∑

X ,Y∈S
e(t ·ξξX )e(−t ·ξξY ) ∏

S∈S
dνS

= ∑
0 6=t∈Zk

|χ̂A(t)|2 ∑
X ,Y∈S

∫
U

. . .
∫

U
e(t ·ξξX )e(−t ·ξξY ) ∏

S∈S
dνS

= ∑
0 6=t∈Zk

|χ̂A(t)|2

N + ∑
X ,Y∈S

X 6=Y

∫
U

∫
U

e(t ·ξξX )e(−t ·ξξY )dνX dνY

 . (24)

For X 6= Y , we clearly have∫
U

∫
U

e(t ·ξξX )e(−t ·ξξY )dνX dνY =
∫

U

∫
U

e(t · (ξξX −pX ))e(−t · (ξξY −pY ))dν dν

= e(−t ·pX )e(t ·pY )
∫

U
e(t ·ξξX )dν

∫
U

e(−t ·ξξY )dν = |ν̂(t)|2e(−t ·pX )e(t ·pY ),

and so

∑
X ,Y∈S

X 6=Y

∫
U

∫
U

e(t ·ξξX )e(−t ·ξξY )dνX dνY = |ν̂(t)|2 ∑
X ,Y∈S

X 6=Y

e(−t ·pX )e(t ·pY )

= |ν̂(t)|2
(

∑
X ,Y∈S

e(−t ·pX )e(t ·pY )−N

)

= |ν̂(t)|2
∣∣∣∣∣ ∑

X∈S
e(t ·pX )

∣∣∣∣∣
2

−N

 . (25)

The identity (21) follows easily on combining (24), (25) and the orthogonality rela-
tionship ∣∣∣∣∣ ∑

X∈S
e(t ·pX )

∣∣∣∣∣=
{

N, if t ∈MZk,
0, otherwise.

This completes the proof. ut

In the special cases when N = Mk and when we have sufficient knowledge on the
Fourier transform of the characteristic function of the given compact and convex set
B, we expect to be able to establish the inequality (8) in Theorem 3 for the set P
given by (19). This will give a deterministic proof of Theorem 3, an alternative to
the probabilistic proof briefly described in Sections 4–5. However, there is virtually
no documentation of results of this kind in the literature, apart from the special case
when N = M2 is odd and the set B is a cube, described in Chen [12, Section 3].
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Nevertheless, the question arises as to whether a deterministic technique or a
probabilistic technique gives a better upper bound. Much of the description in
this section arises as a consequence of work done in this direction by Chen and
Travaglini [16] for the case when B is a ball of fixed radius, so there is no contrac-
tion. Note also that since B is a ball, orthogonal transformation is redundant. Hence
there is only translation.

Returning to the beginning of this section, we let A denote a ball in U = [0,1]k,
of fixed radius not exceeding 1

2 . We shall consider translations A(x) = A + x of A,
where x ∈ [0,1]k. We have the following surprising result.

Proposition 2. Suppose that k 6≡ 1 mod 4.

a) If k is sufficiently large, then the inequality Dλ (Mk;A) < Dδ0(M
k;A) holds for all

sufficiently large natural numbers M.
b) For k = 2 and ball A of radius 1

4 , the inequality Dδ0(M
k;A) < Dλ (Mk;A) holds

for all sufficiently large natural numbers M.

Suppose that k ≡ 1 mod 4.

c) If k is sufficiently large, then the inequality Dλ (Mk;A) < Dδ0(M
k;A) holds for

infinitely many natural numbers M.
d) The inequality Dδ0(M

k;A) < Dλ (Mk;A) holds for infinitely many natural num-
bers M.

e) For k = 1, the inequality Dδ0(M
k;A) < Dλ (Mk;A) holds for every natural number

M.

The case k 6≡ 1 mod 4 is the standard case, whereas the case k ≡ 1 mod 4 is the
exceptional case. This exceptional case is intimately related to the work of Konya-
gin, Skriganov and Sobolev [27] concerning the peculiar distribution of lattice points
with respect to balls in these dimensions. We shall give a very brief description of
the underlying ideas.

It is fairly straightforward to show that for every fixed dimension k, we have

D2
λ
(Mk;A)≤ πk/2k3/2rk−1Mk−1

2Γ (1+ k/2)
(26)

if M is sufficiently large, where r denotes the radius of the ball A.
To study the term D2

δ0
(Mk;A), we make use of the identity (22). Suppose that

A is a ball of radius r centred at the origin. Then the Fourier transform χ̂A can be
described in terms of Bessel functions. Roughly speaking, we can write

D2
δ0

(Mk;A) = Mk
∑

06=t∈Zk

rk|t|−kJ2
k/2(2πrM|t|), (27)

where the Bessel function term J2
k/2(2πrM|t|) is dominated by

1
π2rM|t|

cos2
(

2πrM|t|− (k +1)π
4

)
.
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Suppose that k 6≡ 1 mod 4. Then elementary calculation gives

max
{

cos2
(

2πrM− (k +1)π
4

)
,cos2

(
4πrM− (k +1)π

4

)}
>

1
100

,

for instance, ensuring a significant contribution to the sum in (27) from those t
satisfying |t|= 1 or from those t satisfying |t|= 2, sufficient for us to show that

D2
δ0

(Mk;A)≥ krk−1Mk−1

1000π22k . (28)

For sufficiently large k, one has

πk/2k3/2

2Γ (1+ k/2)
<

k
1000π22k .

Combining this with (26) and (28) gives part (a) of Proposition 2.
Suppose that k ≡ 1 mod 4. Then the Bessel function term J2

k/2(2πrM|t|) in (27)
is dominated by

1
π2rM|t|

cos2
(

2πrM|t|± π

2

)
=

1
π2rM|t|

sin2(2πrM|t|).

For many values of M, the terms sin2(2πrM|t|) can be simultaneously small for all
small |t|, making Dδ0(M

k;A) unusually small. This goes towards explaining parts
(c) and (d) of Proposition 2.

7 Small Discrepancy – The Classical Problem

To illustrate the work on small discrepancy problems, we shall consider the pioneer-
ing work of Roth [33] on the classical problem in connection with aligned rectan-
gular boxes in the unit cube. Consider the k-dimensional euclidean space Rk. We
take as our domain U the unit cube [0,1]k. For every x = (x1, . . . ,xk) ∈ [0,1]k, we
consider the aligned rectangular box

B(x) = [0,x1)× . . .× [0,xk),

anchored at the origin. Here the condition that the intervals do not include the right
hand endpoints is unimportant but a very convenient technical device. On the other
hand, the assumption that all such boxes are anchored at the origin is purely histor-
ical, but is necessary if one wants to have a deeper understanding of the problem.
We then consider the collection

A = {B(x) : x ∈ [0,1]k}
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of all such aligned rectangular boxes in U , where the integral geometric measure
is given by the natural Lebesgue measure of x. More precisely, for any set P of N
points in [0,1]k, we have the L2-norm

‖D[P]‖2 =
(∫

[0,1]k
|D[P;B(x)]|2 dx

)1/2

. (29)

We also have the simpler L∞-norm

‖D[P]‖∞ = sup
x∈[0,1]k

|D[P;B(x)]|. (30)

The following result is due to Roth [33].

Theorem 5. For every set P of N points in [0,1]k, we have

‖D[P]‖2�k (logN)(k−1)/2. (31)

This leads immediately to the corresponding statement for the l∞-norm.

Theorem 6. For every set P of N points in [0,1]k, we have

‖D[P]‖∞�k (logN)(k−1)/2. (32)

It is well known that Theorem 6 is not sharp. In dimension k = 2, Schmidt [36]
has shown that for every set P of N points in [0,1]2, we have

‖D[P]‖∞� logN. (33)

An alternative proof of this can be found in Halász [22]. On the other hand, the
recent work of Bilyk and Lacey [8] and of Bilyk, Lacey and Vagharshakyan [9] has
shown that for every dimension k≥ 3, there exists a positive constant δ (k) such that
for every set P of N points in [0,1]k, we have

‖D[P]‖∞� (logN)(k−1)/2+δ (k). (34)

See elsewhere in this volume for a detailed discussion of this question.
The lower bound (31) is essentially best possible, in view of the following result

of Roth [35].

Theorem 7. For every natural number N ≥ 2, there exists a set P of N points in
[0,1]k such that

‖D[P]‖2�k (logN)(k−1)/2. (35)

The special cases k = 2 and k = 3 have been established earlier by Davenport [19]
and Roth [34] respectively.

The first proof of Theorem 7 is based on a probabilistic variant of the idea first
used to establish the following result of Halton [23].
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Theorem 8. For every natural number N ≥ 2, there exists a set P of N points in
[0,1]k such that

‖D[P]‖∞�k (logN)k−1. (36)

The special case k = 2 has been known for over 100 years through the work of
Lerch [28].

Note that in dimension k = 2, Theorem 8 shows that Schmidt’s lower bound (33)
is best possible. In dimensions k ≥ 3, there remains a significant gap between the
lower bound (34) and the upper bound (36). This is sometimes referred to as the
Great Open Problem.

8 Diophantine Approximation and Davenport Reflection

We begin by making a fatally flawed attempt to establish1 the special case k = 2 of
Theorem 8.

Again, for simplicity, let us assume that the number of points is a perfect square,
so that N = M2 for some natural number M. We may then choose to split the unit
square [0,1]2 in the natural way into a union of N = M2 little squares of sidelength
M−1, and then place a point in the centre of each little square. Let P be the collec-
tion of these N = M2 points.

Let ξ be the second coordinate of one of the points of P . Clearly, there are
precisely M points in P sharing this second coordinate. Consider the discrepancy

D[P;B(1,x2)] (37)

of the rectangle B(1,x2) = [0,1)× [0,x2). As x2 increases from just less than ξ to
just more than ξ , the value of (37) increases by M. It follows immediately that

‖D[P]‖∞ ≥
1
2

M� N1/2.

Let us make a digression to the work of Hardy and Littlewood [24, 25] on the
distribution of lattice points in a right angled triangle. Consider a large right angled
triangle T with two sides parallel to the coordinate axes. We are interested in the
number of points of the lattice Z2 that lie in T . For simplicity, the triangle T is
placed so that the horizontal side is precisely halfway between two neighbouring
rows of Z2 and the vertical side is precisely halfway between two neighbouring
columns of Z2, as shown in Figure 2.

Note that the lattice Z2 has precisely one point per unit area, so we can think of
the area of T as the expected number of lattice points in T . We therefore wish to
understand the difference between the number of lattice points in T and the area of

1 It was put to the first author by a rather preposterous engineering colleague many years ago that
this could be achieved easily by a square lattice in the obvious way. Not quite the case, as an
obvious way would be far from so to this colleague.
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Fig. 2 Lattice points in a right angled triangle

T , and this is the discrepancy of Z2 in T . The careful placement of the horizontal and
vertical sides of T means that the discrepancy comes solely from the third side of
T . In the work of Hardy and Littlewood, it is shown that the size of the discrepancy
when T is large is intimately related to the arithmetic properties of the slope of this
third side of T . In particular, the discrepancy is essentially smallest when this slope
is a badly approximable number2.

Returning to our attempt to establish the special case k = 2 of Theorem 8, perhaps
our approach is not quite fatally flawed as we have thought earlier, in view of our
knowledge of the work of Hardy and Littlewood. Suppose that a positive integer
N ≥ 2 is given. The lattice

(N−1/2Z)2 (38)

contains precisely N points per unit area. Inspired by Hardy and Littlewood, we now
rotate (38) by an angle θ , chosen so that tanθ is a badly approximable number. Let
us denote the resulting lattice by Λ . Then Λ ∩ [0,1]2 has roughly N points. Deleting
or adding a few points, we end up with a set P of precisely N points in [0,1]2. It
can then be shown that ‖D[P]‖∞ � logN, establishing Theorem 8 for k = 2. For
the details, see the paper of Chen and Travaglini [15].

Indeed, this approach has been known for some time, as Beck and Chen [7] have
already used this idea earlier in an alternative proof of Theorem 7 for k = 2. In fact,
the first proof of this result by Davenport [19] makes essential use of diophantine
approximation and badly approximable numbers, but in a slightly different and less
obvious way. We now proceed to describe this.

Recall that U = [0,1]2 in this case. For the sake of convenience, we shall assume
that the intervals are closed on the left and open on the right. We are also going to
rescale U . Suppose first of all that N is a given even positive integer, with N = 2M.
We now rescale U in the vertical direction by a factor M to obtain

V = [0,1)× [0,M).

Consider now the infinite lattice Λ1 on R2 generated by the two vectors

(1,0) and (θ ,1),

2 For those readers not familiar with the theory of diophantine approximation, just take any
quadratic irrational like

√
2 or
√

3.
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where the arithmetic properties of the non-zero number θ will be described later. It
is not difficult to see that the set

Q1 = Λ1∩V = {({θn},n) : n = 0,1,2, . . . ,M−1}

contains precisely M points. We now wish to study the discrepancy properties of the
set Q1 in V . For every aligned rectangle

B(x1,y) = [0,x1)× [0,y)⊆V,

we consider the discrepancy

E[Q1;B(x1,y)] = #(Q1∩B(x1,y))− x1y, (39)

noting that the area of B(x1,y) is equal to x1y, and that there is an average of one
point of Q1 per unit area in V . Suppose first of all that y is an integer satisfying
0 < y≤M. Then we can write

E[Q1;B(x1,y)] = ∑
0≤n<y

(ψ(θn− x1)−ψ(θn)),

for all but finitely many x1 satisfying 0 < x1 ≤ 1, where ψ(z) = z− [z]− 1
2 for every

z ∈ R. If we relax the condition that y is an integer, then for every real number y
satisfying 0 < y≤M, we have the approximation

E[Q1;B(x1,y)] = ∑
0≤n<y

(ψ(θn− x1)−ψ(θn))+O(1)

for all but finitely many x1 satisfying 0 < x1 ≤ 1. For simplicity, let us write

E[Q1;B(x1,y)]≈ ∑
0≤n<y

(ψ(θn− x1)−ψ(θn)).

The sawtooth function ψ(z) is periodic, so it is natural to use its Fourier series, and
we obtain the estimate

E[Q1;B(x1,y)]≈ ∑
06=m∈Z

(
1− e(−mx1)

2πim

)(
∑

0≤n<y
e(θnm)

)
. (40)

Ideally we would like to square the expression (40) and integrate with respect to the
variable x1 over [0,1]. Unfortutnately, the term 1 in the numerator on the right hand
side, arising from the assumption that the rectangles we consider are anchored at the
origin, proves to be more than a nuisance.

To overcome this problem, Davenport’s brilliant idea is to introduce a second
lattice Λ2 on R2 generated by the two vectors

(1,0) and (−θ ,1).
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It is not difficult to see that the set

Q2 = Λ2∩V = {({−θn},n) : n = 0,1,2, . . . ,M−1}

again contains precisely M points. Then the set

Q = Q1∪Q2 = {({±θn},n) : n = 0,1,2, . . . ,M−1},

where the points are counted with multiplicity, contains precisely 2M points. Thus
analogous to the discrepancy (39), we now consider the discrepancy

F [Q;B(x1,y)] = #(Q∩B(x1,y))−2x1y,

noting that there is now an average of two points of Q per unit area in V . The
analogue of the estimate (40) is now

F [Q;B(x1,y)]≈ ∑
0 6=m∈Z

(
e(mx1)− e(−mx1)

2πim

)(
∑

0≤n<y
e(θnm)

)
.

Squaring this and integrating with respect to the variable x1 over [0,1], we have

∫ 1

0
|F [Q;B(x1,y)]|2 dx1�

∞

∑
m=1

1
m2

∣∣∣∣∣ ∑
0≤n<y

e(θnm)

∣∣∣∣∣
2

. (41)

To estimate the sum on the right hand side of (41), we need to make some as-
sumptions on the arithmetic properties of the number θ . We shall assume that θ is
a badly approximable number, so that there is a constant c = c(θ), depending only
on θ , such that the inequality

m‖mθ‖> c > 0 (42)

holds for every natural number m ∈ N, where ‖z‖ denotes the distance of z to the
nearest integer.

Lemma 2. Suppose that the real number θ is badly approximable. Then

∞

∑
m=1

1
m2

∣∣∣∣∣ ∑
0≤n<y

e(θnm)

∣∣∣∣∣
2

�θ log(2y). (43)

Proof. It is well known that∣∣∣∣∣ ∑
0≤n<y

e(θnm)

∣∣∣∣∣�min{y,‖mθ‖−1},

so that
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S =
∞

∑
m=1

1
m2

∣∣∣∣∣ ∑
0≤n<y

e(θnm)

∣∣∣∣∣
2

�
∞

∑
h=1

2−2h
∑

2h−1≤m<2h

min{y2,‖mθ‖−2}.

The condition (42) implies that if 2h−1 ≤ m < 2h, then the inequality

‖mθ‖> c2−h

holds. On the other hand, for any pair h, p ∈ N, there are at most two values of m
satisfying 2h−1 ≤ m < 2h and

pc2−h ≤ ‖mθ‖< (p+1)c2−h,

for otherwise the difference (m1 −m2) of two of them would contradict (42). It
follows that

S �θ

∞

∑
h=1

∞

∑
p=1

min{2−2hy2, p−2}

= ∑
2h≤y

∞

∑
p=1

min{2−2hy2, p−2}+ ∑
2h>y

∞

∑
p=1

min{2−2hy2, p−2}

� ∑
2h≤y

∞

∑
p=1

p−2 + ∑
2h>y

(
2−2hy22hy−1 + ∑

p>2hy−1

p−2

)
� ∑

2h≤y

1+ ∑
2h>y

2−hy� log(2y).

This completes the proof. ut

Combining (41) and (43) and then integrating with respect to the variable y over
[0,M], we have ∫ M

0

∫ 1

0
|F [Q;B(x1,y)]|2 dx1 dy�θ M log(2M).

Rescaling in the vertical direction by a factor M−1, we see that the set

P = {({±θn},nM−1) : n = 0,1,2, . . . ,M−1}

of N = 2M points in [0,1)2 satisfies the conclusion of Theorem 7 for k = 2.
Finally, if N is a given odd number, then we can repeat the argument above with

2M = N +1 points. Removing one of the points causes an error of at most 1.
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9 Roth’s Probabilistic Technique – A Preview

In this section, we describe an ingenious variation of Davenport’s argument by
Roth [34]. This is a nice preview of his powerful probabilistic technique, which
we shall describe in Section 11, and which has been generalized in many different
ways and applied in many different situations by many other colleagues.

Let us return to the lattice Λ1 on R2 generated by the two vectors (1,0) and (θ ,1).
For any real number t ∈ R, we consider the translated lattice

t(1,0)+Λ1 = {t(1,0)+v : v ∈Λ1}.

In particular, we are interested in the set

Q1(t) = (t(1,0)+Λ1)∩V = {({t +θn},n) : n = 0,1,2, . . . ,M−1}

which clearly contains precisely M points. Thus analogous to the discrepancy (39),
we now consider the discrepancy

E[Q1(t);B(x1,y)] = #(Q1(t)∩B(x1,y))− x1y,

noting that there is now an average of one point of Q1(t) per unit area in V . The
analogue of the estimate (40) is now

E[Q1(t);B(x1,y)]≈ ∑
06=m∈Z

(
1− e(−mx1)

2πim

)(
∑

0≤n<y
e(θnm)

)
e(tm).

Squaring this and integrating with respect to the new variable t over [0,1], we have

∫ 1

0
|E[Q1(t);B(x1,y)]|2 dt�

∞

∑
m=1

1
m2

∣∣∣∣∣ ∑
0≤n<y

e(θnm)

∣∣∣∣∣
2

. (44)

Furthermore, if θ is a badly approximable number as in the last section, then
integrating (44) trivially with respect to the variable x1 over [0,1] and with respect
to the variable y over [0,M], we have∫ 1

0

∫ M

0

∫ 1

0
|E[Q1(t);B(x1,y)]|2 dx1 dydt�θ M log(2M).

It follows that there exists t∗ ∈ [0,1] such that the set Q1(t∗) satisfies∫ M

0

∫ 1

0
|E[Q1(t∗);B(x1,y)]|2 dx1 dy�θ M log(2M).

Rescaling in the vertical direction by a factor M−1, we see that the set

P(t∗) = {({t∗+θn},nM−1) : n = 0,1,2, . . . ,M−1}
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of N = M points in [0,1)2 satisfies the requirements of Theorem 7 for k = 2.

10 Van der Corput Point Sets

In this section, we begin our discussion of those point sets which have been explored
in great depth through our study of Theorems 7 and 8.

Our first step is to construct the simplest point sets which will allow us to estab-
lish Theorem 8 in the case k = 2.

The construction is based on the famous van der Corput sequence c0,c1,c2, . . .
defined as follows. For every non-negative integer n ∈ N0, we write

n =
∞

∑
j=1

a j2 j−1 (45)

as a dyadic expansion. Then we write

cn =
∞

∑
j=1

a j2− j. (46)

Note that cn ∈ [0,1). Note also that only finitely many digits a1,a2,a3, . . . are non-
zero, so that the sums in (45) and (46) have only finitely many non-zero terms. For
simplicity, we sometimes write

n = . . .a3a2a1 and cn = 0.a1a2a3 . . .

in terms of the digits a1,a2,a3, . . . of n. The infinite set

Q = {(cn,n) : n = 0,1,2, . . .} (47)

in [0,1)× [0,∞) is known as the van der Corput point set.
The following is the most crucial property of the van der Corput point set.

Lemma 3. For all non-negative integers s and ` such that ` < 2s holds, the set

{n ∈ N0 : cn ∈ [`2−s,(`+1)2−s)}

contains precisely all the elements of a residue class modulo 2s in N0.

Proof. There exist unique integers b1,b2,b3, . . . such that `2−s = 0.b1b2b3 . . .bs.
Clearly cn = 0.a1a2a3 . . .∈ [`2−s,(`+1)2−s) precisely when 0.a1a2a3 . . .as = `2−s;
in other words, precisely when a j = b j for every j = 1, . . . ,s. The value of a j for
any j > s is irrelevant. ut

We say that an interval of the form [`2−s,(`+1)2−s)⊆ [0,1) for some integer `
is an elementary dyadic interval of length 2−s. Hence Lemma 3 says that the van der
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Corput sequence has very good distribution among such elementary dyadic intervals
for all non-negative integer values of s.

Lemma 4. For all non-negative integers s, ` and m such that ` < 2s holds, the rect-
angle

[`2−s,(`+1)2−s)× [m2s,(m+1)2s)

contains precisely one point of the van der Corput point set Q.

It is clear that there is an average of one point of the van der Corput point set Q
per unit area in [0,1)× [0,∞). For any measurable set A in [0,1)× [0,∞), let

E[Q;A] = #(Q∩A)−µ(A)

denote the discrepancy of Q in A.
Let ψ(z) = z− [z]− 1

2 for every z ∈ R.

Lemma 5. For all non-negative integers s and ` such that ` < 2s holds, there exist
real numbers α0,β0, depending at most on s and `, such that |α0| ≤ 1

2 and

E[Q; [`2−s,(`+1)2−s)× [0,y)] = α0−ψ(2−s(y−β0)) (48)

at all points of continuity of the right hand side.

Proof. In view of Lemma 3, the second coordinates of the points of Q in the region
[`2−s,(` + 1)2−s)× [0,∞) fall precisely into a residue class modulo 2s. Let n0 be
the smallest of these second coordinates. Then 0≤ n0 < 2s. We now study

E[Q; [`2−s,(`+1)2−s)× [0,y)]

as a function of y. For simplicity, denote it by f (y), say. Clearly f (0) = E[Q; /0] = 0.
On the other hand, note that

µ([`2−s,(`+1)2−s)× [0,y)) = 2−sy

increases with y at the rate 2−s, so that f (y) decreases with y at the rate 2−s, except
when y coincides with the second coordinate of one of the points of the set Q in
the region [`2−s,(`+ 1)2−s)× [0,∞), in which case f (y) jumps up by 1. The first
instance of this jump occurs when y = n0. See Figure 3.

y

f (y)

n0 n0+2s
q q q

Fig. 3 The sawtooth function E[Q; [`2−s,(`+1)2−s)× [0,y)]

With suitable α0 and β0, the right hand side of (48) fits all the requirements. ut
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We can now prove Theorem 8 for k = 2. Let N ≥ 2 be a given integer. It follows
immediately from the definition of Q that the set

Q0 = Q∩ ([0,1)× [0,N))

contains precisely N points. Let the integer h be determined uniquely by

2h−1 < N ≤ 2h. (49)

Consider a rectangle of the form

B(x1,y) = [0,x1)× [0,y)⊆ [0,1)× [0,N).

Let x(0)
1 = 0. For every s = 1, . . . ,h, let x(s)

1 = 2−s[2sx1] denote the greatest integer
multiple of 2−s not exceeding x1. Then we can write [0,x1) as a union of disjoint
intervals in the form

[0,x1) = [x(h)
1 ,x1)∪

h⋃
s=1

[x(s−1)
1 ,x(s)

1 ).

It follows that

E[Q0; [0,x1)× [0,y)] = E[Q; [0,x1)× [0,y)]

= E[Q; [x(h)
1 ,x1)× [0,y)]+

h

∑
s=1

E[Q; [x(s−1)
1 ,x(s)

1 )× [0,y)]. (50)

Clearly [x(h)
1 ,x1)× [0,y)⊆ [x(h)

1 ,x(h)
1 +2−h)× [0,2h), and the latter rectangle has area

1 and is of the type under discussion in Lemma 4, hence contains precisely one point
of Q. It follows that

#(Q∩ ([x(h)
1 ,x1)× [0,y))≤ 1 and µ([x(h)

1 ,x1)× [0,y))≤ 1,

and we have the bound

|E[Q; [x(h)
1 ,x1)× [0,y)]| ≤ 1. (51)

On the other hand, for every s = 1, . . . ,k, the rectangle

[x(s−1)
1 ,x(s)

1 )× [0,y)

either is empty, in which case we have E[Q; [x(s−1)
1 ,x(s)

1 )× [0,y)] = 0 trivially, or is
of the type under discussion in Lemma 5, and we have the bound

|E[Q; [x(s−1)
1 ,x(s)

1 )× [0,y)]| ≤ 1. (52)
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Note that (52) still holds in the empty case. Combining (49)–(52), we arrive at an
upper bound

|E[Q0; [0,x1)× [0,y)]| ≤ 1+h� logN. (53)

For comparison later in Section 14, let us summarize what we have done. We
are approximating the interval [0,x1) by a subinterval [0,x(h)

1 ), and consequently
approximating the rectangle B(x1,y) by a smaller rectangle B(x(h)

1 ,y). Then we show
that the difference B(x1,y) \B(x(h)

1 ,y) is contained in one of the rectangles under
discussion in Lemma 4, and inequality (51) is the observation that

|E[Q;B(x1,y)]−E[Q;B(x(h)
1 ,y]| ≤ 1.

To estimate E[Q;B(x(h)
1 ,y)], we note that the interval [0,x(h)

1 ) is a union of at most
h disjoint elementary dyadic intervals. More precisely, if we write

x(h)
1 =

h

∑
s=1

bs2−s

as a dyadic expansion, then [0,x(h)
i ) can be written as a union of

h

∑
s=1

bs ≤ h

elementary dyadic intervals, namely b1 elementary dyadic intervals of length 2−1,
together with b2 elementary dyadic intervals of length 2−2, and so on. It follows that
B(x(h)

1 ,y) is a disjoint union of at most h rectangles discussed in Lemma 5, each of
which satisfies inequality (52).

Finally, rescaling the second coordinate of the points of Q0 by a factor N−1, we
obtain a set

P = {(cn,N−1n) : n = 0,1,2, . . . ,N−1} (54)

of precisely N points in [0,1)2. For every x = (x1,x2) ∈ [0,1]2, we have

D[P;B(x)] = E[Q0; [0,x1)× [0,Nx2)]� logN,

in view of (53) and noting that 0 ≤ Nx2 ≤ N. This now completes the proof of
Theorem 8 for k = 2.

11 Roth’s Probabilistic Technique

We now attempt to extend the ideas in the last section to obtain a proof of Theorem 7
for k = 2.



26 William Chen and Maxim Skriganov

Let us first of all consider the special case when N = 2h. Then the set (54) used
to establish Theorem 8 for k = 2 becomes

P(2h) = {(cn,2−hn) : n = 0,1,2, . . . ,2h−1}
= {(0.a1a2a3 . . .ah,0.ah . . .a3a2a1) : a1, . . . ,ah ∈ {0,1}}, (55)

in terms of binary digits. We have the following unhelpful result3 of Halton and
Zaremba [26].

Proposition 3. For every positive integer h, we have∫
[0,1]2
|D[P(2h);B(x)]|2 dx = 2−6h2 +O(h). (56)

Clearly the order of magnitude is (logN)2, and not logN as we would have liked.
Hence any unmodified van der Corput point set is not sufficient to establish our
desired result. To understand the problem, we return to our discussion in the last
section. Assume that N = 2h. Consider a rectangle of the form

B(x1,y) = [0,x1)× [0,y)⊆ [0,1)× [0,2h).

For simplicity, let us assume that x1 is an integer multiple of 2−h, so that x1 = x(h)
1

and (50) simplifies to

D[P;B(x1,2−hy)] = E[Q0; [0,x1)× [0,y)] =
h

∑
∗

s=1
E[Q; [x(s−1)

1 ,x(s)
1 )× [0,y)],

where the ∗ in the summation sign denotes that the sum includes only those terms
where x(s−1)

1 6= x(s)
1 . Note that when x(s−1)

1 6= x(s)
1 , we have

[x(s−1)
1 ,x(s)

1 ) = [`2−s,(`+1)2−s)

for some integer `, so it follows from Lemma 5 that

D[P;B(x1,2−hy)] =
h

∑
∗

s=1
(αs−ψ(2−s(y−βs))), (57)

where, for each s = 1, . . . ,h, the real numbers αs and βs satisfy |αs| ≤ 1
2 . If we square

the expression (57), then the right hand side becomes

h

∑
∗

s′=1

h

∑
∗

s′′=1
(αs′ −ψ(2−s′(y−βs′)))(αs′′ −ψ(2−s′′(y−βs′′))).

Expanding the summand, this gives rise eventually to a constant term

3 In their paper, Halton and Zaremba have an exact expression for the integral under study.
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h

∑
∗

s′=1

h

∑
∗

s′′=1
αs′αs′′

which ultimately leads to the term 2−6h2 in (56).
Note that this constant term arises from our assumption that all the aligned rect-

angles under consideration are anchored at the origin, and recall that Roth’s attempt
to overcome this handicap, discussed in Section 9, involves the introduction of a
translation variable t. So let us attempt to describe Roth’s incorporation of this idea
of a translation variable into the argument here.

To pave the way for a smooth introduction of a probabilistic variable, we shall
modify the van der Corput point set somewhat. Let N ≥ 2 be a given integer, and let
the integer h be determined uniquely by

2h−1 < N ≤ 2h. (58)

For every n = 0,1,2, . . . ,2h− 1, we define cn as before by (45) and (46). We then
extend the definition of cn to all other integers using periodicity by writing

cn+2h = cn for every n ∈ Z,

and consider the extended van der Corput point set

Qh = {(cn,n) : n ∈ Z}.

Furthermore, for every real number t ∈R, we consider the translated van der Corput
point set

Qh(t) = {(cn,n+ t) : n ∈ Z}.

It is clear that there is an average of one point of the translated van der Corput
point set Qh(t) per unit area in [0,1)×(−∞,∞). For any measurable set A in [0,1)×
(−∞,∞), we now let

E[Qh(t);A] = #(Qh(t)∩A)−µ(A)

denote the discrepancy of Qh(t) in A.
Consider a rectangle of the form

B(x1,y) = [0,x1)× [0,y)⊆ [0,1)× [0,N).

As before, let x(0)
1 = 0. For every s = 1, . . . ,h, let x(s)

1 = 2−s[2sx1] denote the greatest
integer multiple of 2−s not exceeding x1. Then, analogous to (51), we have the trivial
bound

|E[Qh(t); [x
(h)
1 ,x1)× [0,y)]| ≤ 1, (59)

so we shall henceforth assume that x1 = x(h)
1 , so that
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E[Qh(t);B(x1,y)] =
h

∑
∗

s=1
E[Qh(t); [x

(s−1)
1 ,x(s)

1 )× [0,y)]. (60)

Corresponding to Lemma 5, we can establish the following result without too
much difficulty.

Lemma 6. For all positive real numbers y and all non-negative integers s and ` such
that s≤ h and ` < 2s hold, there exist real numbers β0 and γ0, depending at most on
s, ` and y, such that

E[Qh(t); [`2−s,(`+1)2−s)× [0,y)] = ψ(2−s(t−β0))−ψ(2−s(t− γ0))

at all points of continuity of the right hand side.

Combining (60) and Lemma 6, we have

E[Qh(t);B(x1,y)] =
h

∑
∗

s=1
(ψ(2−s(t−βs))−ψ(2−s(t− γs))) (61)

for some real numbers βs and γs depending at most on x1 and y. We shall square this
expression and integrate with respect to the translation variable t over the interval
[0,2h), an interval of length equal to the period of the set Qh(t). We therefore need
to study integrals of the form

∫ 2h

0
ψ(2−s′(t−βs′))ψ(2−s′′(t−βs′′))dt,

or when either or both of βs′ and βs′′ are replaced by γs′ and γs′′ respectively.

Lemma 7. Suppose that the integers s′ and s′′ satisfy 0≤ s′,s′′ ≤ h, and that the real
numbers βs′ and βs′′ are fixed. Then

∫ 2h

0
ψ(2−s′(t−βs′))ψ(2−s′′(t−βs′′))dt = O(2h−|s′−s′′|).

Proof. The result is obvious if s′ = s′′. Without loss of generality, let us assume that
s′ > s′′. For every a = 0,1,2, . . . ,2s′−s′′ −1, in view of periodicity, we have

∫ 2h

0
ψ(2−s′(t−βs′))ψ(2−s′′(t−βs′′))dt

=
∫ 2h

0
ψ(2−s′(t +a2s′′ −βs′))ψ(2−s′′(t +a2s′′ −βs′′))dt

=
∫ 2h

0
ψ(2−s′(t +a2s′′ −βs′))ψ(2−s′′(t−βs′′))dt,

with the last equality arising from the observation that
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ψ(2−s′′(t +a2s′′ −βs′′)) = ψ(a+2−s′′(t−βs′′)) = ψ(2−s′′(t−βs′′)).

It follows that

2s′−s′′
∫ 2h

0
ψ(2−s′(t−βs′))ψ(2−s′′(t−βs′′))dt

=
2s′−s′′−1

∑
a=0

∫ 2h

0
ψ(2−s′(t +a2s′′ −βs′))ψ(2−s′′(t−βs′′))dt

=
∫ 2h

0

2s′−s′′−1

∑
a=0

ψ(2−s′(t +a2s′′ −βs′))

ψ(2−s′′(t−βs′′))dt.

It is not difficult to see that

2s′−s′′−1

∑
a=0

ψ(2−s′(t +a2s′′ −βs′)) = ψ(2−s′′(t−βs′)) (62)

at all points of continuity, as shown in Figure 4.

Fig. 4 An illustration of the summation (62)

We therefore conclude that

2s′−s′′
∫ 2h

0
ψ(2−s′(t−βs′))ψ(2−s′′(t−βs′′))dt

=
∫ 2h

0
ψ(2−s′′(t−βs′))ψ(2−s′′(t−βs′′))dt = O(2h),

and the desired result follows immediately. ut

It now follows from (61) and Lemma 7 that

∫ 2h

0
|E[Qh(t);B(x1,y)]|2 dt�

h

∑
∗

s′=1

h

∑
∗

s′′=1
2h−|s′−s′′|� 2hh, (63)
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noting that the diagonal terms contribute O(2hh), and the contribution from the off-
diagonal terms decays geometrically.

Note that the estimate (63) is independent of the choice of x1 and y. We also recall
the trivial estimate (59). It follows that integrating (63) trivially with respect to x1
over the interval [0,1) and with respect to y over the interval [0,N), we conclude
that ∫ N

0

∫ 1

0

∫ 2h

0
|E[Qh(t);B(x1,y)]|2 dt dx1 dy

=
∫ 2h

0

(∫ N

0

∫ 1

0
|E[Qh(t);B(x1,y)]|2 dx1 dy

)
dt� 2hhN.

Hence there exists t∗ ∈ [0,2h) such that∫ N

0

∫ 1

0
|E[Qh(t∗);B(x1,y)]|2 dx1 dy� hN. (64)

Finally, we note that the set Qh(t∗)∩([0,1)× [0,N)) contains precisely N points.
Rescaling in the vertical direction by a factor N−1, we observe that the set

P∗ = {(z1,N−1z2) : (z1,z2) ∈Qh(t∗)}

contains precisely N points in [0,1)2, and the estimate (64) now translates to∫
[0,1]2
|D[P∗;B(x)]|2 dx� h� logN,

in view of (58). This completes the proof of Theorem 7 for k = 2.
We conclude this section by trying to obtain a different interpretation of the effect

of the translation variable t. Consider a typical term

E[Qh(t); [x
(s−1)
1 ,x(s)

1 )× [0,y)]

in the sum (60). If x(s−1)
1 6= x(s)

1 , then x(s)
1 cannot be an integer multiple of 2−(s−1)

and therefore must be an odd integer multiple of 2−s, and so

[x(s−1)
1 ,x(s)

1 ) = [`2−s,(`+1)2−s)⊂
[

`

2
2−(s−1),(

`

2
+1)2−(s−1)

)
for some even integer `. One can then show that

E[Qh(2s−1); [`2−s,(`+1)2−s)× [0,y)] = E[Qh; [(`+1)2−s,(`+2)2−s)× [0,y)].

This means that instead of translating vertically, as on the left hand side above, one
may shift horizontally, as on the right hand side above. Another way to see this
is to note from Lemma 3 that the interval [`2−s,(` + 1)2−s) is associated with a
residue class Rs modulo 2s, whereas the interval [`2−s,(` + 2)2−s) is associated
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with a residue class Rs−1 modulo 2s−1, so the interval [(`+1)2−s,(`+2)2−s) must
be associated with the residue class Rs−1\Rs modulo 2s. But then Rs−1\Rs is clearly
Rs translated by 2s−1.

12 Digit Shifts

In this section, we shall attempt to replace the vertical translation studied in the last
section by horizontal shifts, as pioneered by Chen [11].

Let N ≥ 2 be a given integer, and let the integer h be determined uniquely by

2h−1 < N ≤ 2h. (65)

For every n = 0,1,2, . . . ,2h−1, we define cn as before by (45) and (46). As we are
not translating vertically, there is no need4 to extend the definition of cn to other
integers as in the last section, and we consider the set5

Qh = {(cn,n) : n = 0,1,2, . . . ,2h−1}
= {(0.a1a2a3 . . .ah,ah . . .a3a2a1) : a1, . . . ,ah ∈ {0,1}},

in terms of binary digits. Furthermore, for every t = (t1, . . . , th) ∈ Zh
2, where Z2 =

{0,1}, write

c(t)
n = 0.(a1⊕ t1)(a2⊕ t2)(a3⊕ t3) . . .(ah⊕ th) if cn = 0.a1a2a3 . . .ah

in binary notation, where⊕ denotes addition modulo 2, and consider the shifted van
der Corput point set

Q
(t)
h = {(c(t)

n ,n) : n = 0,1,2, . . . ,2h−1},

obtained from Qh by a digit shift t.
It is clear that there is an average of one point of the shifted van der Corput point

set Q
(t)
h per unit area in [0,1)× [0,2h). For any measurable set A in [0,1)× [0,2h),

we study the discrepancy function

E[Q(t)
h ;A] = #(Q(t)

h ∩A)−µ(A).

Consider a rectangle of the form

B(x1,y) = [0,x1)× [0,y)⊆ [0,1)× [0,N).

4 This is not the case if we wish to study Theorem 7 for k > 2.
5 Note that the set Qh here is different from that in the last section. However, since we are working
with rectangles inside [0,1)× [0,2h), our statements here concerning Qh remain valid for the set
Qh defined in the last section.
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Analogous to (59), we have the trivial bound

|E[Q(t)
h ; [x(h)

1 ,x1)× [0,y)]| ≤ 1, (66)

so we shall henceforth assume that x1 = x(h)
1 , so that

E[Q(t)
h ;B(x1,y)] =

h

∑
∗

s=1
E[Q(t)

h ; [x(s−1)
1 ,x(s)

1 )× [0,y)]. (67)

We now square this expression and sum it over all digit shifts t ∈ Zh
2. For simplicity

and convenience, let us omit reference to Qh and y, and write

E[Q(t)
h ; [x(s−1)

1 ,x(s)
1 )× [0,y)] = Es[t1, . . . , th].

Then we need to study sums of the form

∑
t∈Zh

2

Es′ [t1, . . . , th]Es′′ [t1, . . . , th].

Analogous to Lemma 7, we have the following estimate.

Lemma 8. Suppose that the real number y ∈ [0,N) is fixed, and that the integers s′

and s′′ satisfy 0≤ s′,s′′ ≤ h. Then

∑
t∈Zh

2

Es′ [t1, . . . , th]Es′′ [t1, . . . , th] = O(2h−|s′−s′′|). (68)

Proof. First of all, for fixed t1, . . . , ts, the value of Es[t1, . . . , th] remains the same for
every choice of ts+1, . . . , th, as these latter variables only shift the digits of cn after
the s-th digit, and so

c(t1,...,ts,ts+1,...,th)
n ∈ [x(s−1)

1 ,x(s)
1 ) if and only if c(t1,...,ts,0,...,0)

n ∈ [x(s−1)
1 ,x(s)

1 ).

Next, the case when x(s′−1)
1 = x(s′)

1 or x(s′′−1)
1 = x(s′′)

1 is also trivial, as the summand is

clearly equal to zero, so we shall assume that x(s′−1)
1 6= x(s′)

1 and x(s′′−1)
1 6= x(s′′)

1 . Now
the case when s′ = s′′ is easy, since we have E[t1, . . . , th;x(s−1)

1 ,x(s)
1 ] = O(1) trivially.

Without loss of generality, let us assume that s′ > s′′. For fixed t1, . . . , ts′′ , in view of
the comment at the beginning of the proof, we have

∑
ts′′+1,...,th∈Z2

Es′ [t1, . . . , th]Es′′ [t1, . . . , th]

= 2h−s′

 ∑
ts′′+1,...,ts′∈Z2

Es′ [t1, . . . , ts′ ,0, . . . ,0]

Es′′ [t1, . . . , ts′′ ,0, . . . ,0].

We shall show that
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∑
ts′′+1,...,ts′∈Z2

Es′ [t1, . . . , ts′ ,0, . . . ,0]

= ∑
ts′′+1,...,ts′∈Z2

E[Q
(t1,...,ts′′ ,ts′′+1,...,ts′ ,0,...,0)
h ; [x(s′−1)

1 ,x(s′)
1 )× [0,y)]

= E[Q(t1,...,ts′′ ,0,...,0)
h ; [`2−s′′ ,(`+1)2−s′′)× [0,y)], (69)

where ` is an integer and [x(s′−1)
1 ,x(s′)

1 )⊂ [`2−s′′ ,(`+1)2−s′′). Then

∑
ts′′+1,...,th∈Z2

Es′ [t1, . . . , th]Es′′ [t1, . . . , th] = O(2h−s′),

from which it follows that

∑
t1,...,th∈Z2

Es′ [t1, . . . , th]Es′′ [t1, . . . , th] = O(2h−s′+s′′),

giving the desired result. To establish (69), simply note that for fixed t1, . . . , ts′′ , if a
point

c
(t1,...,ts′′ ,0,...,0)
n ∈ [x(s′−1)

1 ,x(s′)
1 ),

then each distinct choice of ts′′+1, . . . , ts′ will shift this point into one of the 2s′−s′′

distinct intervals of length 2−s′ that make up the interval [`2−s′′ ,(`+1)2−s′′). ut

It now follows from (67) and Lemma 8 that

∑
t∈Zh

2

|E[Q(t)
h ;B(x1,y)]|2�

h

∑
∗

s′=1

h

∑
∗

s′′=1
2h−|s′−s′′|� 2hh, (70)

noting that the diagonal terms contribute O(2hh), and the contribution from the off-
diagonal terms decays geometrically.

Note that the estimate (70) is independent of the choice of x1 and y. We also recall
the trivial estimate (66). It follows that integrating (70) trivially with respect to x1
over the interval [0,1) and with respect to y over the interval [0,N), we conclude
that ∫ N

0

∫ 1

0
∑

t∈Zh
2

|E[Q(t)
h ;B(x1,y)]|2 dx1 dy

= ∑
t∈Zh

2

∫ N

0

∫ 1

0
|E[Q(t)

h ;B(x1,y)]|2 dx1 dy� 2hhN.

Hence there exists t∗ ∈ Zh
2 such that∫ N

0

∫ 1

0
|E[Q(t∗)

h ;B(x1,y)]|2 dx1 dy� hN. (71)
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Finally, we note that the set Q
(t∗)
h ∩ ([0,1)× [0,N)) contains precisely N points.

Rescaling in the vertical direction by a factor N−1, we observe that the set

P∗ = {(z1,N−1z2) : (z1,z2) ∈Q
(t∗)
h }

contains precisely N points in [0,1)2, and the estimate (71) now translates to∫
[0,1]2
|D[P∗;B(x)]|2 dx� h� logN,

in view of (65). This completes the proof of Theorem 7 for k = 2.

13 A Fourier–Walsh Approach to van der Corput Sets

In this section, we sketch yet another proof of Theorem 7 for k = 2 by highlighting
the interesting group structure of the van der Corput point set

P(2h) = {(0.a1a2a3 . . .ah,0.ah . . .a3a2a1) : a1, . . . ,ah ∈ {0,1}}.

This is a finite abelian group isomorphic to the group Zh
2. We shall make use of the

characters of these groups. These are the Walsh functions.
To define the Walsh functions, we first consider binary representation of any

integer ` ∈ N0, written uniquely in the form

` =
∞

∑
i=1

λi(`)2i−1, (72)

where the coefficient λi(`) ∈ {0,1} for every i ∈ N. On the other hand, every real
number y ∈ [0,1) can be represented in the form

y =
∞

∑
i=1

ηi(y)2−i, (73)

where the coefficient ηi(y) ∈ {0,1} for every i ∈ N. This representation is unique
if we agree that the series in (73) is finite for every y = m2−s where s ∈ N0 and
m ∈ {0,1, . . . ,2s−1}.

For every ` ∈ N0 of the form (72), we define the Walsh function w` : [0,1)→ R
by writing

w`(y) = (−1)
∞

∑
i=1

λi(`)ηi(y)
. (74)

Since (72) is essentially a finite sum, the Walsh function is well defined, and takes
the values ±1. It is easy to see that w0(y) = 1 for every y ∈ [0,1). It is well known
that under the inner product
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〈wk,w`〉=
∫ 1

0
wk(y)w`(y)dy,

the collection of Walsh functions form an orthonormal basis of L2[0,1].
For every `,k ∈ N0, we can define `⊕ k by setting

λi(`⊕ k) = λi(`)+λi(k) mod 2

for every i ∈ N. Then it is easy to see that for every y ∈ [0,1), we have

w`⊕k(y) = w`(y)wk(y). (75)

For every x,y ∈ [0,1), we can define x⊕ y be setting

ηi(x⊕ y) = ηi(x)+ηi(y) mod 2

for every i ∈ N. Then it is easy to see that for every ` ∈ N0, we have

w`(x⊕ y) = w`(x)w`(y). (76)

We shall be concerned with the characteristic function

χB(x)(y) =
{

1, if y ∈ B(x),
0, otherwise,

of the aligned rectangle B(x) = [0,x1)× [0,x2), where x = (x1,x2). Then we have
the discrepancy function

D[P(2h);B(x)] = ∑
p∈P(2h)

χB(x)(p)−2hx1x2. (77)

Clearly the characteristic function in question can be written as a product of one-
dimensional characteristic functions in the form

χB(x)(y) = χ[0,x1)(y1)χ[0,x2)(y2),

where y = (y1,y2). Since the Walsh functions form an orthonormal basis for the
space L2[0,1], we shall use Fourier–Walsh analysis6 to study a characteristic func-
tion of the form χ[0,x)(y). We have the Fourier–Walsh series

χ[0,x)(y)∼
∞

∑
`=0

χ̃`(x)w`(y),

where, for every ` ∈ N0, the Fourier–Walsh coefficients are given by

6 Simply imagine that we use Fourier analysis but with the Walsh functions replacing the exponen-
tial functions.
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χ̃`(x) =
∫ x

0
w`(y)dy.

In particular, we have χ̃0(x) = x for every x ∈ [0,1).
Instead of using the full Fourier–Walsh series, we shall truncate it and use the

approximation

χ
(h)
[0,x)(y) =

2h−1

∑
`=0

χ̃`(x)w`(y). (78)

Note that there exists a unique m ∈ N0 such that m2−h ≤ x < (m+1)2−h. Then

χ
(h)
[0,x)(y) =


1, if 0≤ y < m2−h,
2hx−m, if m2−h ≤ y < (m+1)2−h,
0, if (m+1)2−h ≤ y < 1,

where the quantity

2hx−m = 2h
∫ (m+1)2−h

m2−h
χ[0,x)(y)dy

represents the average value of χ[0,x)(y) in the interval [m2−h,(m+1)2−h).
The approximation (78) in turn leads to the approximation

χ
(h)
B(x)(y) = χ

(h)
[0,x1)(y1)χ

(h)
[0,x2)(y2) =

2h−1

∑
`1=0

2h−1

∑
`2=0

χ̃l(x)Wl(y)

of the characteristic function χB(x)(y). Here l = (`1, `2),

χ̃l(x) = χ̃`1(x1)χ̃`2(x2) and Wl(y) = w`1(y1)w`2(y2). (79)

Corresponding to this, we approximate the discrepancy function (77) by

D(h)[P(2h);B(x)] = ∑
p∈P(2h)

χ
(h)
B(x)(p)−2hx1x2

= ∑
p∈P(2h)

2h−1

∑
`1=0

2h−1

∑
`2=0

χ̃l(x)Wl(p)−2h
χ̃0(x)

=
2h−1

∑
`1=0

2h−1

∑
`2=0

(`1,`2)6=(0,0)

 ∑
p∈P(2h)

Wl(p)

 χ̃l(x),

noting that
∑

p∈P(2h)

W0(p) = #P(2h) = 2h. (80)

It is well known in the theory of abelian groups that the sum
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∑
p∈P(2h)

Wl(p) ∈ {0,2h}; (81)

see, for instance, [29, Chapters 5 and 9] or [30, Chapter 5]. We therefore need to
have some understanding on the set

L(h) =

l ∈ [0,2h)× [0,2h) : l 6= 0 and ∑
p∈P(2h)

Wl(p) = 2h

 .

Then
D(h)[P(2h);B(x)] = 2h

∑
l∈L(h)

χ̃l(x). (82)

Recall the discussion at the beginning of Section 11. The estimate (56) shows
that the set P(2h) is insufficient for us to establish Theorem 7 in the case k = 2. To
overcome this problem, we use digit shifts in Section 12. Here, for every t ∈ Z2h

2 ,
we consider the set

P(2h)⊕ t = {p⊕ t : p ∈P(2h)}

where, for every

p = (0.a1 . . .ah,0.ah . . .a1) ∈P(2h) and t = (t ′1, . . . , t
′
h, t
′′
h , . . . , t ′′1 ) ∈ Z2h

2 ,

we have the shifted point7

p⊕ t = (0.b′1 . . .b′h,0.b′′h . . .b′′1),

with the digits b′1, . . . ,b
′
h,b
′′
1 , . . . ,b

′′
h ∈ {0,1} satisfying

b′s ≡ as + t ′s mod 2 and b′′s ≡ as + t ′′s mod 2

for every s = 1, . . . ,h. Then

D(h)[P(2h)⊕ t;B(x)] = ∑
p∈P(2h)

χ
(h)
B(x)(p⊕ t)−2hx1x2

=
2h−1

∑
`1=0

2h−1

∑
`2=0

(`1,`2)6=(0,0)

 ∑
p∈P(2h)

Wl(p⊕ t)

 χ̃l(x)

=
2h−1

∑
`1=0

2h−1

∑
`2=0

(`1,`2)6=(0,0)

Wl(t)

 ∑
p∈P(2h)

Wl(p)

 χ̃l(x),

in view of (76) and the second identity in (79). It follows that

7 Here we somewhat abuse notation, as t clearly has more coordinates than p. In the sequel, Wl(t)
is really Wl(0⊕ t), notation abused again.
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D(h)[P(2h);B(x)] = 2h
∑

l∈L(h)
Wl(t)χ̃l(x).

Squaring this expression and summing over all t ∈ Z2h
2 , we obtain

∑
t∈Z2h

2

|D(h)[P(2h)⊕ t;B(x)]|2 = 4h
∑

t∈Z2h
2

(
∑

l∈L(h)
Wl(t)χ̃l(x)

)2

= 4h
∑

t∈Z2h
2

∑
l′,l′′∈L(h)

Wl′(t)Wl′′(t)χ̃l′(x)χ̃l′′(x)

= 4h
∑

l′,l′′∈L(h)

 ∑
t∈Z2h

2

Wl′(t)Wl′′(t)

 χ̃l′(x)χ̃l′′(x). (83)

Lemma 9. For every l′, l′′ ∈ N2
0, we have

∑
t∈Z2h

2

Wl′(t)Wl′′(t) =
{

4h, if l′ = l′′,
0, otherwise.

Proof. Note first of all that in view of (75) and the second identity in (79), with
l′⊕ l′′ = (`′1, `

′
2)⊕ (`′′1 , `

′′
2) = (`′1⊕`′′1 , `

′
2⊕`′′2), we have Wl′(t)Wl′′(t) = Wl′⊕l′′(t). For

simplicity, write
S = ∑

t∈Z2h
2

Wl′(t)Wl′′(t) = ∑
t∈Z2h

2

Wl′⊕l′′(t).

If l′ = l′′, so that l′⊕ l′′ = 0, then Wl′⊕l′′(t) = W0(t) = 1 for every t ∈ Z2h
2 , and so

clearly S = #Z2h
2 = 4h. If l′ 6= l′′, so that l′⊕ l′′ 6= 0, then there exists t0 ∈ Z2h

2 such
that Wl′⊕l′′(t0) 6= 1. As t runs through the group Z2h

2 , so does t⊕ t0, so that

S = ∑
t∈Z2h

2

Wl′⊕l′′(t⊕ t0) = ∑
t∈Z2h

2

Wl′⊕l′′(t)Wl′⊕l′′(t0) = SWl′⊕l′′(t0),

in view of (76) and the second identity in (79). Clearly S = 0 in this case. ut

Combining (83) and Lemma 9, we deduce that

1
4h ∑

t∈Z2h
2

|D(h)[P(2h)⊕ t;B(x)]|2 = 4h
∑

l∈L(h)
|χ̃l(x)|2, (84)

so that on integrating trivially with respect to x ∈ [0,1]2, we have

1
4h ∑

t∈Z2h
2

∫
[0,1]2
|D(h)[P(2h)⊕ t;B(x)]|2 dx = 4h

∑
l∈L(h)

∫
[0,1]2
|χ̃l(x)|2 dx. (85)

To estimate the right hand side of (85), we need to use a formula of Fine [21] on
the Fourier–Walsh coefficients of the characteristic function χ[0,x)(y).
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Let ρ(0) = 0. For any integer ` ∈ N with representation (72), let

ρ(`) = max{i ∈ N : λi(`) 6= 0}, so that 2ρ(`)−1 ≤ ` < 2ρ(`). (86)

Then the formula of Fine gives∫ 1

0
|χ̃`(x)|2 dx =

4−ρ(`)

3
.

If we write ρ(l) = ρ(`1)+ρ(`2) for l = (`1, `2), then in view of the first identity in
(79), we have ∫

[0,1]2
|χ̃l(x)|2 dx =

4−ρ(l)

9
,

and the identity (85) becomes

1
4h ∑

t∈Z2h
2

∫
[0,1]2
|D(h)[P(2h)⊕ t;B(x)]|2 dx =

4h

9 ∑
l∈L(h)

4−ρ(l). (87)

To estimate the sum on the right hand side of (87), we need some reasonably
precise information on the set L(h). The following result is rather useful.

Lemma 10. For every y ∈ [0,1) and every s ∈ N0, we have

2s−1

∑
`=0

w`(y) = 2s
χ[0,2−s)(y).

Proof. If y ∈ [0,2−s), then it follows from (73) that ηi(y) = 0 whenever 1 ≤ i ≤ s.
On the other hand, for every ` = 0,1,2, . . . ,2s−1, it follows from (72) that λi(`) = 0
for every i > s. It follows that for every ` = 0,1,2, . . . ,2s−1, we have

∞

∑
i=1

λi(`)ηi(y) = 0,

and so w`(y) = 1. On the other hand, if y ∈ [2−s,1), then it follows from (73)
that there exists some j ∈ {1, . . . ,s} such that η j(y) = 1. We now choose k ∈
{1,2, . . . ,2s−1} such that λ j(k) = 1 and λi(k) = 0 for every i 6= j. Then wk(y) 6= 1.
It is easy to see that as ` runs through the set 0,1,2, . . . ,2s−1, then so does `⊕k, so
that

2s−1

∑
`=0

w`(y) =
2s−1

∑
`=0

w`⊕k(y) = wk(y)
2s−1

∑
`=0

w`(y),

in view of (75). The result follows immediately. ut

Lemma 11. For every s1,s2 ∈ {0,1, . . . ,h}, let
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Ξ(s1,s2) =
2s1−1

∑
`1=0

2s2−1

∑
`2=0

∑
p∈P(2h)

Wl(p).

Then

Ξ(s1,s2) =
{

2s1+s2 , if s1 + s2 ≥ h,
2h, if s1 + s2 ≤ h.

Proof. Writing p = (p1, p2) and l = (`1, `2) and noting the second identity in (79)
and Lemma 10, we have

2s1−1

∑
`1=0

2s2−1

∑
`2=0

∑
p∈P(2h)

Wl(p) = ∑
p∈P(2h)

(
2s1−1

∑
`1=0

w`1(p1)

)(
2s2−1

∑
`2=0

w`2(p2)

)
= 2s1+s2 ∑

p∈P(2h)

χ[0,2−s1 )(p1)χ[0,2−s2 )(p2)

= 2s1+s2 ∑
p∈P(2h)

χ[0,2−s1 )×[0,2−s2 )(p).

It is not difficult to deduce from Lemma 4 that every rectangle of the form

[m12−s,(m+1)2−s)× [m22s−h,(m2 +1)2s−h)⊆ [0,1)2

where m1,m2 ∈N0, and area 2−h, contains precisely one point of P(2h). Let us say
that such a rectangle is an elementary rectangle. Suppose first of all that s1 + s2 ≥ h.
Then the rectangle [0,2−s1)× [0,2−s2) is contained in one elementary rectangle an-
chored at the origin, and so contains at most one point of P(2h). Clearly it contains
the point 0 ∈P(2h), and so

∑
p∈P(2h)

χ[0,2−s1 )×[0,2−s2 )(p) = 1.

Suppose then that s1 + s2 ≤ h. Then the rectangle [0,2−s1)× [0,2−s2) is a union of
precisely 2h−s1−s2 elementary rectangles, and so contains precisely 2h−s1−s2 points
of P(2h), whence

∑
p∈P(2h)

χ[0,2−s1 )×[0,2−s2 )(p) = 2h−s1−s2 .

This completes the proof. ut

Note that with s1 = s2 = h, Lemma 11 gives

2h−1

∑
`1=0

2h−1

∑
`2=0

∑
p∈P(2h)

Wl(p) = 4h.

In view of (80) and (81), we conclude that #L(h) = 2h− 1. We now study the set
L(h) in greater detail.
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Lemma 12. For every s1,s2 ∈ {1, . . . ,h}, let

L(s1,s2) =

l ∈ [2s1−1,2s1)× [2s2−1,2s2) : ∑
p∈P(2h)

Wl(p) = 2h

 .

Then

a) for every l ∈ L(s1,s2), we have ρ(l) = s1 + s2;
b) we have

#L(s1,s2) =

2s1+s2−h−2, if s1 + s2 ≥ h+2,
1, if s1 + s2 = h+1,
0, otherwise.

Furthermore, every l ∈ L(h) belongs to L(s1,s2) for some s1,s2 ∈ {1, . . . ,h} that
satisfy s1 + s2 ≥ h+1.

Proof. Note that if l∈ L(s1,s2), then ρ(l) = ρ(`1)+ρ(`2) = s1 +s2, in view of (86).
This establishes part (a). To prove part (b), note that in view of (81), we have, in the
notation of Lemma 11,

#L(s1,s2) = 2−h
2s1−1

∑
`1=2s1−1

2s2−1

∑
`2=2s2−1

∑
p∈P(2h)

Wl(p)

= 2−h(Ξ(s1,s2)−Ξ(s1−1,s2)−Ξ(s1,s2−1)+Ξ(s1−1,s2−1)).

Part (b) now follows easily from Lemma 11. Finally, it is easily checked that

h

∑
s1=1

h

∑
s2=1

s1+s2=h+1

1+
h

∑
s1=1

h

∑
s2=1

s1+s2≥h+2

2s1+s2−h−2 = 2h−1 = #L(h).

The last assertion follows immediately. ut

Using Lemma 12, we deduce that

∑
l∈L(h)

4−ρ(l) =
h

∑
s1=1

h

∑
s2=1

s1+s2=h+1

4−h−1 +
h

∑
s1=1

h

∑
s2=1

s1+s2≥h+2

2s1+s2−h−24−s1−s2

=
h

∑
s1=1

h

∑
s2=1

s1+s2=h+1

4−h−1 +
h

∑
s1=1

h

∑
s2=1

s1+s2≥h+2

2−s1−s2−h−2

=
h

∑
s1=1

h

∑
s2=1

s1+s2=h+1

4−h−1 +
h

∑
k=2

h

∑
s1=1

h

∑
s2=1

s1+s2=h+k

2−h−k−h−2
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= 4−h−1h+4−h−1
h

∑
k=2

h

∑
s1=1

h

∑
s2=1

s1+s2=h+k

2−k

< 4−h−1h+4−h−1h
h

∑
k=2

2−k < 4−hh.

Combining this with (87), we obtain

1
4h ∑

t∈Z2h
2

∫
[0,1]2
|D(h)[P(2h)⊕ t;B(x)]|2 dx <

h
9
� logN,

noting that N = 2h in this case. Hence there is a digit shift t∗ ∈ Z2h
2 such that∫

[0,1]2
|D(h)[P(2h)⊕ t∗;B(x)]|2 dx� logN,

essentially establishing Theorem 7 in the case k = 2, apart from our not having prop-
erly analyzed the effect of the approximation of the certain characteristic functions
by their truncated Fourier–Walsh series.

We complete this section by making an important comment for later use. Let us
return to (82) and make the hypothetical assumption that the functions χ̃l(x), where
l ∈ L(h), are orthogonal. Then∫

[0,1]2
|D(h)[P(2h);B(x)]|2 dx = 4h

∑
l∈L(h)

∫
[0,1]2
|χ̃l(x)|2 dx.

Note that the right hand side is exactly the same as the right hand side of (85), so
that we can analyze this as before.

Unfortunately, the functions χ̃l(x), where l ∈ L(h), are not orthogonal in this in-
stance, so we cannot proceed in this way. Our technique in overcoming this handicap
is to make use of the digit shifts t ∈ Z2h

2 , and bring into the argument, one may say
through the back door, some orthogonality in the form of Lemma 9. We shall return
to this in Sections 15 and 16.

14 Generalizations of van der Corput Point Sets

In our discussion of the van der Corput sequence and van der Corput point sets
in Sections 10 and 11, we have restricted our discussion to dimension k = 2. In-
deed, historically, the van der Corput sequence is constructed dyadically, and offers
no generalization to the multi-dimensional case without going beyond dyadic con-
structions, except for one instance which we shall describe later in this section.

To study the general case in Theorems 7 and 8, one way is to generalize the
van der Corput sequence. Here we know two ways of doing so, one by Halton [23]
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and the other by Faure [20]. The Halton construction enables Halton to establish
Theorem 8 in its generality and forms the basis for the proof of Theorem 7 in its
generality by Roth [35]. The Faure construction enables Faure to give an alternative
proof of Theorem 8 in its generality, enables Chen [11] soon afterwards to give an
alternative proof of Theorem 7 in its generality and, more recently, forms the basis
for the explicit construction proof of Theorem 7 by Chen and Skriganov [13, 14].

The generalizations by Halton and by Faure both require the very natural p-
adic generalization of the van der Corput construction. The difference is that while
Halton uses many different primes p, Faure uses only one such prime p but chosen
to be sufficiently large.

14.1 Halton Point Sets

We first discuss Halton’s contribution. Recall the dyadic construction (45) and (46)
of the classical van der Corput sequence. Suppose now that we wish to study The-
orem 7 or 8 in arbitrary dimension k ≥ 2. Let pi, where i = 1, . . . ,k−1, denote the
first k−1 primes, with p1 < .. . < pk−1. For every non-negative integer n ∈ N0 and
every i = 1, . . . ,k−1, we write

n =
∞

∑
j=1

a(i)
j p j−1

i (88)

as a pi-adic expansion. Then we write

c(i)
n =

∞

∑
j=1

a(i)
j p− j

i . (89)

Finally we write
cn = (c(1)

n , . . . ,c(k−1)
n ).

Note that cn ∈ [0,1)k−1. The infinite sequence c0,c1,c2, . . . is usually called a Halton
sequence, and the infinite set

H = {(cn,n) : n = 0,1,2, . . .} (90)

in [0,1)k−1× [0,∞) is usually called a Halton point set.
Corresponding to Lemma 3, we have the following multi-dimensional version.

Lemma 13. For all non-negative integers s1, . . . ,sk−1 and `1, . . . , `k−1 satisfying
`i < psi

i for every i = 1, . . . ,k−1, the set{
n ∈ N0 : cn ∈

k−1

∏
i=1

[`i p−si
i ,(`i +1)p−si

i )

}
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contains precisely all the elements of a residue class modulo ps1
1 . . . psk−1

k−1 in N0.

Proof. For fixed i = 1, . . . ,k−1, the pi-adic version of Lemma 3 says that the set

{n ∈ N0 : c(i)
n ∈ [`i p−si

i ,(`i +1)p−si
i )}

contains precisely all the elements of a residue class modulo psi
i in N0. The result

now follows from the Chinese remainder theorem. ut

We say that a rectangular box of the form

k−1

∏
i=1

[`i p−si
i ,(`i +1)p−si

i )⊆ [0,1)k−1

for some integers `1, . . . , `k−1 is an elementary (p1, . . . , pk−1)-adic box of volume
p−s1

1 . . . p−sk−1
k−1 . Hence Lemma 13 says that the given Halton sequence has very good

distribution among such elementary (p1, . . . , pk−1)-adic boxes for all non-negative
integer values of s1, . . . ,sk−1.

Lemma 14. For all non-negative integers s1, . . . ,sk−1, `1, . . . , `k−1 and m satisfying
`i < psi

i for every i = 1, . . . ,k−1, the rectangular box

k−1

∏
i=1

[`i p−si
i ,(`i +1)p−si

i )×

[
m

k−1

∏
i=1

psi
i ,(m+1)

k−1

∏
i=1

psi
i

)

contains precisely one point of the Halton point set H .

Clearly there is an average of one point of the Halton point set H per unit volume
in [0,1)k−1× [0,∞). For any measurable set A in [0,1)k−1× [0,∞), let

E[H ;A] = #(H ∩A)−µ(A)

denote the discrepancy of H in A.
We have the following generalization of Lemma 5.

Lemma 15. For all non-negative integers s1, . . . ,sk−1 and `1, . . . , `k−1 satisfying
`i < psi

i for every i = 1, . . . ,k− 1, there exist real numbers α0,β0, depending at
most on s1, . . . ,sk−1 and `1, . . . , `k−1, such that |α0| ≤ 1

2 and

E

[
H ;

k−1

∏
i=1

[`i p−si
i ,(`i +1)p−si

i )× [0,y)

]
= α0−ψ(p−s1

1 . . . p−sk−1
k−1 (y−β0)) (91)

at all points of continuity of the right hand side.

We can now prove Theorem 8. Let N ≥ 2 be a given integer. It follows at once
from the definition of H that the set

H0 = H ∩ ([0,1)k−1× [0,N))
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contains precisely N points. Let the integer h be determined uniquely by

ph−1
1 < N ≤ ph

1. (92)

Consider a rectangular box of the form

B(x1, . . . ,xk−1,y) = [0,x1)× . . .× [0,xk−1)× [0,y)⊆ [0,1)k−1× [0,N).

Similar to our technique in Section 10, we shall approximate each interval [0,xi),
where i = 1, . . . ,k− 1, by the subinterval [0,x(h)

i ), where x(h)
i = p−h

i [ph
i xi] is the

greatest integer multiple of p−h
i not exceeding xi, and then consider the smaller

rectangular box

B(x(h)
1 , . . . ,x(h)

k−1,y) = [0,x(h)
1 )× . . .× [0,x(h)

k−1)× [0,y)

as an approximation of B(x1, . . . ,xk−1,y). A slight elaboration of the corresponding
argument in Section 10 will show that the difference

B(x1, . . . ,xk−1,y)\B(x(h)
1 , . . . ,x(h)

k−1,y)

is contained in a union of at most k−1 sets of the type discussed in Lemma 14, and
so

|E[H ;B(x1, . . . ,xk−1,y)]−E[H ;B(x(h)
1 , . . . ,x(h)

k−1,y)]| ≤ k−1; (93)

note that since y ≤ N, it makes no difference whether we write H or H0 in our
argument.

It remains to estimate E[H ;B(x(h)
1 , . . . ,x(h)

k−1,y)]. To do so, we need to write each

interval [0,x(h)
i ), where i = 1, . . . ,h− 1, as a union of elementary pi-adic intervals,

each of length p−s
i for some integer s satisfying 0≤ s≤ h.

If x(h)
i = 1, then [0,x(h)

i ) is a union of precisely one elementary pi-adic interval
of unit length, so we now assume that 0≤ x(h)

i < 1.

Lemma 16. Suppose that 0≤ x(h)
i < 1, with

x(h)
i =

h

∑
s=1

bs p−s
i

as a pi-adic expansion. Then [0,x(h)
i ) can be written as a union of

h

∑
s=1

bs < hpi

elementary pi-adic intervals, namely b1 elementary pi-adic intervals of length p−1
i ,

together with b2 elementary pi-adic intervals of length p−2
i , and so on.
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Hence the set B(x(h)
1 , . . . ,x(h)

k−1,y) is a disjoint union of fewer than hk−1 p1 . . . pk−1
sets of the type discussed in Lemma 15. Hence

|E[H ;B(x(h)
1 , . . . ,x(h)

k−1,y)]|< hk−1 p1 . . . pk−1�k (logN)k−1. (94)

Combining (93) and (94), we conclude that

|E[H ;B(x1, . . . ,xk−1,y)]| �k (logN)k−1. (95)

Finally, rescaling the second coordinate of the points of H0 by a factor N−1, we
obtain a set

P = {(cn,N−1n) : n = 0,1,2, . . . ,N−1}

of precisely N points in [0,1)k. For every x = (x1, . . . ,xk) ∈ [0,1]k, we have

D[P;B(x)] = E[H0; [0,x1)× . . .× [0,xk−1)× [0,Nxk)]�k (logN)k−1,

in view of (95) and noting that 0 ≤ Nxk ≤ N. This now completes the proof of
Theorem 8.

Next we discuss Roth’s ideas in shaping this Halton construction to give a proof
of Theorem 7. As in the special case k = 2, one needs to introduce a probabilistic
variable. To pave the way for this, we shall modify the Halton point set somewhat.
Let N ≥ 2 be a given integer, and let the integer h be determined uniquely by

ph−1
1 < N ≤ ph

1, (96)

as before. For every i = 1, . . . ,k−1 and every n = 0,1,2, . . . , ph
i −1, we define c(i)

n

as before by (88) and (89). We then extend the definition of c(i)
n to all other integers

using periodicity by writing

cn+ph
i
= cn for every n ∈ Z,

write cn = (c(1)
n , . . . ,c(k−1)

n ), and consider the extended Halton point set

Hh = {(cn,n) : n ∈ Z}.

Remark. In Roth [35], as well as Chen [10], the construction of the set Hh is
slightly different, but the difference does not affect the argument in any way. Let
M = p1 . . . pk−1. One then defines c(i)

n for n = 0,1,2, . . . ,Mh− 1 by (88) and (89),
write cn = (c(1)

n , . . . ,c(k−1)
n ) for these values of n, and define cn for all other integer

values of n by the periodicity relationship cn+Mh = cn for every n ∈ Z.

Furthermore, for every real number t ∈R, we consider the translated Halton point
set

Hh(t) = {(cn,n+ t) : n ∈ Z}.
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It is clear that there is an average of one point of the translated Halton point set Hh(t)
per unit volume in [0,1)k−1 × (−∞,∞). For any measurable set A in [0,1)k−1 ×
(−∞,∞), we now let

E[Hh(t);A] = #(Hh(t)∩A)−µ(A)

denote the discrepancy of Hh(t) in A.
Consider a rectangular box of the form

B(x1, . . . ,xk−1,y) = [0,x1)× . . .× [0,xk−1)× [0,y)⊆ [0,1)k−1× [0,N).

As in the earlier proof of Theorem 8, we shall consider the smaller rectangular box
B(x(h)

1 , . . . ,x(h)
k−1,y) and, corresponding to (93), we have

|E[Hh(t);B(x1, . . . ,xk−1,y)]−E[H ;B(x(h)
1 , . . . ,x(h)

k−1,y)]| ≤ k−1. (97)

Next, we study E[Hh(t);B(x(h)
1 , . . . ,x(h)

k−1,y)] in detail, and require an analogue of
the expansion (60). It is not difficult to see that

E[H ;B(x(h)
1 , . . . ,x(h)

k−1,y)] = ∑
I1∈I1

. . . ∑
Ik−1∈Ik−1

E[Hh(t);I× [0,y)],

where I = I1× . . .× Ik−1 and where, for every i = 1, . . . ,k−1, Ii denotes the collec-
tion of elementary pi-adic intervals in the union that makes up the interval [0,x(h)

i )
in Lemma 16.

Corresponding to Lemma 6, one can show that each summand

E[Hh(t);I× [0,y)]

can be written in the form

ψ(p−s1
1 . . . p−sk−1

k−1 (t−βI))−ψ(p−s1
1 . . . p−sk−1

k−1 (t− γI)),

where the real numbers βI and γI depend at most on I and y, and where, for every
i = 1, . . . ,k− 1, the elementary pi-adic interval Ii has length p−si

i . Making use of
this, one can then proceed to show, corresponding to Lemma 7, that

∫ Mh

0
E[Hh(t);I′× [0,y)]E[Hh(t);I′′× [0,y)]dt = O

(
Mh

k−1

∏
i=1

p−|s
′
i−s′′i |

i

)

for any I′ = I′1× . . .× I′k−1 and I′′ = I′′1 × . . .× I′′k−1 where, for every i = 1, . . . ,k−1,

the elementary pi-adic intervals I′i , I
′′
i ∈Ii have lengths p−s′i

i and p−s′′i
i respectively.

One then goes on to show that

∫ Mh

0
|E[H ;B(x(h)

1 , . . . ,x(h)
k−1,y)]|

2 dt
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� ∑
I′1∈I1

. . . ∑
I′k−1∈Ik−1

∑
I′′1∈I1

. . . ∑
I′′k−1∈Ik−1

Mh
k−1

∏
i=1

p−|s
′
i−s′′i |

i

�k Mhhk−1.

Taking the bound (97) into account and then integrating trivially with respect to
x1, . . . ,xk−1, each over the interval [0,1), and with respect to y over the interval
[0,N), we conclude that

∫ N

0

∫ 1

0
. . .
∫ 1

0

∫ Mh

0
|E[Hh(t);B(x1, . . . ,xk−1,y)]|2 dt dx1 . . .dxk−1 dy

=
∫ Mh

0

(∫ N

0

∫ 1

0
. . .
∫ 1

0
|E[Hh(t);B(x1, . . . ,xk−1,y)]|2 dx1 . . .dxk−1 dy

)
dt

�k Mhhk−1N.

Hence there exists t∗ ∈ [0,Mh) such that∫ N

0

∫ 1

0
. . .
∫ 1

0
|E[Hh(t∗);B(x1, . . . ,xk−1,y)]|2 dx1 . . .dxk−1 dy

�k hk−1N. (98)

Finally, we note that the set Hh(t∗)∩([0,1)k−1× [0,N)) contains precisely N points.
Rescaling in the vertical direction by a factor N−1, we observe that the set

P∗ = {(z1, . . . ,zk−1,N−1zk) : (z1, . . . ,zk) ∈Hh(t∗)}

contains precisely N points in [0,1)k, and the estimate (98) now translates to∫
[0,1]k
|D[P∗;B(x)]|2 dx�k hk−1�k (logN)k−1,

in view of (96). This completes our brief sketch of the proof of Theorem 7.

14.2 Faure Point Sets

We now discuss Faure’s contribution. Suppose again that we wish to study Theorem
7 or 8 in arbitrary dimension k ≥ 2. Let p denote a prime such that8 p≥ k−1. For
every non-negative integer n ∈ N0, we write

n =
∞

∑
j=1

a(1)
j p j−1 (99)

8 The assumption that p≥ k−1 cannot be relaxed, as noted by Chen [11].
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as a p-adic expansion. Then we write

c(1)
n =

∞

∑
j=1

a(1)
j p− j. (100)

For i = 2, . . . ,k−1, we shall write

c(i)
n =

∞

∑
j=1

a(i)
j p− j, (101)

where the coefficients a(i)
j are defined inductively using the infinite upper triangular

matrix

B =



(0
0

) (1
0

) (2
0

) (3
0

)
· · ·(1

1

) (2
1

) (3
1

)
· · ·(2

2

) (3
2

)
· · ·(3

3

)
· · ·
. . .


(102)

made up of binomial coefficients.
It is convenient to use matrix multiplication modulo p to define the coefficients

a(i)
j when i > 1. For every i = 1, . . . ,k−1, consider the infinite column matrix

a(i) =



a(i)
1

a(i)
2

a(i)
3

a(i)
4
...


.

Then for every i = 2, . . . ,k−1, we write

a(i) ≡Ba(i−1) mod p;

in other words, we write

a(i)
1

a(i)
2

a(i)
3

a(i)
4
...


≡



(0
0

) (1
0

) (2
0

) (3
0

)
· · ·(1

1

) (2
1

) (3
1

)
· · ·(2

2

) (3
2

)
· · ·(3

3

)
· · ·
. . .





a(i−1)
1

a(i−1)
2

a(i−1)
3

a(i−1)
4

...


mod p.
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For every n ∈ N0, write

cn = (c(1)
n , . . . ,c(k−1)

n ).

The set
F = {(cn,n) : n = 0,1,2, . . .}

in [0,1)k−1× [0,∞) is usually called a Faure point set.
Analogous to Lemma 14, we have the following result.

Lemma 17. For all non-negative integers s1, . . . ,sk−1, `1, . . . , `k−1 and m such that
`i < psi holds for every i = 1, . . . ,k−1, the rectangular box

k−1

∏
i=1

[`i p−si ,(`i +1)p−si)× [mps1+...+sk−1 ,(m+1)ps1+...+sk−1) (103)

contains precisely one point of the Faure point set F .

To prove Lemma 17, we need a simple result concerning the matrix B.

Lemma 18. For the matrix B given by (102), we have, for every i = 1, . . . ,k−1,

Bi−1 =



(0
0

) (1
0

)
(i−1)

(2
0

)
(i−1)2

(3
0

)
(i−1)3 · · ·(1

1

) (2
1

)
(i−1)

(3
1

)
(i−1)2 · · ·(2

2

) (3
2

)
(i−1) · · ·(3

3

)
· · ·
. . .


.

Proof (Proof of Lemma 17). Suppose that suitable integers s1, . . . ,sk−1, `1, . . . , `k−1
and m are chosen and fixed. For a point (cn,n) to lie in the rectangle (103), we must
have

c(i)
n ∈ [`i p−si ,(`i +1)p−si) (104)

for every i = 1, . . . ,k−1, as well as

n ∈ [mps1+...+sk−1 ,(m+1)ps1+...+sk−1). (105)

Comparing (99) and (105), it is clear that the value of the coefficient a(1)
j for every

j > s1 + . . .+ sk−1 is uniquely determined. It therefore remains to show that there is
one choice of the vector

(a(1)
1 , . . . ,a(1)

s1+...+sk−1
)

that satisfies the requirement (104) for every i = 1, . . . ,k−1.
Note next that for every i = 1, . . . ,k−1, we have
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a(i)
1

a(i)
2

a(i)
3

a(i)
4
...


≡



(0
0

) (1
0

)
(i−1)

(2
0

)
(i−1)2

(3
0

)
(i−1)3 · · ·(1

1

) (2
1

)
(i−1)

(3
1

)
(i−1)2 · · ·(2

2

) (3
2

)
(i−1) · · ·(3

3

)
· · ·
. . .





a(1)
1

a(1)
2

a(1)
3

a(1)
4
...


mod p.

Let us consider the p-adic expansion

`i p−si = β
(i)
1 p−1 + . . .+β

(i)
si p−si .

If (104) holds, then in view of (100) or (101), we must have a(i)
j = β

(i)
j for every

j = 1, . . . ,si. This can be summarized by writing

Wi



a(1)
1

a(1)
2

a(1)
3

a(1)
4
...


≡



β
(i)
1

β
(i)
2

β
(i)
3
...

β
(i)
si


mod p, (106)

where the matrix Wi contains precisely the first si rows of the matrix Bi−1. Now
recall that a(1)

j are already uniquely determined for every j > S = s1 + . . .+ sk−1 by
(105), and clearly there are at most finitely many non-zero terms among these. The
system (106) can therefore be simplified to one of the form

Vi



a(1)
1

a(1)
2

a(1)
3
...

a(1)
S


≡



γ
(i)
1

γ
(i)
2

γ
(i)
3
...

γ
(i)
si


mod p, (107)

where the matrix Vi contains precisely the first S columns of the matrix Wi. On com-
bining (107) for every i = 1, . . . ,k−1, we arrive at a system of S linear congruences
in the S variables a(1)

1 , . . . ,a(1)
S , with the matrix given by

V =


V1

...

Vk−1

 .
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It is not difficult to see that for every i = 1, . . . ,k−1, we have

Vi =



(0
0

) (1
0

)
(i−1)

(2
0

)
(i−1)2 · · ·

(S−1
0

)
(i−1)S−1(1

1

) (2
1

)
(i−1) · · ·

(S−1
1

)
(i−1)S−2

. . .
...(si−1

si−1

)
· · ·
(S−1

si−1

)
(i−1)S−si

 ,

a matrix with si rows and S columns. It follows that the matrix V is of generalized
Vandermonde type, with determinant

∏
1≤i′<i′′≤k−1

(i′′− i′)si′ si′′ 6≡ 0 mod p,

in view of the assumption that p≥ k−1. Hence the system of S linear congruences
in the S variables a(1)

1 , . . . ,a(1)
S has unique solution. Recall once again that the coef-

ficients a(1)
j are already uniquely determined for every j > S, we conclude that there

is precisely one value of n that satisfies all the requirements. ut

The following analogue of Lemma 15 is a simple consequence of Lemma 18.

Lemma 19. For all non-negative integers s1, . . . ,sk−1 and `1, . . . , `k−1 satisfying
`i < psi for every i = 1, . . . ,k−1, and for every real number y > 0, we have∣∣∣∣∣E

[
F ;

k−1

∏
i=1

[`i p−si ,(`i +1)p−si)× [0,y)

]∣∣∣∣∣≤ 1.

To study Theorem 8, let N ≥ 2 be a given integer. It follows at once from the
definition of F that the set

F0 = F ∩ ([0,1)k−1× [0,N))

contains precisely N points. Let the integer h be determined uniquely by

ph−1 < N ≤ ph.

We can now deduce Theorem 8 from Lemma 17 and Lemma 19 in a way similar to
our deduction of the same result from Lemma 14 and Lemma 15 in Section 14.1,
noting that Lemma 16 remains valid with pi replaced by p. Indeed, rescaling the
second coordinate of the points of F0 by a factor N−1, we obtain a set

P = {(cn,N−1n) : n = 0,1,2, . . . ,N−1},

of precisely N points in [0,1)k and which satisfies the conclusion of Theorem 8.
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14.3 A General Point Set and a Digit Shift Argument

In this section, we briefly describe a rather general digit shift argument developed by
Chen [11] which enables us to establish Theorem 7 using Halton point sets discussed
in Section 14.1 or Faure point sets discussed in Section 14.2. Recall that these point
sets satisfy Lemma 14 and Lemma 17 respectively.

Let p1 ≤ . . . ≤ pk−1 be primes, not necessarily distinct, and let h be a non-
negative integer. We shall say that a set of the form

Z = {(cn,n) : n = 0,1,2, . . .} (108)

in [0,1)k−1 × [0,∞) is a 1-set of order h with respect to the primes p1, . . . , pk−1
if the following condition is satisfied. For all non-negative integers s1, . . . ,sk−1,
`1, . . . , `k−1 and m satisfying si ≤ h and `i < psi

i for every i = 1, . . . ,k− 1, the rect-
angular box

k−1

∏
i=1

[`i p−si
i ,(`i +1)p−si

i )×

[
m

k−1

∏
i=1

psi
i ,(m+1)

k−1

∏
i=1

psi
i

)

contains precisely one point of Z .
If the primes p1, . . . , pk−1 are distinct, then the Halton set H is a 1-set of every

non-negative order with respect to p1, . . . , pk−1. If the primes p1, . . . , pk−1 are all
identical and equal to p, then the Faure set F is 1-set of every non-negative order
with respect to p, . . . , p, provided that p≥ k−1.

The property below follows almost immediately from the definition.

Lemma 20. Suppose that h be a non-negative integer, and that Z is a 1-set of or-
der h with respect to the primes p1, . . . , pk−1. Then for all non-negative integers
s1, . . . ,sk−1 and `1, . . . , `k−1 satisfying si ≤ h and `i < psi

i for every i = 1, . . . ,k−1,
and for every real number y > 0, we have∣∣∣∣∣E

[
Z ;

k−1

∏
i=1

[`i p−si
i ,(`i +1)p−si

i )× [0,y)

]∣∣∣∣∣≤ 1.

Let N ≥ 2 be a given integer, and let the integer h be determined uniquely by

ph−1
1 < N ≤ ph

1. (109)

For any 1-set (108) of order h with respect to the primes p1, . . . , pk−1, the set

Z0 = Z ∩ ([0,1)k−1× [0,N))

contains precisely N points. Then it can be shown easily that the set

P = {(cn,N−1n) : n = 0,1,2, . . . ,N−1},
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of precisely N points in [0,1)k and which satisfies the conclusion of Theorem 8.
To study Theorem 7, we again choose the integer h to satisfy (109). However, we

need to modify the 1-set Z .
Let M denote the collection of all (k− 1)× h matrices T = (ti, j) where, for

every i = 1, . . . ,k− 1 and j = 1, . . . ,h, the entry ti, j ∈ {0,1,2, . . . , pi− 1}. Clearly
the collection M has (p1 . . . pk−1)h elements.

For every n = 0,1,2, . . . , let us write

cn = (c1(n), . . . ,ck−1(n)).

For every i = 1, . . . ,k−1, we consider the base pi expansion

ci(n) = 0.ai,1ai,2 . . .ai,hai,h+1 . . . .

For every T ∈M and every n = 0,1,2, . . . ,, we shall write

cT
n = (cT

1 (n), . . . ,cT
k−1(n)),

where, for every i = 1, . . . ,k−1, we have

cT
i (n) = 0.(ai,1⊕ ti,1)(ai,2⊕ ti,2) . . .(ai,h⊕ ti,h)ai,h+1 . . . ,

where ⊕ denotes addition modulo pi. It is not difficult to show that the shifted set

Z T = {(cT
n ,n) : n = 0,1,2, . . .}

in [0,1)k−1× [0,∞) is also a 1-set of order h with respect to the primes p1, . . . , pk−1.
Consider a rectangular box of the form

B(x1, . . . ,xk−1,y) = [0,x1)× . . .× [0,xk−1)× [0,y)⊆ [0,1)k−1× [0,N).

As in the earlier proof of Theorem 7, we shall again consider the smaller rectangular
box B(x(h)

1 , . . . ,x(h)
k−1,y), where, for every i = 1, . . . ,k−1, we replace the point xi by

x(h)
i = p−h

i [ph
i xi], the greatest integer multiple of p−h

i not exceeding xi. Then for
every T ∈M , we have

|E[Z T;B(x1, . . . ,xk−1,y)]−E[Z T;B(x(h)
1 , . . . ,x(h)

k−1,y)]| ≤ k−1,

so it remains to study E[Z T;B(x(h)
1 , . . . ,x(h)

k−1,y)] in detail. It can be shown that

∑
T∈M

|E[Z T;B(x(h)
1 , . . . ,x(h)

k−1,y)]|
2�k (p1 . . . pk−1)hhk−1,

from which it follows that∫ N

0

∫ 1

0
. . .
∫ 1

0

(
∑

T∈M
|E[Z T;B(x(h)

1 , . . . ,x(h)
k−1,y)]|

2

)
dx1 . . .dxk−1 dy
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= ∑
T∈M

(∫ N

0

∫ 1

0
. . .
∫ 1

0
|E[Z T;B(x(h)

1 , . . . ,x(h)
k−1,y)]|

2 dx1 . . .dxk−1 dy
)

�k (p1 . . . pk−1)hhk−1N.

Hence there exists T∗ ∈M such that∫ N

0

∫ 1

0
. . .
∫ 1

0
|E[Z T∗ ;B(x1, . . . ,xk−1,y)]|2 dx1 . . .dxk−1 dy�k hk−1N.

Finally, we note that the set Z T∗ ∩ ([0,1)k−1× [0,N)) contains precisely N points.
Rescaling in the vertical direction by a factor N−1, we observe that the set

P∗ = {(z1, . . . ,zk−1,N−1zk) : (z1, . . . ,zk) ∈Z T∗}

contains precisely N points in [0,1)k, and satisfies the conclusion of Theorem 7.

15 Group Structure and p-adic Fourier–Walsh Analysis

In Section 13, we exploit the group structure of the van der Corput set P(2h) to
sketch a proof of Theorem 7 for k = 2. The central argument there is to use Fourier–
Walsh analysis to show that an approximation D(h)[P(2h);B(x)] of the discrepancy
function D[P(2h);B(x)] satisfies the identity (85) which involves digit shifts. Under
certain hypothetical orthogonality assumptions, we can further deduce the simpler
identity ∫

[0,1]2
|D(h)[P(2h);B(x)]|2 dx = 4h

∑
l∈L(h)

∫
[0,1]2
|χ̃l(x)|2 dx.

Unfortunately, these hypothetical orthogonality assumptions do not hold.
To have a better understanding of the underlying ideas, it is necessary to study

p-adic versions of the analysis carried out earlier.
For simplicity, let us again restrict our attention to Theorem 7 for k = 2. Let p be

a prime, and consider the base p van der Corput point set

P(ph) = {(0.a1a2a3 . . .ah,0.ah . . .a3a2a1) : a1, . . . ,ah ∈ {0,1, . . . , p−1}}.

This is a finite abelian group isomorphic to the group Zh
p. We shall make use of the

characters of these groups. These are the base p Walsh functions, usually known as
the Chrestenson or Chrestenson–Levy functions. For simplicity, we refer to them all
as Walsh functions here.

To define these Walsh functions, we first consider p-ary representation of any
integer ` ∈ N0, written uniquely in the form

` =
∞

∑
i=1

λi(`)pi−1, (110)
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where the coefficient λi(`) ∈ {0,1, . . . , p− 1} for every i ∈ N. On the other hand,
every real number y ∈ [0,1) can be represented in the form

y =
∞

∑
i=1

ηi(y)p−i, (111)

where the coefficient ηi(y) ∈ {0,1, . . . , p−1} for every i ∈N. This representation is
unique if we agree that the series in (111) is finite for every y = mp−s where s ∈ N0
and m ∈ {0,1, . . . , ps−1}.

For every ` ∈N0 of the form (110), we define the Walsh function w` : [0,1)→R
by writing

w`(y) = ep

(
∞

∑
i=1

λi(`)ηi(y)

)
, (112)

where ep(z) = e2πiz/p for every real number z. Since (110) is essentially a finite sum,
the Walsh function is well defined, and takes the p-th roots of unity as its values.
It is easy to see that w0(y) = 1 for every y ∈ [0,1). It is well known that under the
inner product

〈wk,w`〉=
∫ 1

0
wk(y)w`(y)dy,

the collection of Walsh functions form an orthonormal basis of L2[0,1].
The operation ⊕ defined modulo 2 previously can easily be suitably modified to

an operation modulo p. Then (75) and (76) remain valid in this new setting.
As before, we shall use Fourier–Walsh analysis to study characteristic functions

of the form χ[0,x)(y). We have the Fourier–Walsh series

χ[0,x)(y)∼
∞

∑
`=0

χ̃`(x)w`(y),

where, for every ` ∈ N0, the Fourier–Walsh coefficients are given by

χ̃`(x) =
∫ x

0
w`(y)dy.

In particular, we have χ̃0(x) = x for every x ∈ [0,1). Again, as before, instead of
using the full Fourier–Walsh series, we shall truncate it and use the approximation

χ
(h)
[0,x)(y) =

ph−1

∑
`=0

χ̃`(x)w`(y).

This approximation in turn leads to the approximation

χ
(h)
B(x)(y) = χ

(h)
[0,x1)(y1)χ

(h)
[0,x2)(y2) =

ph−1

∑
`1=0

ph−1

∑
`2=0

χ̃l(x)Wl(y)
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of the characteristic function χB(x)(y). Here l = (`1, `2),

χ̃l(x) = χ̃`1(x1)χ̃`2(x2) and Wl(y) = w`1(y1)w`2(y2).

Consequently, we approximate the discrepancy function

D[P(ph);B(x)] = ∑
p∈P(ph)

χB(x)(p)− phx1x2

by

D(h)[P(ph);B(x)] = ∑
p∈P(ph)

χ
(h)
B(x)(p)− phx1x2

= ∑
p∈P(ph)

ph−1

∑
`1=0

ph−1

∑
`2=0

χ̃l(x)Wl(p)− ph
χ̃0(x)

=
ph−1

∑
`1=0

ph−1

∑
`2=0

(`1,`2)6=(0,0)

 ∑
p∈P(ph)

Wl(p)

 χ̃l(x),

noting that
∑

p∈P(ph)

W0(p) = #P(ph) = ph.

It is well known in the theory of abelian groups that the sum

∑
p∈P(ph)

Wl(p) ∈ {0, ph}.

We therefore need to have some understanding on the set

L(h) =

l ∈ [0, ph)× [0, ph) : l 6= 0 and ∑
p∈P(ph)

Wl(p) = ph

 .

Then
D(h)[P(ph);B(x)] = ph

∑
l∈L(h)

χ̃l(x).

We have the following special case of a general result of Skriganov [38].

Lemma 21. Suppose that the prime p satisfies p ≥ 8. Then the functions χ̃l(x),
where l ∈ L(h), are orthogonal, so that∫

[0,1]2
|D(h)[P(ph);B(x)]|2 dx = p2h

∑
l∈L(h)

∫
[0,1]2
|χ̃l(x)|2 dx. (113)

To progress further, we need to estimate each of the integrals
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[0,1]2
|χ̃l(x)|2 dx =

(∫ 1

0
|χ̃`1(x1)|2 dx1

)(∫ 1

0
|χ̃`2(x2)|2 dx2

)
(114)

on the right hand side of (113).

Lemma 22. We have∫ 1

0
|χ̃0(x)|2 dx =

1
4

+
1

4(p2−1)

p−1

∑
j=1

csc2 π j
p

. (115)

Furthermore, for every ` ∈ N, we have

∫ 1

0
|χ̃`(x)|2 dx = p−2ρ(`)

(
1
2

csc2 πλ (`)
p
− 1

4
+

1
4(p2−1)

p−1

∑
j=1

csc2 π j
p

)
, (116)

where

ρ(`) =
{

0, if ` = 0,
max{i ∈ N : λi(`) 6= 0}, if ` ∈ N,

denotes the position of the leading coefficient of ` given by (110) and λ (`) = λρ(`)(`)
denotes its value.

Proof. We have the Fine–Price formula, that for every ` ∈ N0,

χ̃`(x) = p−ρ(`)u`(x), (117)

where

u0(x) =
1
2

w0(x)+
∞

∑
i=1

p−i
p−1

∑
j=1

ζ
j(1−ζ

j)−1w jpi−1(x), (118)

and where for every ` ∈ N,

u`(x) = (1−ζ
λ (`))−1wτ(`)(x)+

(
1
2
− (1−ζ

λ (`))−1
)

w`(x)

+
∞

∑
i=1

p−i
p−1

∑
j=1

ζ
j(1−ζ

j)−1w`+ jpρ(`)+i−1(x). (119)

Here τ(`) = `− λ (`)pρ(`)−1, and ζ = e2πi/p is a primitive p-th root of unity. For
details, see Fine [21] and Price [32]. The right hand side of (119) is a linear combi-
nation of distinct Walsh functions. It follows that for every ` ∈ N, we have∫ 1

0
|u`(x)|2 dx =

1
(1−ζ λ (`))(1−ζ−λ (`))

+
(

1
2
− 1

1−ζ λ (`)

)(
1
2
− 1

1−ζ−λ (`)

)
+

∞

∑
i=1

p−2i
p−1

∑
j=1
|1−ζ

j|−2
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= 2|1−ζ
λ (`)|−2− 1

4
+

1
p2−1

p−1

∑
j=1
|1−ζ

j|−2. (120)

The identity (116) follows on combining (117) and (120) with the observation

|1−ζ
j|2 =

(
1− cos

2π j
p

)2

+ sin2 2π j
p

= 4sin2 π j
p

. (121)

Similarly, we have

∫ 1

0
|u0(x)|2 dx =

1
4

+
∞

∑
i=1

p−2i
p−1

∑
j=1
|1−ζ

j|−2 =
1
4

+
1

p2−1

p−1

∑
j=1
|1−ζ

j|−2. (122)

The identity (115) follows on combining (117), (121) and (122). ut

Lemma 23. For every ` ∈ N0, we have∫ 1

0
|χ̃`(x)|2 dx≤ p2−2ρ(`)

4
.

Proof. Suppose first of all that ` 6= 0. Then using the inequality that

csc2 π j
p
≤ p2

4

for every j = 1, . . . , p−1, we see from (116) that∫ 1

0
|χ̃`(x)|2 dx≤ p−2ρ(`)

(
p2

8
+

1
4

+
p2(p−1)

16(p2−1)

)
≤ p2−2ρ(`)

4
.

On the other hand, it follows similarly from (115) that∫ 1

0
|χ̃0(x)|2 dx≤ 1

4
+

p2(p−1)
16(p2−1)

≤ p2

4
=

p2−2ρ(0)

4

as required. ut

Combining (114) and Lemma 23, we conclude that∫
[0,1]2
|χ̃l(x)|2 dx≤ p4−2ρ(l)

16
,

where ρ(l) = ρ(`1)+ρ(`2). Thus we need to estimate the sum

∑
l∈L(h)

p−2ρ(l). (123)
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Here ρ(l) is a non-Hamming weight that arises from the Rosenblum–Tsfasman
weight in coding theory. The idea here is that if the distribution dual to P(ph) has
sufficiently large Rosenblum–Tsfasman weight, then we can obtain a good estimate
for the sum (123).

For a brief discussion on how we may complete our proof, the reader is referred
to the paper of Chen and Skriganov [14].

16 Explicit Constructions and Orthogonality

The first proof of Theorem 7 for arbitrary k ≥ 2 by Roth [35] is probabilistic in
nature, as are the subsequent proofs by Chen [11] and Skriganov [37]. The disad-
vantage of such probabilistic arguments is that while we can show that a good point
set exists, we cannot describe it explicitly.

On the other hand, the proof by Davenport [19] of Theorem 7 in dimension k = 2
is not probabilistic in nature, and one can describe the point set explicitly. However,
finding explicit constructions in dimensions k ≥ 3 turns out to be rather hard. Its
eventual solution by Chen and Skriganov [13] is based on the observation that pro-
vided that the prime p is sufficiently large, then the functions χ̃l(x), where l ∈ L(h),
are quasi-orthogonal, so that some weaker version of Lemma 21 in arbitrary dimen-
sions holds.

However, if we are not able to establish any orthogonality or quasi-orthogonality,
then our techniques thus far fail to give any explicit constructions in dimensions
k ≥ 3. To establish an appropriate upper bound, we may resort to digit shifts, and
our argument is underpinned by the general result below for arbitrary dimensions
k ≥ 2 for some suitably defined Walsh function Wl(t).

Lemma 24. For every l′, l′′ ∈ Nk
0, we have

∑
t∈Zkh

p

Wl′(t)Wl′′(t) =
{

pkh, if l′ = l′′,
0, otherwise.

This result can be viewed as an orthogonality result. We may therefore conclude
that orthogonality or quasi-orthogonality in some form is central to our upper bound
arguments here, whether we consider explicit constructions or otherwise.
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