Upper bounds in irregularities of distribution

W.W.L. Chen

§0. Introduction

The subject of irregularities of distribution arises from uniform distribution, but is of
independent interest, and owes its current prominance to the fundamental contribu-
tion of K.F. Roth [23-27] and W.M. Schmidt [28-38]. While the theory of uniform
distribution may be described as qualitative, the theory of irregularities of distribution
is definitely quantitative in nature, as one seeks to measure (with great precision in
many instances) the actual discrepancy (in a certain sense) incurred by a finite set
of points distributed within a finite region. There are lower bound results which say
that the discrepancy of a set of points cannot be less than a certain minimum value
which only depends on the number of points in question, and not where they are placed
within the finite region. On the other hand, there are upper bound results which say
that if the points are placed carefully, then the discrepancy cannot exceed a certain
maximum value which again only depends on the number of points in question. In
many instances, it has been shown that this upper bound is a constant multiple of the
lower bound.

The tools in this subject are diverse, and involve ideas in harmonic analysis, num-
ber theory, geometry, combinatorics and probability theory.

The purpose of this paper is to discuss some of the central ideas in the study of
upper bounds in the theory of irregularities of distribution. This paper is not intended
as a survey, and many results have been omitted. Also, only a few proofs are given in
detail; in many other instances, we shall discuss briefly the main ideas and omit the
(often very complicated) details.

In §1, we shall give an overview of the subject as a whole, and illustrate its devel-
opment from its infancy to the present day by mentioning some of the key results. We
also mention many extremely difficult problems which remain unsolved. In §§2-6, we
shall discuss the main ideas in the study of upper bound questions. We conclude this
paper by proving in the appendix the famous lower bound result of Roth [23] which
laid the foundations of the subject.

The material in this paper is the subject of a series of lectures given at Mac-
quarie University in the first half of 1992. T would like to express my thanks to Grigori

1



Kolesnik, Gerry Myerson, Peter Pleasants and Tom Schmidt for their continuing inter-
est and patience.

§1. Summary of Main Results

§1.1. The Classical Problem

Let Uy = [0,1) and U; = (0,1]. Suppose that P is a distribution of N points in Uf,
where K, N € N with K > 2. For every x = (v1,...,2x) € U{, let

B(x)=[0,z1) X ... x [0,2k);

in other words, B(x) denotes a K—dimensional aligned rectangular box with one corner
at the origin 0 and another corner at x. Furthermore, let

Z[P; B(x)] = #(P N B(x)),

and write

DIP; B(x)] = Z[P; B(x)] = Nu(B(x)),

where ;1 denotes the usual measure in R¥.
We are interested in the behaviour of the discrepancy function D[P; B(x)]. For
every W > 0, write

/W
DK.W.N) = inf ( /. |D[P;B<x>]|de> ,

where the infimum is taken over all distributions P of N points in UX. Also, write

D(K,00,N)= inf sup |D[P;B(x)],
‘p‘:NerlK

where, again, the infimum is taken over all distributions P of N points in UOK .
The presently known lower bound results are as follows. They can all be proved
by Roth’s orthogonal function method or modifications of it.

THEOREM 1A. (Roth [23]) We have
K—1
2

D(K,2,N) >k (logN)
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THEOREM 1B. (Roth [23]) We have

K-—1
2

D(K,00,N) >k (logN)

THEOREM 1C. (Schmidt [34]) (Haldsz [18])  We have

D(2,00,N) > log N.

THEOREM 1D. (Schmidt [37]) For every W > 1, we have

K—-1
2

D(K,W,N) >k w (logN)

THEOREM 1E. (Halasz [18]) We have

=

D(K,1,N) >k (logN)>.

THEOREM 1F. (Beck [6]) We have

D(3,00, N) > (log N)(loglog N)=~°.

These are complemented by the following presently known upper bound results.
For simplicity, assume that N > 2 always.

THEOREM 2A. (Davenport [16]) We have

Nl=

D(2,2,N) < (logN)=.

THEOREM 2B. (Halton [19]) (Hammersley [20]) We have

D(K, 00, N) < (log N)*~",

THEOREM 2C. (Roth [26]) We have

D(3,2,N) < logN.

THEOREM 2D. (Roth [27]) We have
K—-1
)T

D(K,2,N) <k (log N
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THEOREM 2E. (Chen [12]) For every W > 0, we have

K—-1

D(K,W,N) <g,w (logN) =>".
There remain the following very hard open questions.
QUESTION 1. Is it true that
K-1
for every K > 27
QUESTION 2. Isit true that
K-1
D(KvlvN) >K (10gN) 2
for every K > 27

QUESTION 3. What lower bound can one prove for D(K,W,N) if K > 2 and
0<W<1?

Question 1 is referred to as the “Great Open Problem” in the literature. Question
2 is equally hard. Question 3 appears to be even harder.

§1.2. Some Questions Raised by Schmidt’s Work

In the late 60’s and early 70’s, Schmidt developed his integral equations method and
proved many new results. To understand some of these results, let us first of all
rephrase Theorems 1B and 1C above. For simplicity, write U = [0, 1], treated as a
torus. Suppose that P is a distribution of N points in UX, where K, N € N with
K > 2. For every measurable set B C UK, let

Z[P; B] = #(P N B),

and write

D[P; B] = Z[P; B] — Nu(B),
where ;1 denotes the usual measure in R¥.
THEOREM 1B’. There exists an aligned rectangular box B C U such that
K-1
2 .

|D[P; B]| >k (log N)
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THEOREM 1C’. There exists an aligned rectangle B C U? such that

|D[P; B]| > log N.

Suppose now that we no longer require our rectangular boxes to be aligned. In
other words, suppose that we may allow orthogonal transformations of our rectangular
boxes. Then the situation is very different.

THEOREM 3A. (Schmidt [31]) There exists a tilted rectangle B C U2, of diam-
eter less than 1, such that .
|D[P; B]| > Na~°.

THEOREM 3B. (Schmidt [31]) There exists a tilted rectangular box B C U3, of
diameter less than 1, such that
[D[P: B)| > Ni~.

Although Schmidt’s method failed for K > 4 in the case of tilted rectangular
boxes, it worked well for circular balls.

THEOREM 3C. (Schmidt [31]) There exists a circular ball C C UX | of diameter
less than 1, such that .
|D[P;C]| >k, N2728"€.

It can be shown that the exponents in these results are essentially sharp.

THEOREM 4A. (Beck [2]) For every N € N, there exists a distribution P of N
points in UX such that for every rectangular box B C UX of diameter less than 1,

|D[P; B]| <x N?~7x (log N)°W.

THEOREM 4B. (Beck [2]) For every N € N, there exists a distribution P of N
points in UX such that for every circular ball C C UX of diameter less than 1,

ID[P; C]| <x N2~ 7% (log N)°W.

1.3. Some of Beck’s Work
8

Naturally, Schmidt’s work raised the question of the connection between tilted rectan-
gular boxes and circular balls. In the former case, we allow orthogonal transformation.
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In the latter case, the sets are invariant under orthogonal transformation. If one com-
pares Theorem 2B (in the case K = 2) and Theorem 3A, one might be tempted to
blame the “discrepancy” in the estimates on orthogonal transformation.

In arguably the greatest contribution to the subject to date, Beck [4,5] showed
essentially that the discrepancy arises from orthogonal transformation and/or from the
shape of the boundary surface.

Consider first of all the case when orthogonal transformation is permitted.

Let U = [0,1], treated as a torus. Suppose that P is a distribution of N points
in UX, where K, N € N with K > 2. Let A be a compact and convex body in UX.
For any real number A € (0, 1], any proper orthogonal transformation 7 in R¥ and any
vector u € UK let

AN 1,u) ={7(A\x) +u:x € A}

(note that A(\,7,u) and A are similar to each other), and let
Z[P; AN\, m,u)] = #(P N AN, T, 0)).
We are interested in the discrepancy function
DIP; A\, T,u)] = Z[P; A\, ,u)] — Nu(A(X, 7,u1)),

where 1 denotes the usual volume in U,
Let 7 be the group of all proper orthogonal transformations in R¥, and let dr be
the volume element of the invariant measure on 7, normalized such that fT dr = 1.

Let
1/2

1
Di(A,2,N) = inf < / / / ]D[P;A()\,T,u)]]2dud7d)\) :
IPI=N \Jo J1 JUuk

where the infimum is taken over all distributions P of N points in UX. Also, write

Di(A,00,N) = inf  sup |D[P; AT,
IPI=N xe(0,1]
TET
ueU¥

where, again, the infimum is taken over all distributions P of N points in UX.

Theorem 5A. (Beck [4]) Suppose that r(A) > N~'K where r(A) denotes the
radius of the largest inscribed ball of A. Then

1
2K |

N

D1(A,2,N) >, N
Theorem 5B. (Beck [4]) Suppose that r(A) > N~ where r(A) denotes the
radius of the largest inscribed ball of A. Then

D1(A,00,N) >, N2 3%
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These lower bound results are complemented by the following upper bound results.
On the one hand, we have

Theorem 6A. (Beck-Chen [9]) We have

1
2K |

=

Di(A,2,N) <a N

Also, similar to Theorems 4A and 4B, we have

Theorem 6B. (Beck [2]) We have

D1(A,00,N) <4 N2 2 (log N)°W.

Consider next the case when orthogonal transformation is not permitted. There
are technical difficulties when K > 3, so we shall concentrate on the case K = 2.

Let U = [0, 1], treated as a torus. Suppose that P is a distribution of N points in
U?, where N € N. Let A be a compact and convex body in U2. For any real number
A € (0,1] and any vector u € UX | let

Al u)={x+u:xe A}
(note that A(\,u) and A are homothetic to each other), and let
Z[P; A\ u)] = #(PNAA ).
We are interested in the discrepancy function
DIP; A(A\u)] = Z[P; A(A, u)] — Nu(A(A, u)),

where p denotes the usual volume in U2,

Let
1/2

Do(A,2,N) = inf (/Ol/U |D[P;A(A,u)]|2dud)\> ,

[PI=N

where the infimum is taken over all distributions P of N points in UX. Also, write

Dy(A,00,N) = inf  sup |D[P; A\ w)],
IPI=N xe(0,1]
ucU?

where, again, the infimum is taken over all distributions P of N points in UX.

Theorem 7A. (Beck [5]) We have
Do(4,2,N) >4 max{(log N)?,én(A)},
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where £ (A) depends on the boundary curve A of A.
Theorem 7B. (Beck [5]) We have

Do(A, 00, N) >4 max{(log N)Z,Ex(A)}.

Roughly speaking, the function {x(A) varies from being a constant, in the case
when A is a convex polygon, to being a power of N, in the case when A is a circular
disc. In fact, it is some sort of measure of how well A can be approximated by an
inscribed polygon.

Here, upper bounds are harder to obtain. We have, for example,

Theorem 8A. (Beck [5]) We have

Dy(A, 00, N) < 4 max{log N, &% (A)}.

Theorem 8B. (Beck—Chen [8]) Suppose that A is a convex polygon. Then
Do(A,00,N) <. (log N)**e.
We comment here that Theorem 8B is far from being best possible. In fact, it is
shown in [5] that the exponent can be replaced by 4 4+ e. However, the argument is

much more complicated.
There are the following open questions.

QUESTION 4. Close tha gap between the lower estimate in Theorem 5B and the
upper estimate of Theorem 6B.

QUESTION 5. Isit true that
Dy(A,00,N) >4 logN?

QUESTION 6. Study the higher-dimensional analogues of Theorem 7B. Is it true
that
Do(A,00,N) >4 (log N)* 2

Question 6 is sometimes referred to as the “Greater Open Problem”.

§1.4. The Effect of Dimension on Discrepancy

Consider Theorems 1A and 2D. It is quite clear that the order of magnitude of the
function D(K,2, N) depends on the dimension K. Consider also Theorems 5A and
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6A. It is again clear that the order of magnitude of the function D;(A,2, N) depends
on the dimension K.

Let us consider now a combination of these two problems. Again let U = [0, 1],
treated as a torus. Suppose that P is a distribution of N points in UX+L, where
K,L,N € N with K > 2. Let A be a compact and convex body in UX. For any
real number \ € (0, 1], any proper orthogonal transformation 7 in R¥ and any vector
ucUX, let

AN 1,u) ={7(A\x) +u:x € A}

as as §1.3. Also, for every y = (y1,...,yr) € U, let

B(y) =1[0,y1) x ... x [0,y1)

as in §1.1. We now consider the cartesian product
A\, 7,u) x B(y) e UKL,

and write

Z[P; A(A; 7,u) x B(y)] = #(P 0 (A(A, 7, u) x B(y))).

We are interested in the discrepancy function
D[P; A(A,7,u) x B(y)] = Z[P; A(A, 7,u) x B(y)] = Nux (A(A, 7, 0))pr(B(y)),

where p1x and o, denote respectively the usual volume in UX and UL.
Again, let 7 be the group of all proper orthogonal transformations in R¥, and
let d7 be the volume element of the invariant measure on 7, normalized such that

[;dr =1. Let
1/2

1
D(A,L,2,N) = inf (/// / |D[73;A()\,T,u)xB(y)]|2dydude)\) :
IPI=N \Jo JT JUux Jur

where the infimum is taken over all distributions P of N points in UX*%,
It follows easily from Theorem 5A that

Theorem 9. Suppose that r(A) > N~ where r(A) denotes the radius of the
largest inscribed ball of A. Then

D(A,L,2,N) > N27 2K,

N
-

The natural question is whether this trivial lower estimate is best possible. Note
that the order of magnitude of this estimate, while naturally dependent on the dimen-
sion K, is independent of the dimension L. This raised the question of whether the
order of magnitude of D(A, L,2, N) is independent of L. Rather surprisingly, this was
shown to be the case.



Theorem 10. (Beck—Chen [9]) We have

L

D(A,L,2,N) <4 N3 7%,

There are the following open questions.
QUESTION 7. Repeat the investigation on the L*°-norms.

QUESTION 8. Find other situations when dimension has interesting effect (or lack
of it) on the discrepancy.

Question 7 involves possibly first solving Question 4, but one might get away with
not first having to solve Question 1.

§1.5. Roth’s Disc—-Segment Problem

Suppose that P is a distribution of N points in Up, the closed disc of unit area and
centred at the origin 0. For every measurable set B in R2, let

Z[P; B] = #(P N B),

and write
D[P; B] = Z[P; B] — Nu(B N Up),

where p denotes the usual measure in R2.
For every real number r > 0 and every angle 6 satisfying 0 < 0 < 27, let S(r,6)
denote the closed half-plane

S(r,0) = {xeR?*:x-e(f) >r}.

Here e(f) = (cosf,sinf) and x -y denotes the scalar product of x and y.

Let

D(co,N) = inf ~ sup |D[P;S5(r,0)]|,
IPI=N g<r<n=1/2
0<h<2m

where the infimum is taken over all distributions P of N points in Uj.

Roth asked the question of whether D(oco, N) — +o0o as N — oo. This question
was answered in the affirmative by Beck.

Theorem 11A. (Beck [3]) We have

(NI

D(o00, N) > N#(log N)~3.
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More recently, using integral-geometric ideas, Alexander proved the following
sharper result.

Theorem 11B. (Alexander [1]) We have

D(c0, N) > N,

In fact, both Beck and Alexander studied the L?-norm of the discrepancy function.
For every W > 0, write

—1/2

27 T 1/W
D(W,N) = in ( / |D[P;S(r,9)]\wdrd9) ,
0 0

where the infimum is taken over all distributions P of N points in Uj.

Theorem 11C. (Alexander [1]) We have

D(2,N) > N.

Make the important observation that

1

1
- i  K=2
oKk 4

1
2

This provides a link between the disc—segment problem and the questions in §1.3.
Theorem 11C is complemented by the result below, which can be proved using the
methods for proving Theorems 6A and 10.

Theorem 12A. We have )
D(2,N) < N#1.
The situation is drastically different when W = 1. We shall prove the following

rather surprising result.
Theorem 12B. (Beck—Chen [10]) We have
D(1,N) < (log N)*.
Simply compare the lower estimate in Theorem 11C and the upper estimate in

Theorem 12B.
On the other hand, there are the following open questions.
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QUESTION 9. Is it true that

(log N)? < D(1,N) < (log N)??

QUESTION 10. Study the behaviour of D(W,N) for 1 < W < 2.

Question 10 is due to Schmidt at Oberwolfach 1990.

§1.6. Convex Polygons

Let us return to the questions in §1.3, but restrict ourselves to the special case when A
is a convex polygon in U?. More precisely, let U = [0, 1], treated as a torus. Suppose
that P is a distribution of N points in U2, where N € N. Let A be a convex polygon
in U?. For any real number X\ € (0, 1], any rotation 7 € [0, 27) and any vector u € U?,
let

AN\ 1,u) = {r7(Ax) +u:x € A},

and let
Z[P; A\, 1,u)] = #(PN AN, T,u)).

We are interested in the discrepancy function
DIP; A(A, 7, u)] = Z[P; A(A, 7, u)] = Nu(A(A, 7, 1)),

where p denotes the usual volume in U2,
For every W > 0, write

1w

1 27
D(A,W,N) = inf (// / \D[P;A(A,T,u)]\wdude)\> :
o Jo Juz

PI=N

where the infimum is taken over all distributions P of N points in U?.
As a special case of Theorem 5A and Theorem 6A, we have respectively

Theorem 13. Suppose that r(A) > N2, where r(A) denotes the radius of the
largest inscribed ball of A. Then

D(A,2,N) >4 Ni.
Theorem 14A. We have
D(A,2,N) <4 N7

12



Note now that a convex polygon is the interesction of a finite number of half-
planes. We can therefore adapt the ideas in the proof of Theorem 12B to prove the
following result.

Theorem 14B. (Beck—Chen [11]) We have

D(A,1,N) <4 (logN)>.

There are the following open questions.

QUESTION 11. Is it true that

(log N)? <4 D(A,1,N) <4 (log N)3?

QUESTION 12. Study the behaviour of D(A,W,N) for 1 < W < 2.
QUESTION 13. Study the corresponding problem when rotation is omitted.
QUESTION 14. Investigate the problem in higher dimensions.

Some progress is being made on Question 13. However, study of Question 14

appears to be severely hindered by our lack of knowledge on exponential sums, unless,
of course, the answer is of an unexpected nature.

§1.7. Comments

Naturally, the above represent only a selection of results in the subject. Progress up
to the mid-1980’s is covered in the monograph of Beck-Chen [7]. Progress since is
expected to be covered in the second half of a forthcoming monograph.

We shall discuss Theorems 2A and 2C in §2, Theorems 2B and 2D in §3, Theorem
8B in §4, Theorems 6B, 6A and 10 in §5 and Theorems 12B and 14B in §6. We shall
also prove Theorem 1A in the appendix.

§2. Davenport’s Method

We shall follow the notation in §1.1. We state Davenport’s theorem [16] as follows.
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THEOREM 2A. For every even natural number N, there exists a distribution P
of N points in U8 such that

/ |D[P; B(x)]|*dx < log N.
U3

More than 20 years later, Roth [26] was able to extend Davenport’s ideas to prove
an analogue in Ug.

THEOREM 2C. For every natural number N > 2, there exists a distribution P of
N points in U§ such that

/Us |D[P; B(x)]|*dx < (log N)?.

1

§2.1. Davenport’s Ideas

Let 6 be any irrational number having a continued fraction with bounded partial quo-
tients. A well-known result on diophantine approximation states that there exists a
positive constant ¢ = ¢(#), depending on 6, such that

v|[vf] > e >0 (2.1)

for all positive integers v, where || - || denotes the distance from the nearest integer. For
the remainder of this section, we assume that such a number 6 has been chosen and
fixed, and constants in the subsequent argument may depend on this choice of 6.

Lemma 2.1. Let Wi € Z and W € N. Then

2

oo 1 Wi4+W-—-1
Z; Z e(fnv)| < log(2W).
v=1 nle
Proof. It is well-known that
Wi+W-—1
> e(0nw)| < min{W, ||[v0] '},
n=Wj
so that
W 2
o 1 1+W -1 [e%e) . . ) .
S = Zﬁ S oelfnw)] <> 27 N min{W?, v )
v=1 n=W- m=1 2m—1<y<om
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For any pair m,p € N, there are at most two values of v in the interval 27~! <p < 2™
for which

pe2™™ < |lvb] < (p +1)e27™;

for otherwise the difference (11 — 1v2) of two of them would contradict (2.1). Hence

S < i imin{2_2mW2,p_2}

m=1 p=1
o o
= Z Zmin{Q‘QmWQ,p_2}+ Z Zmin{2_2mW2,p_2}
om <W p=1 2m>W p=1
o0
< YDt ) |rTwerweiy Y p?
om <W p=1 om > W p>2mW—1
< D1+ > 2T < log(2W). )
om < W 2m > W

We shall be concerned with (2— and) 3—dimensional euclidean space, and denote
a typical point by (z,y,z). The vectors i,j, k denote respectively (1,0,0),(0,1,0),
(0,0,1). The symbol A is reserved for non—degenerate lattices in the zy—plane. We
also let
Ao = Ap(0i+j, 1)

denote the lattice generated by #i + j and i.
For any lattice A and any rectangle of the form R = [0, X) x [Y7,Y3), let Z[A; R]
denote the number of points of A that fall into R, and write

E[A; R) = Z[A; R] — |d(A)| T A(R),

where d(A) is the determinant of the lattice A and A(R) is the area of R.

It is clear that |d(Ag)| = 1.

Let M € N. We are interested in the M points of Ay that fall into [0,1) x [0, M).
Let R* = [0,X) x [Y7,Y3), where 0 < X < 1 and where the integers Y7,Y> satisfy
0<Yi <Y, <M.

Let ¢(z) = x — [x#] — 1/2 when = ¢ Z and t(z) = 0 when = € Z. Then since
0 < X <1, we have

C[1-X (0<{a}<X),
weo- ) -v) = {10 SIS

so that
Yo—1

ZIAg; R = ) (X +1(0n — X) — ¢b(6n))

n=Y1
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for all but a finite number of values of X in the interval 0 < X < 1. We comment
here that the use of the function v is a technical device. One really wants to study the
characteristic function.

It follows that
Yo—1

E[Ag; R*] = ) ((fn — X) —1(6n)) (2.2)

’I’l:Y1

for all but a finite number of values of X in the interval 0 < X < 1. Note now that
¥ (x) has the Fourier expansion

o --T
v#0

so that the right-hand side of (2.2) has the expansion

> () (Z ewnv)) . 23)

v#£0 n=Y1

We would like to square the expression (2.3) and integrate with respect to X over
the interval (0, 1]. Unfortunately, the term 1 in (1 — e(—vX)) proves to be a nuisance.

In order to overcome this difficulty, Davenport introduced another lattice A, =
AL (—0i + j,1) and considered the 2M points of Ag U A{ in [0,1) x [0, M). Then, since
¥(x) is an odd function,

Z[Ao U AL R*] — 2A(RY)
Yo—1

= D (¥(On = X) = $(On) + (=bn - X) — ¢(~0n))

= > (W(0n— X) —p(In + X)) (2.4)

Tl:Y1

for all but a finite number of values of X in the interval 0 < X < 1. Now the right-hand
side of (2.4) has the expansion

3 (G(VX)Q;;(_VX)) (bz_l e(@nl/)) :

1/750 n:Y1

so that by Parseval’s theorem and Lemma 2.1,

2

1 oo Y>—1
. 1
/0 17100 U Mg B] — 2A(RY)PAX < 30 5| 3 e(my)
v=1 n:Y1

< log(2(Ys — V1)) < log(2M).
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If Y is any real number satisfying 0 < Y < M, then for R = [0, X) x [0,Y), we
take R* = [0, X) x [0, —[—-Y]), where —[—Y] is the least integer not less than Y. Then

Z[AO U A/O,R] = Z[Ao U Ag, R*]

and
A(R) — A(R") < 1,
so that )
/ Z[Ao U AL: B] — 2A(R)*dX < log(2M).
0

It follows that
M 1 5
/ / Z[Ao U Ab: B] — 2A(R)2AXAY < M log(2M).
0 0

Rescaling in the Y-direction by a factor 1/M, we see that the set
P = {({£on},n/M):0<n<M -1}

of 2M points in UZ satisfies the requirements of Theorem 2A.

§2.2. Roth’s Averaging Argument

Instead of introducing the extra lattice Aj to overcome the difficulty in (2.3), Roth [26]
devised an ingenious variation of the argument. This new idea, in its various different
forms and disguises, proved to be extremely important in later work on upper bound
theorems, as will be evident in the rest of this section and in §3, §5 and §6.

For any t € R, let ti + Ay be the lattice given by

ti+Ag={ti+v:veA};

in other words, ti + Ag is a translation in the z—direction of the lattice Ag. Then

E[ti+ Ao; R*] = 22_ (W(t+6n—X)—(t+6n))

n=Y1
has the expansion
Ya—1
1—e(—vX)
Z (T) (Z e(Gny)> e(vt),
v#0 n=Y;
so that by Parseval’s theorem,

2

1 o0 Y2—1
. . 1
/0 B[t + Ao; RY]|%dt < §_1j§ EY: e(0nv)
V= n=rij
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Hence Roth was able to prove

Lemma 2.2. Suppose that M € N. Suppose further that 0 < X} — X{ < 1 and
0<Y)—Y/ <M. IfR=[X}| X}) x [Y{,Y]), then

1
/ |E[ti + Ao: R]2dt < log(2M).
0

Note that the function E[ti + Ag; R] is periodic in t with period 1, so that we can
assume that X{ = 0 when proving Lemma 2.2. On the other hand, if we take the
special case R = [0, X) x [0,Y) where 0 < X <1and 0 <Y < M, then on integrating
trivially with respect to X and Y, we obtain

1 M 1
/ / / |E[ti + Ao: B][2dXdYdt < M log(2M).
0 0 0

Rescaling in the Y—direction by a factor 1/M, we see that for some t € [0, 1], the set
P={({t+6n},n/M):0<n<M—1}

of M points in UZ satisfies the requirements of Theorem 2A.

§2.3. Layers of Lattices
The following form of Lemma 2.2 is better suited for the proof of Theorem 2C.

Lemma 2.2°. Suppose that M € N. Suppose further that 0 < X — X{ < M~! and
0<Yy —-Y/ <1 IfR=[X{, X)) x[Y],Y]), then

1
/ |E[M i + M~ Ag; R]|°dt < log(2M);
0

in other words,

1
/ B[t + M~"Ag; R)2dt < log(2M).
0

Note that the first inequality is obtained from Lemma 2.2 by a change of scale.
On the other hand, the second inequality follows from the first, as we have, in view of
periodicity,

M
/ [E[M~4 + M~ Ag; B]|*dt < M log(2M).
0

18



The idea of Roth is to consider layers of 2-dimensional lattices in 3—dimensional
euclidean space.

If § is any subset of the 3—dimensional euclidean space, we define, for any vector
v,

vi+S={vi+v:veSh

in other words, v* + & is a translation by v* of the set S.
Roth considered sets 2 of the type

G (vk + wy, + A), (2.5)

v=p1

where p1, pa are non—negative integers, w, = (z,,,,0) is a vector in the xy—plane for
each v, and A is a lattice in the xy—plane. He also considered boxes B of the type

X X" x [V, Y")x [2,2"). (2.6)

If Q is a set of the type (2.5) and B is a box of the type (2.6) with p; < 7’ < Z" < py+1,
we write Z[€); B] for the number of points of Q that fall into B, and write

E[Q; B] = Z[Q; B] - |d(A)|”'V(B),

where V(B) is the volume of B.
The sets Q that Roth constructed are obtained from Ay as follows: Recall that
Ao = Ap(u, i), where u = 0i + j. For any non—negative integer m, write

Ap = 27™Ag = A(27™u, 27 ™).

Define
. 1 1
1, gq3=j3u+ sl

N[ —

Q=0 q=1iu q=
Then it is not difficult to see that for every non—negative integer m,

3
Am—l—l = U (2—qu + Am)

7=0
Roth defined g, 21, ... successively by 2y = Ag and

3
Qi1 = [ 4"k +27"qr + Q).
7=0

Then it is easily seen that

Lemma 2.3. €, has a representation of the type (2.5) with p; = 0, p; = 4™ —1 and
A = Ay. Furthermore, the projection of ), onto the xy—plane is A,,.
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The special boxes that Roth considered are defined as follows.

Definition. A box of the type [0,X) x [0,Y) x [0,Z) is said to be admissible with
respect to m if
0<X<27™ 0<Y <1, 0<Z<4™

Theorem 2C can then be easily be deduced from the following lemma.

Lemma 2.4. There exists a constant c¢g = co(f) such that for any non—negative
integer m,

1
/ / |E[su + ti 4+ Qpn; B][2dsdt < co(m + 1) (2.7)
o Jo
for every box B that is admissible with respect to m.

For let the natural number N > 2 be given. Choose m so that 2"~ ! < N < 2™,
Writing B = B(X,Y,Z) =[0,X) x [0,Y) x [0, Z), we have

27n
/‘/t/ /ﬁ / Elsu+ ti + Qm; B(X,Y, Z2)]?dXdY dZdsdt

<CO m—l—l

Hence there exist s*,t* satisfying 0 < s*,¢* < 1 such that

N2
/ / / |E[s*u + t"i 4+ Qn; B(X,Y, 2)][?dXdYdZ < co(m +1)°N.
By Lemma 2.3, there are exactly N points of s*u + t*i 4 £2,,, in the region [0,27™) x
[0, N27™) x [0,4™). If these are the points
27"z, N2"™y,,4™2,) (v=1,...,N),
then the set
P={(zv,yp,2,):v=1,...,N}

of N points in U$ satisfies the requirements of Theorem 2C.

We shall prove Lemma 2.4 by induction on m. For m = 0, the result is trivial if
the constant ¢ is chosen to be large enough. Suppose now that m > 0 and that (2.7)
holds for all boxes admissible with respect to m. Suppose now that the box

B* =[0,X*) x [0,Y*) x [0, 2*)

is admissible with respect to (m+1). Let the integer u satisfy pd™ < Z* < (u+1)4™.
Then 0 < pu < 3. If p = 0, then B* is admissible with respect to m. Hence we may
assume that 0 < g < 3. Then

pn—1

7=0
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where, for 0 <7 < p—1,
B =1[0,X*) x [0,Y*) x [74™, (T 4+ 1)4™)

and where
B =10, X") x [0,Y") x [ud™, Z7").

The idea is to use Lemma 2.2’ on the projection of B(™) onto the xzy—plane, with
M = 2™ and to note that —ud4™k + B** is admissible with respect to m.

Writing
pn—1
Ei(s,t) =Y E[su+ti+ Qpi1; B7]
7=0
and
EQ(S, t) = E[su + ti + Qm+1; B**],
we have

1 1
/ / |E[su+ti+Qm+1;B*]]2dsdt:Il + Iy + 2J,
o Jo

1 1
Iy = /O /0 |Es(s, t)]*dsdt,

1,1
J = / / Eq(s,t)Ea(s, t)dsdt.
o Jo

where, for § =1, 2,
and where

Consider first
p—=1 1 a1 9
I SMZ/ / |E[su + ti + Qi1; BT dsdt.
=0 0 0

Then writing Ry = [0, X*) x [0,Y™), we see that
E[su+ti+ Q413 B = E[su+ti +27™qr + Ap; Ro). (2.8)

In view of periodicity in s and ¢, we have

1 1
I < ,ﬂ/ / |E[st + i + Ap: Ro][2dsdt < m + 1 (2.9)
0 0

by Lemma 2.2” with M = 2. On the other hand,
1,1
I = / / |E[st + i + Qi r: B 2dsdt
0o Jo
1 g1 )
:/ / |Elsu+ti+2""q, + Qp; —pd"k + B**]|"dsdt
0o Jo
1 g1
:/ / |E[su + ti 4+ Qpn; —pd™k + B**]|*dsdt,
0o Jo
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in view of periodicity. Since —u4™k 4+ B** is admissible with respect to m, we have,
by the induction hypothesis, that

12 S C()(m —+ 1)2

To complete the proof of Lemma 2.4, it remains to show that J < m + 1. However, by
applying Schwarz’s inequality to J and using the estimates for I; and I3, we only get

J < (m+ 1)3/ ?. We therefore need extra ideas.
Note that by periodicity in s and ¢, we have

1 1
J = / / Ei(s+a2 ™ t+b27™)Eay(s+a27 ™t + b27™)dsdt (2.10)
o Jo

for every pair of integers a,b. Furthermore, by (2.8), Ei(s,t) is concerned with the
lattice A,,, and so it is in fact periodic in both s and ¢ with period 27=™. Hence,
summing (2.10) over the ranges 0 < a,b < 2" — 1, we have

1 1
4mJ:/ / By (s,)D(s, t)dsdt,
0 0

where
om_19om_1

D(s,t)= > Y Ep(s+a2 ™ t+b27").

a=0 b=0

By Schwarz’s inequality and (2.9),

(4 ) <<(m+1)/1/1 D(s, ) 2dsdt. (2.11)

We next show that D(s,t) is concerned with a very special 2, where “the sheets A are
exactly on top of each other”. More precisely,

D(s,t) = Z[su+ti+ Q'; B*] — 4™V (B*),

where ' is obtained from

27n_1 27n_1
U U @ mu+ 527+ Q)
a=0 b=0

by restricting the last coordinate to the interval [u4™, (u + 1)4™); in other words,

om_12m_1
O =pa"k+2 "q,+ | | @ a2+ Q)
a=0 b=0

:N4mk+2_mqu+9//7
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say. In view of Lemma 2.3, it is not difficult to see that Q" is of the form

4™ _1
Q"= (vk+An).
v=0
Let
B =10, X") x [0,Y") x [ud™, —[-Z7]).
Then
Zlsu+ti+ Q' B = Z[su+ti+ Q'; B*]
and

47V (B**) — 4™V (B*™)| < 2™.

Then using the projection onto the xy—plane, we have
D(s,t) = (—[-Z"] — pd™)E[su+ti+ 27 "q, + An; Ro] + O(2™).

Since 0 < —[—=Z*] — ud™ < 4™, we have, by (2.9), that

1 1
/ / D (s, £)2dsdt < 42™ (m + 1). (2.12)
0 0

Combining (2.11) and (2.12), we have J < m + 1. Lemma 2.4 follows.
§3. The Classical Method

We shall again follow the notation in §1.1. Let K > 2. We shall first prove the theorem
of Halton—-Hammersley [19,20].

THEOREM 2B. For every natural number N > 2, there exists a distribution P of
N points in UX such that

sup |D[P; B(x)]| <k (log N)* ™.

xeUK

Some 20 years later, Roth [27] was able to introduce extra probabilistic ideas to
prove the following stronger result.

THEOREM 2D. For every natural number N > 2, there exists a distribution P of
N points in UX such that

/U _ID[P; B(x))"dx < (log N) 7"
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§3.1. Some Old Ideas

Theorem 2B was proved in the case K = 2 by Lerch [22] in 1904, some 31 years
before the subject of irregularities of distribution was born. In 1935, van der Corput
[14,15] gave an alternative proof of this special case, using what is known nowadays
as the van der Corput sequence. The argument of Halton-Hammersley is essentially a
generalization of this idea to higher dimensions.
For notational convenience, we shall write K = k + 1 throughout this section.
The first idea is to consider, instead of sets of N points in Ué““, infinite sets of
points in U¥ x [0,00) such that there is an average of one point per unit volume. We
then consider those N points contained in Uéc x [0, N), and rescale the last coordinate
to obtain a set of IV points in U(],““.
We shall be concerned with boxes in U} x [0, 00) of the form

le...XIkXIo, (31)

where, for each j =1,...,k, I, is an interval of the form [o;, ;) and contained in Uy,
while Ij is an interval of the form [a, By) satisfying 0 < ap < fp.

The second idea is to look for distributions such that many boxes of the type (3.1)
contain the right number of points (i.e. equal to the volume of the boxes), while making
sure that all other boxes can be approximated to a finite union of these boxes.

Definition. Let p be a prime and s be a non—negative integer. By an elementary p—
type interval of order s, we mean an interval of the type [«, 3), contained in Uy, where

a and [ are consecutive integer multiples of p~%.

Let h be a non—negative integer, and let py,...,pr be primes, not necessarily
distinct.
Definition. By an elementary box of order h with respect to the primes p1,...,pg
in Uf x [0,00), we mean a set of the form (3.1), where, for each j = 1,...,k, I; is

an elementary p;—type interval of order s; (0 < s; < h), and where Ij is an interval
of the form [ag, By), with ag, By being consecutive non—negative integer multiples of

Pyt .. prk.
It is clear that any elementary box of order h in UF x [0,00) has volume 1.

Definition. By a special set of class h with respect to the primes py,...,py in UF x
[0, 00), we mean an infinite set Q of points in UF x [0, 00) which has the property that
every elementary box of order h with respect to the primes pq,...,px in U(’f x [0, 00)
contains exactly one point of O.

In 1935, van der Corput proved the following.
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Lemma 3.1. For each n € NU {0}, write
[&.9]
n = Zal,Q”_l (0<a, <2),
v=1

where the integers a, are uniquely determined by n, and write

z(n) = f: a,27".
v=1

Then the set
{(z(n),n) :n e NU{0}}

is a special set of class h with respect to the prime 2 in Uy X [0, 00) for any non—negative
integer h.

To prove Lemma 3.1, simply note that if I is an elementary 2—-type interval of
order s, then the relation z(n) € I is satisfied by precisely all the non—negative integers
of a residue class modulo 2°. Using this idea on different primes and using the Chinese
remainder theorem, we can prove the following generalization by Halton—-Hammersley.

Lemma 3.2. Suppose that pi,...,py are distinct primes. For each n € NU {0} and
each j =1,... k, write

(e @]
n=> a0 (0<a;, <p),
v=1

where the integers a;, are uniquely determined by n, and write

zj(n) = Z ajvp;”
v=1
Then the set
{(z1(n),...,zk(n),n) :n € NU{0}} (3.2)
is a special set of class h with respect to the primes py,...,px in UF x [0,00) for any

non—negative integer h.

For any special set Q and any box B of the type (3.1) in U¥ x [0, 00), let Z[Q; B]
denote the number of points of Q in B, and write

E[Q; B] = Z[Q; B] — u(B),

where p(B) denotes the volume of B. Note that if B = By U By, where By N By = (),
then
F(Q; B] = F[Q; By + F[Q; By, (33)
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Definition. Let s be a non—negative integer. Suppose that B* = I; x...x I xI*, where
foreach j =1,...,k, I; = [0,n;), where 0 < n; <1 and 7, is an integer multiple ofpf.
Suppose further that I* = [0,Y), where Y is positive but otherwise unrestricted. Then
we say that B* is a box of class s with respect to the primes py,...,px in U¥ x [0, 00).

Theorem 2B can be deduced from Lemma 3.2 and the following lemma.

Lemma 3.3. For any special set of class h with respect to the primes p1,...,pr in
Uk x]0,00) and for any box B* of class h with respect to the same primes in U x [0, 00),
we have

|E[Q; BY]| < (p1 ... px)h". (3.4)

Proof. Note that since each of the I; = [0,7;) is a disjoint union of at most p;h
elementary p;-type intervals of order at most h, B* is a disjoint union of at most
(p1...pr)h"* boxes of the type

I x ... x I x[0,Y), (3.5)

where, for each j = 1,...,k, I; is an elementary p;—type interval of order s; where
0 < s; < h. To prove (3.4), it suffices to prove, in view of (3.3), that for each box B of
the type (3.5), |E[Q; B]| < 1. Let Y denote the greatest integer multiple of pi*...p.*
not exceeding Y. Then [0,Y) = [0,Yy) U [Yp,Y). The box I; x ... x I x [0,Yp) is
the union of a finite number of elementary boxes of order h with respect to the primes
P1s. .-, Pk in UF x [0,00), and so contains the expected number of points of Q. Hence
E[Q; I} x...x I x[0,Yp)] = 0. On the other hand, the remainder I; X ... x I x [Yy,Y)
is contained in an elementary box of order A with respect to the primes py,...,pg in
Uk x [0,00), and so contains at most one point of Q@ and has volume less than 1. Tt
follows that |E[Q; 11 X ... x I x [Yy,Y)]] < 1, and the proof of the lemma is complete.

L]

We now deduce Theorem 2B. Let the natural number N > 2 be given. Let
P1,--.,pr be the first k& primes, and let Q be the set (3.2) in Lemma 3.2. We choose
integer h to satisfy

2h=1 « N < 2" (3.6)
For any x = (1,...,7;) € UF and for any Y satisfying
0<Y <N, (3.7)

let B(x,Y") denote the box
B(x,Y)=1[0,21) X ... x [0,2) x [0,Y).

Let y = y(x) = (y1,...,yr) be defined such that for every j =1,...k,

"

— h
y; = yi(zj) = —p; " [=pjw;l;
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in other words, y; is the least integer multiple of pj_h not less than z;.

Lemma 3.4. For any x € U} and any Y satisfying (3.7), we have

|E[Q; B(x;Y)] — E[Q; B*(y(x); Y)]| < k.

Proof. For j =0,1,...,k, for any fixed x € UF and for any fixed Y satisfying (3.7),
let
BY =0,y1) x ... x [0,9;) X [0,2j41) X ... X [0,25) x [0,Y).

Then clearly B = B(x,Y) and B®) = B*(y(x),Y). To prove Lemma 3.4, it suffices
to show that for every j =1,...,k, we have

|E[Q; BY)] — E[Q; BU~V]| < 1.

This follows from observing that BU~1 C BU) and that the complement of BU~1 in
BU) is contained in an elementary box of order h with respect to the primes py, ...,k
in Uk x [0,00). &

It now follows from Lemmas 3.3 and 3.4 that for any box B(x,Y) with x € UF
and 0 <Y < N, we have

|E[Q; B(x,Y)]| < (p1-..pr)h" + k. (3.8)
The box [0,1)* x [0, N) contains precisely the points
(z1(n),...,xzx(n),n) (n=0,1,...,N —1).

Hence the set
P ={(z1(n),...,zx(n),n/N):0<n < N}

satisfies, in view of (3.6) and (3.8),

sup [ D[P; B(x)]| < (log N)".

xEUf"'1

This completes the proof of Theorem 2B.

§3.2. Some Simple Truths

The existence of special sets of any class with respect to the primes pi,...,pr in
Uk x [0,00) has been studied more closely recently. Halton-Hammersley showed in
Lemma 3.2 that if pq,...,ps are distinct, then such sets exist. Faure [17] showed in
1982 that
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e if the primes pq,...,pr are all equal and if their common value is at least k, then
such sets exist; and
e if the primes pq, ..., px are all equal and if their common value is less than k, then
such sets do not exist unless h = 0.
I [13] observed in 1983 that
e if k =3 and p; = p2 = 2 and p3 = 3, then such sets do not exist unless h < 1; and
e if k =3 and p; = 2 and py = p3 = 3, then such sets do not exist unless h = 0.
So perhaps the following is true. However, any counterexample will be very interesting.

Conjecture. Suppose that pi,...,pg are primes, not all distinct but not all equal.
Then there exists a positive integer hg, depending at most on p1, ..., px, such that for
every h > hg, there are no special sets of class h with respect to the primes p1, ..., Dk
in U¥ x [0, 00).

§3.3. More Old Ideas

The oldest idea in probability theory concerns taking an average. Accordingly, we shall
modify the set Q used in §3.1 and average the discrepancy over such modifications. For
the sake of convenience, we make a few technical refinements along the way.

Again, let pq, ..., pr denote the first k primes. Consider the subset

{(z1(n),...,zx(n),n):0<n < (pr...px)"} (3.9)

of the set (3.2). We then extend the set (3.9) by periodicity as follows. Writing X(n) =
(X1(n), ..., Xg(n)), we define X;(n) =zj(n) forall j=1,...,kif0 <n < (p;.. )"
and let

X(n) =X(n+(pr...p)")

otherwise. Let
Q={(X(n),n) :neZ}. (3.10)

For any ¢t € R, we define the translation §2(¢) by
Q) ={(X(n),n+1t):n e Z}. (3.11)

Clearly 2(0) = Q. Also, note that the subset {(X(n),n+1t) :n+t > 0} of Q(t) is a
special set of class h with respect to the primes py,...,pr in UF x [0, 00).
For any box B in UF x [0,00), let Z[Q(t); B] denote the number of points of (t)

in B, and write
B[(t); B] = Z[0(t):; B] - u(B).

Then Theorem 2D can easily be deduced from the following lemma. Let
M =np;...pk. (3.12)
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Lemma 3.5. For any box B* of class h with respect to the primes pi,...,p; In
Uk x [0,00), we have

Mh
/0 EIQ(t); B2t < (4h)" (py . . pi) M.

Proof of Theorem 2D. For any natural number N > 2, let the integer h satisfy
(3.6). For any x = (x1,...,7) € UF and for any Y satisfying 0 < Y < N, let
B(x,Y)=[0,21) x...x [0,z) x [0,Y). Then in view of Lemmas 3.4 and 3.5, we have

Mh
/ |E[Q(t); B¥))?dt <, MR
0

for every B(x,Y’). Hence

M" N
/ / / B[Q(t): BY]PdxdYdt < NM"hE,
0 o Jur
so that there exists a real number t*, satisfying 0 < t* < M”", such that

N
/ / [E[Q(): BY)PdxdY < N(log N,
o Jux
It follows that the set
P={(X1(n),..., Xp(n), N ' (n+t*)): 0 <n+t* < N}
of N points in Ué““ gives the desired result. o

It remains to prove Lemma 3.5. To do this, it is convenient to express E[S)(t); B*]
as a sum of a finite number of 1-dimensional discrepancy functions.

We use R to denote a residue class. In particular, R(m,q) denotes the residue
class of integers congruent to m modulo ¢q. For any ¢t € R, we denote by t + R the set
{t+n:n € R}, and let Z[t + R; I*] denote the number of elements of ¢ + R that fall
into the interval I*, and write

Flt+ R;I*] = Z[t + R, I*] — ¢~ 11(I7), (3.13)

where ¢ is the modulus of the residue class R, and where [(I*) denotes the length of
I'*. Tt is obvious that

|F[t+ R; I"]| <1 (3.14)

always.
Suppose that B* = [0,m1) X ... x [0,m) x I*, where I* = [0,Y) and where, for
eachj=1,...,k, [0,n;) is a union of L; < p;h elementary p;—type intervals I; of order
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at most h and such that there are at most (p; — 1) elementary p,;-type intervals of any
one order in the union.

Lemma 3.6. Suppose that for each j = 1,...,k, I; is an elementary p;-type interval
of order s;, where 0 < s; < h. Then there is precisely one residue class R modulo
pit...pyF such that

EQ(t);I; x ... x Iy x I"] = F[t+ R; I"].

Proof. Suppose that 0 < n < (p;.. <Pk )" and X;(n) € I;. Then since X,(n) =
> L aj, vp; where n = =3 aj vp; , the numbers a;1,...,a;s, are determined

uniquely, but the remaining a;, are left arbitrary. Since pjj divides (p; .. .pk)h, it
follows from periodicity that those integers n € Z for which X;(n) € I; constitute
precisely a residue class modulo p . By the Chinese remainder theorem there exists
a unique residue class R modulo p7' ...p;* such that

X(n)e i x...x I if and only if n € R.

The lemma follows immediately. &

Suppose that for each j = 1,...,k, we have

O T’J U IJ ljs
lj=1

where for every [; = 1,...,L;, I, is an elementary p;—type interval. Then

Ly Ly
B = J ... U x. o x Iy, x I7).

Lh=1 =1
Writing 1 = (ly,...,1;) and writing R(1) for the residue class such that
EQt); Iy, X ... x Iy, x I"] = F[t+ R(1); I"],

we have, since F is additive,

E[Q(t); BY] = Z . Z Flt + RQ); I*],
li=1 lp=1

so that, omitting reference to I*, we have

Mh
/ EQ(); B Pdt
0
Ly Ii

— Z Z > Z/M F[t + RO|F[t + R(1")]dt (3.15)

=1 117=1 =1
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Clearly, application of (3.14) alone is not sufficient to give the desired result. Roth
proved the following.

Lemma 3.7. Suppose that for each j = 1,...,k, we have 0 < s’,s/ < h. Suppose
further that m’,m" € Z. Then, writing, for each j = 1,...,k, u; = min{s}, s/} and

dj = |s’ — s7|, we have

’ 12

M , 7
/ Ft + R(m',pi* ... p)F[t + R(m" , pi* .. pp~)]de
0

Mh
=p; . p / Flt+ R(m/,p{* ...p*)|F[t + R(m", p{* ...py*)|dt. (3.16)
0

Proof. We shall only show that

M}L / 17
[ / Flt + R(m', p P F[t + R(m”,p’* P")]dt
0

Mh
_prh / Flt + R(m/, p P))|F[t + R(m", p" P")]dt, (3.17)
0

where P’ = p3?...p,* and P” = p3* ...p,*. (3.16) then follows by repeating the argu-
ment on the other primes. To prove (3.17), we may assume, without loss of generality,
that s} < s/, so that u; = s}. Then the function F[t + R(m’,p;* P')] is periodic in ¢
with period pi* (pz .. .pk)h7 so that

Flt+ap (pz...px)" + R(m/, p* P')]

is independent of the choice of the integer a. Furthermore, since pi* (ps ... pk)h divides
M" the period of the integrand in (3.17), we have

Mh 17
i / Flt + R(m/, p PY)|F[t + ap (ps ... p)" + R(m”,p’* P")]dt
0

for every integer a. Hence

p* .,
pir =3 / Flt + R(m/, p PY)|F[t + ap™ (ps ... p)" + R(m”,p’* P")]dt
a=1 0
Mh
= [ Fle+ RO P + RO, p P *
0
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It now follows from (3.15) and Lemma 3.7 that if for each j = 1,...,k and [; =
1,...,Lj, the interval I;;, is of order s(j,1;), then in view of (3.14),

Mh
M—h/ E[Q(): Bt < o ... o,
0

where, for j =1,...,k,

L; Ly
—1s(4,15)—s(5,15)]
oy = 55 3% gy O

I=11"=1
J J
We can write
h o -7/
o — —1s(5,5)—s(5,17)]
= p; .
b=0 1<V <L
1</ <L;

min{s(j,15),5(1})}=b

If L; =1, we have 0; = 1. If L; > 1, then since there are at most (p; — 1) elementary
p;j—type intervals of any fixed order, we have

h N A - g1 >
oy<2y > T < ah, - )Y < b
b=1

1< <L; d=0
1<1/<L;
b=s(5,1})<s(5,l})

This completes the proof of Lemma 3.5.

§3.4. More Simple Truths

The same construction by Roth is sufficient to give Theorem 2E, but not sufficient to
prove it. To prove Theorem 2E, we need to consider a whole class of distributions
similar to that constructed by Roth, and use induction on both A and the dimension
k.

On the other hand, recall §3.2. If p; = ... = pr > k, then Faure showed that
special sets of any class with respect to pi,...,pr in UF x [0,00) exist. However,
Roth’s method using the variable ¢ fails to give an alterntaive proof of Theorem 2D.
In fact, I [13] showed that there is a way to give a proof of Theorem 2E, the stronger
version of Theorem 2D, using special sets described in this section, as long as such sets
can be shown to exist.
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4. A Combinatorial and Geometric Approach

In this section, we consider the problem of convex polygons, and prove a result which
will imply Theorem 8B. Let [ > 2, and let § = (01, ...,60;) satisfy 0 < 6; < ... < 6, <.
For each i = 1,...,l, let e; = (cosf;,sinf;), and denote by POL™(8) the family
of convex polygons A C R? such that each side of A is parallel to one of the given
directions e;.

Theorem 8C. For every € > 0, there exists an infinite discrete set Q C R?2 such that
for every A € POL™(8) with d(A) > 2,

#(QNA) — pu(A)] <1e (log d(A))™*,
where d(A) denotes the diameter of A.

The proof of Theorem 8C is based on a combination of combinatorial and geometric
arguments. We shall duscuss the (short) combinatorial part in §4.1 and the (lengthy)
geometric part in §4.2.

§4.1. A Combinatorial Lemma
The combinatorial part of the argument is summarized by the following lemma.

Lemma 4.1. Suppose that X = {xi,...,x,} is a finite set. For i = 1,2,..., let
Yo = Yl(z) U YQ(Z) U... be a partition of X; in other words,

x=Ur"

=1

is a union of mutually disjoint sets Yj(i). For every k = 1,...,p, let a, € [0,1]. Then
for every € > 0, there exists a positive constant c(€), depending only on €, and integers
ai,...,ap € {0,1} such that

Z (ap — ag)| < c(e)it™e (4.1)

spey)
for every i > 1 and j > 1.

The construction of the integers ay, is based on the well-known result in linear alge-
bra that a system of homogeneous linear equations with more variables than equations
has a non-trivial solution.
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Let a = (a1, ...,0p) € [0,1]P. We shall construct a sequence
Qs Ay, Oy ey 0, = (A1 e, O ), (4.2)
of vectors in [0, 1]? with the following properties. Let
X, ={xr e X:ay, €{0,1}}.

Then we need

XV+1 ; XV7 (43)
ary €1{0,1} = apy = ap i1, (4.4)
and
D, = ) Gk (4.5)
rrey s

for all 7 and j with #(Yj(i) N X,) > c(e)itTc. We shall construct the sequence (4.2) by
induction.
Let ay = a. Suppose that «, has been defined and X, in non-empty. Let

2y = {Yj(i) 4,5 > 1 and #(Yj(i) NX,) > c(e)it™e}

We claim that
#Z, < #Xo. (4.6)

To see this, note that Yj(i) N Yk(i) = () whenever j # k, so that

#2, =3 #{:#0X) > (@it <Y X0 ux,

— — c(e)ilte

if we choose

=1
cle) = Z e < o0
=1
For kK = 1,...,p, let yr be a real variable, and consider the system of linear

equations

S owm=0 ez,
zr€Y;nX,

and with y, = 0 for all z;, € X \ X,. In view of (4.6), this system has more variables
than equations, and so has a non-trivial solution y = (y1,...,yp).
Suppose that tg is the largest positive value for which the inequalities

0<ar,+toyr <1 (7 € X))
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hold. For k =1,...,p, let

Ak v41 = Oy + toyk
Then (4.3) clearly holds, in view of the maximality of t;. On the other hand, (4.4)
follows on noting that if ay, € {0,1}, then 2 € X \ X, and so yx = 0. It now follows
from (4.3) that the sequence o, a;, s, ... will remain constant after a finite number

of steps (s steps, say). Then X; = ) and the vector o, has coordinates 0 and 1 only.
For every k =1,...,p, we now let ar, = oy 5. Then it follows from (4.4) and (4.5) that

(4.1) holds for all Yj(i) € Y satisfying i > 1 and j > 1. This completes the proof of
Lemma 4.1.

§4.2. A Geometric Lemma

We shall consider the family POL>(0;z1,22) of convex polygons A C R? such that
each side of A is parallel to one of the given directions e; or parallel to one of the
coordinate axes x1 or xo. Our aim in this section is to approximate the characteristic
function of an arbitrary polygon in POL>(8; 21, z2) by those of some special geometric
objects. We shall therefore need to define these special objects first.

Definition. Suppose that n = (ny,ns) € Z2. By a special rectangle of order n, we
mean a rectangle of the form

[m12”1, (m1 + 1)2”1) X [m22”2, (mg —+ 1)2”2), (47)

where m = (my,my) € Z2. We denote by SR(n) the family of all special rectangles of
order n.

Definition. Suppose that 1 < i < [. By a triangle of type 7, we mean a triangle with
sides parallel to x1,z2 and e;.

Suppose that A; is a triangle of type ¢, where 1 < i < [. Suppose further that tgl)

and tl(-2) denote respectively the lengths of the sides of A; parallel to z1 and x5. Let

_

)\i — T o\
¢

and note that the value of \; is independent of the choice of the triangle A;. Also, for

1=1,...,1, write
5 — -1 (6; <7/2),
1 (0; > m/2).

Naturally, we may assume, without generality, that 6; # 7/2 for any i = 1,...,1[.
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For any ¢ = 1,...,l and any n € Z, let A(i,n) denote the rectangular lattice
generated by (2”)\1/2 0) and (0, 2”)\;1/2); in other words, the lattice of points

u(i,n,m) = (m2"A\1 %, me2" A7) (m = (mq,my) € Z2).

For convenience of notation, let E; = (1,0) and Eo = (0, 1).

Definition. Suppose that 1 < ¢ <[ and n € Z. By a special triangle of type ¢ and
order n, we mean a triangle with vertices

u(i,n, m), u(i,n,m+ §;Eq), u(i,n,m+ Es),
or a triangle with vertices
u(i,n, m), u(i,n,m— §;E;), u(i,n,m— Es),

where m € Z2. We denote by ST(i,n) the family of all special triangles of type i and
order n.

Definition. Suppose that 1 <i <[ and j = 1,2. By a parallelogram of type (i, j), we
mean a parallelogram with sides parallel to e; and z;.

For i =1,...,1, let ¢} denote the linear transformation of determinant 1 repre-
sented in matrix notation by

w* T o )\3/2 —51)\3/2 T
% T - 0 )\;1/2 T .

Let U? denote the unit square [0, 1]2. Then it is not difficult to see that P = {1} (x) :
x € U?} is a parallelogram with vertices

u(i,0,0), u(i,O,El), u(i,(), —5iE1 —I—Eg), u(i,(),(l - 51>E1 +E2)

Definition. Suppose that 1 < i <[ and n € Z2. By a special parallelogram of type
(i,1) and order n, we mean the image under v of a special rectangle of the form

(4.7), where m = (m1,ms) € Z2. We denote by SP(i,1,n) the family of all special
parallelograms of type (7,1) and order n.

Similarly, for ¢ = 1,...,1, let 97" denote the linear transformation of determinant
1 represented in matrix notation by

w** T _ /\ZI/Q 0 T
7 T - _(51')\1'_1/2 )\i—l/2 T .
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Again, it is not difficult to see that P;* = {¢7*(x) : x € U?} is a parallelogram with
vertices

u(i,0,0), u(i,O,Eg), u(i,O,El — (51'E2), u(i,O,El + (1 — (SZ)EQ)

Definition. Suppose that 1 < i <[ and n € Z?. By a special parallelogram of type
(7,2) and order n, we mean the image under ¥;* of a special rectangle of the form
(4.7), where m = (my,ms) € Z2 We denote by SP(i,2,n) the family of all special
parallelograms of type (i,2) and order n.

We shall also frequently refer to special rectangles as special parallelograms of type
(0,0). Also, for any set B C R?, let xp denote the characteristic function of B. We
shall prove

Lemma 4.2. Suppose that A € POL>(0;x1,x2). Then there exist special triangles
T/,...,T), and TY{,...,Ty; of types € {1,...,l}, special parallelograms Pj,...,P)
and P{',... Py of types € {(0,0)} U {(é,4) : ¢ = 1,...,1l and j = 1,2} and signs

€y € €0, 00,0, ., 0% € {£1} such that

Y m YN
m n M N
S exr 4 0pXpy < Xa < > elxy + Y SaX Py (4.8)
v=1 p=1 v=1 Bg=1
and

M N m n
ST+ 6Py = eu(T) = §5u(Ph) < Llog(d(A) +2).
v=1 /=1 v=1 p=1

Furthermore, these special objects can be chosen in such a way that

max{d(T}), d(P}). d(T.)). d(P})} < d(4)

and the numbers m, M,n, N satisfy
max{m, M} < llog(d(A) + 2)
and

max{n, N} < [(log(d(A) + 2))°.

The first step in the proof of Lemma 4.2 is to reduce the problem to one of
investigating rectangles and triangles.
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Lemma 4.3. Every A € POL™(8;x1,x2) is representable in the form

v=1

q1 q2
A=(PLURUP;UP)\ URgu<UTO :
B=1

where
i) Py,..., Py are special rectangles of the same order and for every a = 1,...,4,
d(P,) < 3d(A);
ii) for every B =1,...,q1, Rp is an aligned rectangle and d(Rg) < 5d(A);
iii) for every v =1,...,q2, T, is a triangle of type € {1,...,1} and d(T,) < d(A);
iv) ¢ <41+ 8 and g2 < 4l + 6; and
v) Rg (B=1,...,q1) and T, (v =1,...,qz) are pairwise disjoint (in the sense that
the intersection has measure zero).

Proof. For j = 1,2, denote the projection of A onto the z;-axis by AU and let LY
denote the length of the interval AY). Suppose that n; € Z satisfies 27~ < LU) < 275,
Then the interval AU) is contained in the union of at most two intervals of the type
[m;2™, (m; + 1)2"], where m; € Z. Let n = (nj,n2). Then A is contained in the
union of at most four special rectangles of order n. Denote these rectangles by P,
(a =1,...,4) with the convention that they may not be distinct, and note that

d(Pa) — (22n1 +22n2)1/2 < (4d2 +4d2)1/2 < 3d,

where d = d(A). Suppose now that P = P, U...UP,. For j = 1,2, denote by P\ the
projection of P onto the x;—axis. Since A is convex, it has at most (2 + 4) vertices.
It follows that if we draw a straight line parallel to the x;—axis through each of these
vertices, these lines will give a decomposition of A into at most two triangles and at
most (20 4+ 1) trapeziums. Let B denote one of these triangles or trapeziums, and for
j=1,2, let BY denote the projection of B onto the xj—axis. Clearly

BM x B® =BuT' UT",

where T and T" are disjoint triangles of types € {1,...,l} and with diameters not
exceeding d(A). Furthermore,

PY x B? = (BYW x B@)UR UR",

where 7" and T" are disjoint rectangles with diameters not exceeding ((4d)? + d2)1/ 2,
Clearly A C P x A®) and (PM x A®)\ A is a (pairwise disjoint) union of at most
(41 + 6) triangles of type € {1,...,l} and (4l + 6) aligned rectangles. Finally, observe
that P\ (PM) x A®) is a union of at most two disjoint rectangles of diameter not

exceeding ((4d)? + (2d)2)1/2. &

Our next step is clearly to investigate these rectangles and triangles obtained from
Lemma 4.3. We first of all study the rectangles.
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Lemma 4.4. Suppose that R is an aligned rectangle.
i) There exist an integer s < (log(u(R) + 2))* and mutually disjoint special rectan-
gles R}, ..., R, such that

O R;CR
B=1

pl BV U RS =1
B=1

i) There exist mutually disjoint special rectangles RY, ..., Ry, with u(Rj) < 4u(R)
for every 3 = 1,...,4, an integer t < (log(u(R) +2))* and mutually disjoint
special rectangles R, ..., R} such that

t
RC(R{uU...uR)\ | | R}
B=5

t
pl | (RIU.URDN [ JRE) | \R| <L
B=5

The proof of Lemma 4.4 is based on the following simple one—dimensional result.
By a special interval, we mean an interval of the type [m2", (m+1)2"), where m,n € Z.
Clearly, special rectangles are simply the cartesian product of two special intervals.

Lemma 4.5. Suppose that [a,b) is an interval in R. Then for every natural number
D, there exist special intervals Iy, ..., Ip such that

and

Here 119 denotes the usual measure on R.

Proof. Let I; denote the longest special interval in [a,b). We then define I, for a > 2
inductively such that

i) I, is the longest special interval in [a,b) \ ([1 U...UI4_1);

ii) I; U...UI, is an interval; and
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iii) if [a,b) \ (I3 U...U I,_1) is a union of two disjoint intervals, then I, belongs to
the longer of the two (any one if of equal length).

Clearly uo(I1) > (b — a)/4. Indeed, if n € Z satisfies 2" < b —a < 272 then

2" > (b—a)/4 and so there exists m € Z such that [m2", (m+1)2") C [a,b). A similar

argument will give the inequality po(I) > po([a,b) \ (I1U...UI4—1))/8. The lemma

follows easily. &

Proof of Lemma 4.4. Suppose that R = [a1,b1) X [ag2,b3). For j = 1,2, we now
apply Lemma 4.5 to the interval [a;, b;) and obtain special intervals I fj ), e ,Ig;, with
D; < log(p(R) + 2), such that

D;
U 1) C la;,b5)
a;=1

and

D,
g , b, —a;
b | | 1) < J__7J
/’LO [aJ7 ])\ o — QM(R)

Otj:].

The family of special rectangles
Iéll) XI(SZ) (1<a; <Djand1<a;<Ds)

clearly satisfies the requirements of (i). To prove (ii), note first of all that for j = 1,2,
if n; € Z satisfies 2ni—t < a; < 2", then

[aj, b;) C [m;2"7, (m; +2)2"7)

for some m; € Z. It follows that there exist four mutually disjoint special rectangles

5., Ry such that R C R{ U...URj. Obviously, for every 8 =1,...,4, u(Rj) <
4u(R). Furthermore, the set (R} U...U RJ) \ R is the disjoint union of at most four
aligned rectangles. Applying (i) to each of these completes the proof. &

Next we study the triangles arising from Lemma 4.3. Note that they are of types
e{1,...,1}.

Definition. Suppose that 1 < ¢ < [. By a nice triangle of type ¢, we mean a triangle
which is the intersection of a special triangle T of type ¢ and a half—plane with the
boundary parallel to one of the sides of T™*.

Suppose that 1 < ¢ < [, and that T is a triangle of type 7. Let Ty C T be the
largest inscribed special triangle of type i. Extending the edges of T to the boundary
of T, we see that T is the disjoint (in the sense of measure) union of 7 and at most
three trapeziums and three parallelograms. Each of these trapeziums is clearly the
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disjoint union of a nice triangle of type ¢ and a parallelogram. Note also that all the
parallelograms are of types € {(0,0), (¢,1), (¢,2)}. To summarize, we have

Lemma 4.6. Suppose that 1 < ¢ <[, and that T is a triangle of type i. Then T is
the disjoint union of one special triangle of type i and at most three nice triangles of
type i and six parallelograms of types € {(0,0), (i,1), (i,2)}.

It follows that to handle the triangles arising from Lemma 4.3, we need to inves-
tigate parallelograms of various types as well as nice triangles. Recall now that special
parallelograms of type (i, j) and order n are obtained from special rectangles of order
n by a linear transformation of determinant 1. The following analogue of Lemma 4.4
is therefore obvious.

Lemma 4.7. Suppose that 1 <1i <, and that j = 1,2. Suppose further that P is a
parallelogram of type (i, 7).

i) There exist an integer s < (log(u(P) +2))* and mutually disjoint special paral-
lelograms P, ..., Pl of type (i, j) such that

OPégP
B=1

S

p|lP\IUPs) | <t
B=1

ii) There exist mutually disjoint special parallelograms P/, ... P}’ of type (i, j), with

p(Py) < 4u(P) for every 8 =1,...,4, an integer t < (log(u(P) + 2))* and mutu-
ally disjoint special parallelograms PY', ..., P}’ of type (i,j) such that

t
pc(Pfu..upP)\ (] Py
8=5

pll(PruuPON [ JPS||\P] <L

It remains to investigate nice triangles.

Lemma 4.8. Suppose that 1 <i <[, and that T is a nice triangle of type 1.
i) There exist an integer s < (log(u(T) + 2)) and mutually disjoint special triangles
Ty{,..., T, of type i and parallelograms Pj, ..., P. of types € {(0,0), (¢,1), (¢,2)}

such that . .
(07)- (07
v=1 v=1
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(n((07)(27)

ii) There exist a special triangle T{ of type i, with d(T}') < 4d(T), integers t,q <
(log(u(T) 4+ 2)) and mutually disjoint special triangles T{',...,T]" of type i and
parallelograms Py, ..., P, of types € {(0,0), (3,1), (i,2)} such that

rem((Ur)e(9e))
(U)o (9)) o) =

Proof. (i) will follows if we can prove that for every natural number D, there exist
mutually disjoint special triangles T7,...,Tp of type i and parallelograms P;,..., Pp
of types € {(0,0), (4,1), (¢,2)} such that

<u©1 Ty) : Clp”) =1 (4.9)
' (T\ <<Ql Ty) N (VQ P”))) < 47Pu(T). (4.10)

To prove (4.9) and (4.10), note that T', being a nice triangle of type i, is the intersection
of a special triangle T of type ¢ and a half-plane H with boundary parallel to one of
the sides of T'. Let v/ and v denote the vertices of T on the boundary of H, and let
c denote the third vertex of T. Suppose that T} C T is the largest inscribed special
triangle of type ¢. Then c is a vertex of Ty and u(Ty) > wu(T)/4. Let v} and v{
denote the two other vertices of T7. The trapezium with vertices v/, v”, v}, v/ is then
clearly the disjoint union of a nice triangle T} of type 7 and a parallelogram P; of type
€ {(0,0), (i,1), (4,2)}. Obviously u(77) < u(T)/4. We now repeat the argument to 77
and obtain a special triangle T5 of type ¢, a nice triangle T3 of type i and a parallelogram
P,, mutually disjoint and such that 7] = T, U Ty U Py and p(Ty) < w(T7)/4. After
D steps, we obtain (4.9) and (4.10). (i) now follows from a suitable choice of D. To
prove (ii), denote by T}/ the smallest special triangle of type i containing 7. Then
d(T{') < 2d(T). Furthermore, T}/ \ T is the disjoint union of a nice triangle of type i
and a parellelogram of type € {(0,0),(i,1), (¢,2)}. (ii) now follows on applying (i) to
this latter nice triangle. &

and

Lemma 4.2 now follows on combining Lemmas 4.3, 4.4, 4.6, 4.7 and 4.8.
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84.3. Completion of the Proof

In this section, we combine the combinatorial Lemma 4.1 and the geometric Lemma
4.2 to give a proof of Theorem 8C. Our strategy is as follows. Lemma 4.2 enables
us to obtain information on the discrepancy function of any given convex polygon in
POL®(0;z1,x2). On the other hand, suppose that P is a discrete and finite subset of
R2, containing many more points than we need. Let X = P, and let the partitions be
given by the various families of special objects. We shall use Lemma 4.1 to choose a
suitable subset of P to use in our construction of the desired infinite discrete set Q in
Theorem 8C.

Given any discrete subset P C R? and any compact subset B C R?, we are
interested in the discrepancy function

E[P; B] = #(P 1 B) — u(B).
Suppose that A € POL>(0; x1, z2) is arbitrary. We shall first of all use Lemma 4.2 to
investigate the discrepancy function of A. The following lemma is in a more general

form than needed.

Lemma 4.9. Suppose that A, Bj,..., By, BY,..., B are compact subsets of R2.
Suppose further that there exist €},...,¢e,,€/,... €. € {1} such that

and

Let P C R? be a discrete set such that for every 7 =1,...,q,
|E[P; Br]| < Ds,

and that for every T =1,...,r,
|E[P; BY]| < Ds.

Then

|E[P; A]| < D1 + Dy max{q,r}.

Proof. Clearly

T

EP;Al= ) 1—pA) <> ¢/ > 1—p(4)

peEANP T= pEB/NP
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=Yl Y 1-uB) |+ (Z e'u(By) — M(A)>

peB/NP =1

= €'E[P; B] + (Z e7u(By) — u(A)>

=1
<3 alp )+ (S ettt - 3wt
T=1 T=1 T=1
< Dor + D;. (4.11)
A similar argument gives
—E[P; A] < Dag + Dy (4.12)

The result now follows on combining (4.11) and (4.12). &

Let SPEC™(0; x1,x2) denote the big family of all special triangles, special paral-
lelograms and special rectangles defined in §4.2; in other words,

SPEC™(6;x1,22) = | |J STG,n) [+ | |J SP(i.jn) +(U SR(n)).

1<i<l 1<i<l nez?
nez 1<;<2
Nez?

We now make use of the combinatorial information derived from Lemma 4.1.

Lemma 4.10. Suppose that P C R? is a finite set, and that o € [0,1] is fixed.
Then there exists a function f : P — {—«,1 — a} such that for every polygon B €
SPEC™(0; x1, z2) satisfying d(B) > 1, we have

3" F(p)| <e (og(d(B) +2))%) . (4.13)

pEBNP

Proof. We apply Lemma 4.1 with X = P, and so have to introduce a sequence of
partitions of P. Let

SET*(0; z1,22) ={ST(i,n) : 1 <i<land n € Z}
U{SP(i,j,n):1<i<land 1< j<2andn € Z*}
U{SR(n) : n € Z*}.

For every C' € SET™(0;x1,x2), denote by d(C) the common diameter of all the ele-
ments of C. We now define a linear ordering on the subset

{C € SET™(0; z1,2») : d(C) > 1}
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according to the size of d(C') with the convention that this ordering is defined arbitrarily
in the case of equal diameters. Observe that for any real number y > 1,

l
#{C € SET>(0;21,22) : 1 <d(C) <y} => #{n€Z:1<d(ST(i,n)) <y}

=1

+) > #{neZ?:1<d(SP(i,j,n)) <y} + #{n € Z* : 1 < d(SR(n)) < y}

i=1 j=1

< llog(y + 2) + I(log(y + 2))* < I(log(y + 2)). (4.14)

Suppose that P is fixed. We now let Y1), Y2 YB3)  be the partitions of P defined
by the families in {C' € SET>(0;z1,22) : 1 < d(C) < d(B)} ordered in the way
described. Lemma 4.10 now follows from Lemma 4.1 and (4.14). &

We now use Lemma 4.10 to construct the desired set Q. Let x = 2%, where k € N,
and consider the set

P ={(a/k,b/k) :a,b € Z and — k* < a,b < K*}

in the square [—k,r)2. Clearly #P = 4k*. Let a = k=2, Then a#P = 4x?, the
expected number of points of the desired set Q in [—k,k)?. We now apply Lemma
4.10. There exists a function f : P — {—a,1 — «a} such that for all polygons B €
SPEC™(0; x1,x2) satisfying B C [—k,x)? and d(B) > 1, we have (4.13). Writing
Pr={peP: f(p)=1-a}, we have

Yo ofp)= Y 1-w? > L (4.15)

peEBNP PEBNPy pPEBNP
Furthermore, it is easy to see that for any convex B C [—k, k)2, we have
> 1-kK’u(B)| < ko(0B) < K, (4.16)
pPEBNP

where o(0B) denotes the length of the perimeter of B. It follows, on combining (4.13),
(4.15) and (4.16), that

[E[Py;Bll=| >, 1—uB)
PEBNPk
< Y 1=k ) 14D 1-p(B)
PEBNPK pEBNP pEBNP

<. (I(log(d(B) +2))%)" "
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for all polygons B € SPEC™(0; x1, z2) satisfying B C [~k, k)? and d(B) > 1.

Suppose now that the polygon B € SPEC™(§;x1,x2) satisfies B C [~k,k)? and
d(B) < 1. Then B C By for some By € SPEC™(8;x1,22) with 1 < d(Bp) < 2.
Applying (4.13) and (4.15) to By, we have

Yo ol=x ) 14+ Y fe)<4+ Y flp) < U

pEBoNPxK PEBoNP  pEBNP pEBONP
noting that w(By) < (d(By))? < 4. Hence
So1< Y 1< (Ilog(d(B) +2)) .
PEBNPK PEBoNPk
Using u(B) < u(By) < 4, we have
| B[Py; B]| < (I(log(d(B) +2))%) (4.17)

It now follows that (4.17) holds for all B € SPEC®(0;z1,x2) satisfying B C
[—k, k)2. Combining this with Lemmas 4.2 and 4.9, we conclude that

|[E[Py; C]| < P+ (log(d(C) +2))"** (4.18)

for all C € POL™(0; x1, z2) satisfying C' C [—k, k)%
We now construct the set Q in terms of the sets Py of some selected integer values
of k. Note first of all that

U ([—22",22")2\ [—22"‘1,22"‘1)2> — R\ [-2,2)%,

neN

1+e€

and that any set in this union is the disjoint union of four aligned rectangles. We shall
show that the set

0=Piu| U (Pen (229" -2 27))
k=2"
neN

satisfies the requirements of Theorem 8C.
Consider any arbitrary A € POL*(0; x1,z2). For every k = 2™ with n € N, the
intersection

Ap=AnN ([—2k, 2ky?\ [—2k/2, 2’f/2)2)

is the disjoint union of at most four sets in POL>(0; z1, x2). It follows from (4.18) that

E[Q; Al =| > 1—p(A)

qceANQ

= [#(ANP) — pu(AN[-2,2)%) + Z (#(Ax N Pr) — p(Ax))

k=2"
neN

<. 3 P (minflog(d(A) + 2), k})*H*. (4.19)
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Here the summation Y " is extended over all k = 2", where n € N, and for which A
is non—empty. Simple calculation gives

3 (minflog(d(A) +2), k})°T <, (log(d(4) + 2))>*. (4.20)

Theorem 8C now follows from (4.19) and (4.20).

§5. Another Probabilistic Approach

65.1. A Simple Argument

In this section, we give a simple proof of a special case of a renormalized version of
Theorem 6B. Suppose that N = MX, where M € N. Consider the cube [0, M)%,
treated as a torus. Let A be a compact, convex set in [0, M)%. If the radius r(A) of
the largest inscribed ball of A satisfies 7(A) < 1, then the result is trivial. We therefore
assume, without loss of generality, that r(A) > 1. We shall prove the following result.

Theorem 6C. There exists an N = M* —element set Q with the following properties:
i) For every 1 = (Iy,...,lx) € ZX N[0, M)X, the cube

Q) = [l1,l1 +1) x ... x [l lx + 1)

contains precisely one point of Q.
ii) For any A € (0, 1], any proper orthogonal transformation T € 7 and any vector
u € RX, we have

#(QN AN, 7, u)) — u(AN, 7, 0))| <k (0(dA)) 2 (log M)'?, (5.1)

where 0A denotes the boundary surface of A, and where o denotes the usual
measure in RE~1,

The first idea is to approximate every similar copy of A in question by the members
of a finite set of similar copies of A. The collection of all similar copies of A in question
is given by

G={A\1,u):0<\<1,7€T,ucRF}.

We now slightly extend the restrictions on A to obtain the bigger collection
Go={A(\,7,u):0< A< 1.1,7€7T,ucR}
Geometric consideration shows that there exists a finite subset G* of Gy such that
#G* < M), (5.2)
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where ¢(K) is a positive constant depending at most on K, and that for any B € G,
there exists B~, Bt € G* such that B~ C B C B" and (Bt \ B~) < 1. We then
examine the set G* more closely.

The second idea is classical probability theory. Note that

0, M5 =" > Q).

1€ZK N[0, M)K

For each 1 € ZX N[0, M)X, let q be a random point in Q(1), uniformly distributed
within Q(1). Assume further that the random variables q; (1 € Z%X N[0, M)E) are
independent of each other. Our aim is to show that the random set

{qi:1ezZ¥njo, M)*}

satisfies (5.1) simultaneously for all A; € G* with probability greater than 1/2.
Let Ay € G*. Clearly the subset

A= |J Qe

QMCA,
has no discrepancy. It remains to consider A; \:4: Let
LA ={1eZXn[0,M)* : A NnQ1) # 0 and Q(1) A1}

Then clearly
L(A) <k 0(041) <k 0(0A). (5.3)

For each 1 € £L(A;), we define the random variable

& = 1 (ql S A1)7
! 0 (otherwise).

Then

dl—pA)= > a- > pAinQl)= > (a-E&).

ai€A; 1eL(Aq1) 1eL(Aq) leL(A1)

Note now that the random variables & (1 € £(A4;)) are independent of each other. We

can therefore apply the classical large—deviation type inequality due to Bernstein and
Chernoft.

Lemma 5.1. Suppose that &1,...,&,, are independent random variables satisfying
&| <1 for every i =1,...,m. Suppose further that = > "  E(§ — E&;)°. Then

Dol ( . 7) . {2e’7/4 (v > B),

m

> (& — E&)

=1
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In view of (5.3), we now take

b= Y E(G—E&)" <L(A) <k 0(dA),
1eL(A1)

and take 1 to be a sufficiently large absolute constant (depending on K') multiple of
(a(aA))l/ *(log M )1/ ?. Then elementary calculation gives

1 —c(K 2e~71/4 (71> B1),
§M ( ) = —72/451
2e™ M (71 < Br).

It follows from Lemma 5.1 and (5.2) that

Prob (| 37 (6~ Ea)| > | < S(#6) "

leL(Aq)

It now follows that

VAN
L\D.I —

Prob Z 1 — u(Ay)| > 7 for some A, € G*

Q€A

This completes the proof of Theorem 6C.

65.2. Preliminary Discussion on Theorem 10

In §§5.3-5.5, we shall indicate a proof of the case L = 1 of Theorem 10. The argument
will also give a proof of Theorem 6A.

The spirit of the proof is similar to that in the previous section, although we need
extra combinatorial and probabilistic ideas. Let A be given and fixed. Given any
natural number N, we shall first of all construct a sequence

qo;--->9N-1 (5.4)

of N points in UX, and shall eventually consider some random version of the set

{(a0,0), (a1, %), - (an—1, 54)}

of N points in UX*!. However, as we shall also discuss Theorem 6A at the same time,
it is convenient to note that Theorem 10 will follow if we can show that the sequence
(5.4) of N points in UK satisfies

N 1
1
¥ /0 /T/UK 1D[Qar; AN, 7, w)]PdudrdA<a w N K, (5.5)
M=1
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where Qn = {qo,...,qum—1} for 1 < M < N, and where
DO AN\ 1,u)] = Z[Qa; AN 7,u)] — Mu(A(N, 7,u)).

Here, and in §§5.3-5.5, our discrepancy functions D[P; A] always denote discrepancy
functions in U and not UX+1,
Before we can construct the sequence, we need some notation and terminology.
Let h be a natural number, to be fixed later. For every s = 0,1,...,h and for
every c € Z, let

I(s,c) =[c27°% (c+1)27%). (5.6)

In other words, I(s,c) is an interval of length 27* and whose endpoints are consecutive
integer multiples of 277,

We shall construct a finite sequence q, (0 < n < 25") of 2K" > N points in U
such that the following is satisfied. For every s = 0,1,...,h and for every non—negative
integer ¢ satisfying ¢ < 25(=9) every set of the form

I(s,a1) x ... x I(s,ak)
in UX, where a1, ...,ax € Z, contains exactly one point of
{qn : 25 <n < (c+1)285)

We shall describe the combinatorial part of the argument in §5.3 and the proba-
bilistic part of the argument in §5.4.

§5.3. A Combinatorial Approach

For every integer s satisfying 1 < s < h, integers 71,...,7,_1 € {0,1,...,2K —1} and
K
vectors aj,...,as_1 € {0,1}", let

Glr, ..., Ts_1;a1,...,a,1] : {0,1,...,25 =1} — {0,1}*

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[()]. Given these mappings, we can define a bijective mapping

F:{0,1,...,25" ~1y = {0,1,...,2" — 11"

as follows. Suppose that n is an integer satisfying 0 < n < 25" Write
n =280 4 pp oKM=2) (5.7)
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where 71,...,7, € {0,1,...,25 —1}. We now let ay,...,a; € {0, 1}K be the solution
of the system of equations

( G[0](m) = a,

Gl a1](12) = ag,

G[TlaTQ;alaaQ](7—3) = as,

5.8
G[Tl,...,7'3_1;3_1,...,3_3_1](7'3>:as, ( )
G[T1,. .., Th—2;a1, ..., ap—2](Th—1) = ap_1,
. G[Tl, ey Th—1,aA1, ... ,ah_l](Th> = ap.
Suppose now that for each integer t =1,...,h,
a; = (ay1,...,arx) € {0,1}7. (5.9)
We now write
Fj(n) = a17j2h*1 + ag’th*Q —|— e —|— ah’j (510)
and let
F(n) = (Fi(n), ..., Fy(n)). (5.11)

2Kh

We next partition UX into a sequence of smaller cubes

S(n) =I(h,F1(n)) X ...x I(h, Fx(n)),

where, for every j = 1,..., K and every n = 0,1, ...,25" — 1, the interval I(h, F}(n))
is defined by (5.6)—(5.10).

Lemma 5.2. Suppose that s is an integer satisfying 0 < s < h. Then for every
integer ng, the set

U S(n) (5.12)
0<n<2Kh
n=no (mod 2K%)

is a cube of the form
C(s,c) =1I(s,c1) x ... x I(s,cx) C UK, (5.13)

where ¢ = (c1,...,cx) € {0,1,...,2°% — 1}K. On the other hand, every cube of the
form (5.13), where ¢ = (c1,...,cx) € {0,1,...,25 =1} is a union of the form (5.12)
for some integer ny.

Proof. Note that the condition n = ng (mod 2%¢) determines precisely the values of
Ti,...,Ts in (5.7). We can therefore solve the system of equations

G[0](m1) = a1
G[Tl;al](Tg) = ag (5 14)

Glr,...,Ts—1;81,...,a5_1](Ts) = as
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for aj,...,as. On the other hand, 7441,...,7, in (5.7) can take all possible values. It

follows from
G[Tl, ey Tgy ALy .. ,as]<7's_|_1) = Ag41

(5.15)

G[Tl, ey Th—1,A1, ... ,ah,l](Th) = ap
that asy1,...,a, can take all possible values. The first assertion follows. To prove
the second assertion, simply note that 71,...,7s are determined uniquely with given

ai,...,as by (5.14), and that if agyq,...,a, take all possible values, then 7sy1,..., 73
take all possible values in view of (5.15). &

For every ¢ = (c1,...,cx) € {0,1,...,2" — 1}K, let g(c) be a point in the cube
C(h;c) =I(h,c1) x ... x I(h,cx) C UK,

Using F', we can define a permutation q, (0 < n < 25") of the q(c) as follows. For
n=0,1,..., 25" _1 et

an = q(F(n)) = a(Fi(n),..., Fk(n)).

K

Clearly q,, € S(n) for every n = 0,1,...,25" — 1. Then it follows from Lemma 5.2

that

Lemma 5.3. Suppose that s and H are integers satisfying 0 < s < h and 0 < H <
2K (h=s) " Suppose further that ¢ = (c1,...,cx) € {0,1,...,25 — 1}K. Then the cube
(5.13) contains exactly one element of the set

{qn : H25* <n < (H +1)2%5}.

Proof. The restriction H25% < n < (H + 1)2K% determines precisely the values of
Ts41,---,Thp in (5.7) with no restriction on 7q,...,7s. On the other hand, the restric-
tion q, € C(s;c) for a given ¢ determines precisely the values of a;,...,as with no
restriction on asy1,...,a,. The system of equations (5.14) now determines precisely
the values of 71,...,7s. Hence n is uniquely determined. &

We denote this element obtained by Lemma 5.3 by q(s;c; H). In other words, for
integers s, c1,...,ck, H satisfying the hypotheses of Lemma 5.3,

a(s;c; H) = {q, : H25* <n < (H+1)25°} N C(s;c).

§5.4. Some Probabilistic Lemmas

We now use some elementary concepts and facts from probability theory and de-
fine a “randomization” of the deterministic points q(c) = q(eci,...,cx), mappings
G|r,...,Ts—1;a1,...,a5_1] and F, and the sequence q,, as follows.
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(A) Forc= (ci,...,cx) €{0,1,...,2" — l}K7 let q(c) be a random point uni-
formly distributed in the cube C(h;c). More precisely,

1(C(h;e) N S)

Prob(d(e) € 8) == 5 o)

for all Borel sets S C RX.

(B) For every integer s satisfying 1 < s < h, integers 7q,...,7s—1 € {0,1,...,
2K — 1} and vectors ay,...,a,_; € {0, I}K, let é[ﬁ, e, Ts—1;81,...,85_1] be a uni-
formly distributed random bijective mapping from {0, 1, ..., 2% — 1} to {0, 1}K. More
precisely, if 7 : {0,1,...,25 — 1} — {0,1}" is one of the (25)! different (deterministic)
bijective mappings, then

~ 1

Prob(G[ri,...,Ts—1;a1,...,8s_1] =7) = (2K)|'

(C) Let F be the random bijective mapping from {0,1,...,25" ~1} t0 {0,1,. ..,

2" — 11K defined by (5.7), (5.8) and (5.9)-(5.11), where (5.8) denotes that in the system
(5.8) of equations, we replace each deterministic mapping by its corresponding random
mapping. B

(D) Let g, (0 < n < 2%") denote the random sequence defined by F; in other
words, for n =0,1,...,28 — 1,

dn = q(F(n)).

(E) Let q(s;c; H) denote the randomization of q(s;c; H); in other words, for
integers s, c1,...,ck, H satisfying the hypotheses of Lemma 5.3,

a(sic; H) = {@, : H2%* <n < (H +1)25°} N C(s;c). (5.16)

(F) Finally, we may assume that the random variables

q(c) (c:(cl,...,cK)E{0,1,...,2h—1}K)

and

Gr, ..., Ts—1;1,...,85-1] (1<s<handm,...,7s_1 €{0,1,...,25 — 1}
and ay,...,a,_1 € {0,1})
are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.

Let (2, F, Prob) denote the underlying probability measure space.
We have
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Lemma 5.4. Suppose that s and H are integers satisfying 0 < s < h and 0 < H <
2K(h=5) " Then for every ¢ = (ci1,...,cx) € {0,1,...,2° — 1}K, the random point
q(s;c; H) is uniformly distributed in the cube C(s;c).

Proof. Suppose that for j =1,..., K,
Cj = CLl’jQS_l + a27j25_2 + ...+ Qs j-

Fort=1,...,s, let
ar = (Gt’l,. . .,atyK).

Since the random mapping G [(] is uniformly distributed, it follows that the (random)
solution 71 of the equation

G[0](T1) = a1
has the property that for any § € {0,1,...,2% — 1},

Prob(7; = 6) =27 %,

Now let 77 = 7 (i.e. fix the value of this random variable), and consider the (random)
equation

G[Tl; al](?g) = as.
Since é[ﬁ; a,] is also uniformly distributed, we have, for any § = {0,1,...,2% — 1},
that
PI‘Ob(?Q = 5|71 = T) = 2_K.

In other words, the random variables 71 and 75 are independent of each other. Repeat-
ing this argument, we conclude that 71, ...,7s, obtained from

G0)(7) = au,

G[Tl; 31](?2) = ay,

G[r,...,Ts—1;a1,...,a5_1](Ts) = ag,
are independent random variables with common distribution function
Prob(7; = 6) = 27X
for every t =1,...,sand 6 € {0,1,...,25 —1}. Let
fip = 7525070 472K 4R,
Then 7 is uniformly distributed in the set {0,1,...,2%% —1}. Write

=280 4258 R,
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where
H2Ks = Th2K(h_1) + P + Ts—|—12KS'

Then
q(s;ic; H) = q.
Suppose now that H25$ <n < (H 4 1)2%5. Then

Prob(q(s;c; H) = q,) = Prob(n = n) = 2755,

Since q, is uniformly distributed in S(n) for every n satisfying H2X® < n < (H+1)25%,
the result follows from the independence of n and q,,. &

Let S be a fixed compact and convex set in UX. For integers s and H satisfying
0<s<hand 0< H < 2K(h_s), consider the random set

P(s,H) ={a(s;c;H) :c = (c1,...,cx) € {0,1,...,2° — 115}, (5.17)

and write

Z[P(s,H);S] = #(P(s,H)NS)

and
D(s,H) = Z[P(s, H); S] — 25°1(S). (5.18)

Note that D(s, H) depends on S. Let
T(s,H)={ce{0,1,...,2° =1} : C(s;¢) NS £ 0 and C(s;c) \ S # 0}

It is easy to see that
#T(s, H) < 2K2K-Ds, (5.19)

Since every cube C(s;c) contains exactly one element (namely q(s;c; H)) of the (ran-
dom) set P(s, H), we have

D(s,H)y= Y 1-25 3" pu(C(s;c)NS).

NCET(S,H) ceT(s,H)
q(s;c;H)ES
For every ¢ € T'(s, H), let
ey = )1 @lsie i) ),
Elsici H) = {O (otherwise). (5.20)

By Lemma 5.4, we have

1(C(s;e) NS)
n(C(s;c))
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so that writing

n(s;c; H) = &(s;¢; H) — E&(s;¢; H), (5.21)
we have B
D(s,H) = Z n(s;c; H). (5.22)
ceT(s,H)

Note that En =0 and |n| < 1.
We need the following result, but we omit its lengthy proof.

Lemma 5.5. Suppose that s',s" € {0,1,...,h}. Suppose further that H' and H"
are integers satisfying 0 < H' < 2K(=s) and 0 < H” < 2K(=s") and that ¢’ €
{0,1,...,25 — 1}K and ¢ € {0,1,...,25" — l}K. Suppose further that either

i) 8 =s" and ¢’ #c"; or

ii) s > s".
Then
u(C(s's5e)ynC(s";c))

w(C(s";¢”))

E(n(s's s H)n(s"; s H")) <

65.5. Continuation of the Proof

For every natural number M satisfying 1 < M < 2K7% et

On = {do. A, .-, dnr—1} (5.23)
and, for every compact and convex set S C UK, let
Z[QM;S] = #(éM ns),
and write B B
D[Qur; 8] = Z[Qu; S] — Mu(S). (5.24)

Lemma 5.6. For every natural number M satisfying 1 < M < 2Kh, we have

~ 2
E(D[QM;S]) < KoM p-1/K,

Proof. Write
M—1=72K0-0 g 9KG=D 4

where 71,...,7, € {0,1,...,2K —1}. Suppose that 7441 = ... = 7, = 0 and 73, # 0.
Then

k 71s—1
ov= U {an Mg +mg 256D <no< M+ (mg + 1)2“8*”}, (5.25)

s=1ms=0
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where, for 1 < s <k,

M, = 7, 280=0 4 7 oK(h=2) 4 TS_HQKS

= 28— o oK) 0K (5.26)
Note that
M > 2K k-1, (5.27)
It now follows from (5.16), (5.17), (5.25) and (5.26) that
k Ts—1
ou =J U Pls—1,H(s,my)), (5.28)

s=1m,=0
where, for 1 < s <k,
H(s,mg) = 2~ KG=Dpr. 4+ my
= 7 28F=s) o oK G=s=l) 12K oy,
Combining (5.18), (5.22), (5.24) and (5.28), we have

Ts—1

QM, Z Z Z n(s — 1;¢; H(s,mg)). (5.29)

s=1ms=0ceT(s—1,H(s,ms))
For s=1,...,k, let

Xs={n(s—1Lic;H(s,my)):0<ms <7yand ceT(s—1,H(s,ms))},
and let

Then by (5.29), we have

< CIVE ) > > E(mm) = L+ 20, (5.30)

nmeXneX

where

k
:Z Z E(min2) and Z Z Z (mn2).

s=1n1,meX, 1<s<t<k meXs n2€Xy
Consider first I;. By (5.19) and Lemma 5.5, and noting that |n| < 1, we have

Ts—1 T5—1

11| < Z DY #(T(s—1,H(s,m)) NT(s — 1, H(s,ml)))

s=1m/=0m’/=0

< ZT22K2(K 1)8 < K22K+22(K 1)k K23K—|—12(K 1)(k‘ 1)
s=1
< K3EHLpI-VE (5.31)

57



in view of (5.27). We now consider I5. Suppose that 1 < s <t < k and c € T(t —
1,H(t,m;)). Then there is at most one ¢’ € T'(s — 1, H(s, my)) such that C(s —1;¢’)N
C(t —1;¢) # (. In fact, we then have C(t — 1;¢) C C(s — 1;¢’), and so
p(Cls—1;c)NCt—1;c)) 9K (s—t)
W(CGs—T;0) |

It follows from (5.19) and Lemma 5.5 that

k t—1 74—1 k kE 1e—1
Ll<) > > 2 20s2) B 1=2) ) #(T(t-1H({Em)
t=1 7]€Xt s=1ms=0 t=1 T]EXt t=1 m.=0
k Tt—l k
< 4KZ Z o(K=1)(t-1) < K2K+2ZQ(K71)(t—1)
t=1 thO t=1
< KEH3oE=1)(k=1) < poK+3 ) 1-1/K (5.32)

in view of (5.27). The lemma now follows on combining (5.30)—(5.32). &

Let A be a given compact and convex body in UX. It now follows from Lemma
5.6 that for any real number A € (0, 1], any proper orthogonal transformation 7 in R¥
and any vector u € UX, we have

~ 2
E(D[Qn: A 7 w)]) - <x MK
for every M satisfying 1 < M < 2K"_ If we now choose h to satisfy
2K(h—1) < N S 2Kh,
then

N 1
E lZ/ // \D[QM;A()\,T,u)]\2dud7-d)\ < N-VE,
NM:l o JT JUK

(5.5) follows immediately. This proves Theorem 10 in the case L = 1. Note also the
simpler inequality

1
E(/ // |D[QN;A()\,T,u)]|2dud7'd)\> <x N'7VE,
0o JrJux
Theorem 6A follows.

§5.6. The General Case

We now discuss briefly how we may expand on the argument in §§5.3-5.5 to give a
proof of Theorem 10.
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We shall in fact construct an infinite sequence of points in UX* and use only
the first IV terms of this sequence. The main ingredient in the construction of this
sequence is the Chinese remainder theorem. This not only makes it possible for the
determination of the first K coordinates of the points of the sequence to be carried out
independently of the determination of the last L coordinates of these points, but also
enables us to treat the discrepancy arising from A(\,7,u) quite separately from the
discrepancy arising from the B(y). Furthermore, it ensures that important properties
of the sequence are also present in many subsequences that arise from our argument.

Let h be a natural number, to be fixed subsequently in the argument. Let
p1,--.,pr denote the first L odd primes.

For every p=2,p1,...,pr, for every s =0,1,...,h and for every c € Z, let

I(p,s,c) = [ep %, (c+ 1)p~ 7).

In other words, I(p, s, ¢) is an interval of length p~* and whose endpoints are consecutive
integer multiples of p~*.

We shall construct an infinite sequence po, p1, P2, - . . of points in UX % such that
the following is satisfied. For every sg, $1,...,s1 € {0,1,...,h} and for every non—

negative integer c, every set of the form
1(2,80,0,1) X ... X 1(2,80,0,K> X I(pl,sl,bl) X ... X I(pL,SL,bL)
in UKHE | where ay,...,ax,b1,...,br, € Z, contains exactly one point of
{p,, : c2Ksop* P <n<(c+ 1)2Ks0pst .pi*}.

As before, the construction of such a sequence involves ideas in combinatorics and
poses no real difficulty. The first K coordinates of the points are constructed in a similar
fashion as in the special case discussed earlier, although we also use periodicity to obtain
an infinite sequence. The last L coordinates of the points are constructed as in §3.3,
using the Halton—-Hammersley sequence. As before, such a sequence alone is insufficient
to give a proof of Theorem 10, and we appeal again to tools in probability theory. Note,
however, that the situation here is much more complicated than the situation when
L = 1. Indeed, we need to apply probabilistic arguments in two quite different ways.
One of these, to deal with the discrepancy arising from A(A, 7,u), is essentially similar
to the probabilistic arguments in §5.4, with only minor modifications. However, to
deal with the discrepancy arising from B(y), we appeal to my discrete version of the
probabilistic idea of Roth in §3.3. This discrete version was first developed in [13] to
show that Faure sets, as discussed in §3.2, give an alternative proof of Theorem 2D.

Needless to say, our combinatorial construction has to be carried out in such a
way that our probabilistic arguments can be implemented with ease.

§6. Davenport’s Method Revisited

In this section, we use the ideas of Davenport [16] and Roth [26] described in §§2.1-2.2
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to prove two upper bound theorems on certain L!'-norms concerning irregularities of
distribution relative to half-planes and relative to convex polygons. In the two parts
of this section, we shall employ slightly different notation.

§6.1. Roth’s Disc—Segment Problem

Let U be a convex set in R? of unit area, and with centre of gravity at the origin 0.
Suppose that P is a distribution of N points in U. For every measurable set B in R2,
let Z[P; B] denote the number of points of P in B, and write

D[P; B] = Z[P; Bl = Nu(BNnU),

where p denotes the usual measure in R2.
For every real number r € R and every angle 6 satisfying 0 < 6 < 27, let S(r,0)
denote the closed half-plane

S(r,0) = {x e R*:x-e(f) >r}.

Here e(f) = (cosf,sinf) and x -y denotes the scalar product of x and y. For any 6
satisfying 0 < 6 < 2m, let

R(#) = sup{r >0:S(r,0) NU # (}.
The following theorem is more general than Theorem 12B.

THEOREM 12C. (Beck—Chen [10]) For every natural number N > 2, there
exists a distribution P of N points in U such that

2w rR(0)
/ / D[P S(r, 0)]|drd6 <y (log N)2.
0 0

The proof is motivated by the special case when U is the square [—1/2,1/2]2. We
shall therefore first of all show that for every natural number N, there exists a set P
of 4N? 4+ 4N + 1 points in U such that

27 rR(0)
/ / |D[P; S(r,0)]|drdf < (log N)>.
o Jo

For ease of notation, we consider the following renormalized version of the problem.
Let V be the square [-N — 1/2, N + 1/2]%. For every finite distribution P of points in
V and every measurable set B in R?, let Z[P; B] denote the number of points of P in
B, and write
E[P;B] = Z[P;B] — uw(BNV).
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We shall show that the set
P={-N,-N+1,...,-1,0,1,...,N —1,N}*

of 4N? 4+ 4N + 1 integer lattice points in V satisfies

27 pM(0)
L/(/ E[P; S(r, 0)]|drdd < N(log N)?, (6.1)
0 0

where, for every 6 € [0, 27, we have M (6) = (2N + 1)R(6).
The line
T(r,0) ={xcR?*:x-ef) =7}

is the boundary of the half-plane S(r,#), and can be rewritten in the form
r1cosf + xosinf =r,

where x = (21, 72) € R%.

Suppose that 0 < 6 < 7/4. Clearly M(0) = (N+1/2)(cos 0+sin§). We distinguish
two cases.

Case 1: 0 <r < (N +1/2)(cosf —sinf). It is not difficult to see that T'(r,0)
intersects the edges {(z1,N +1/2) : |x1] < N 4+ 1/2} and {(z1,—N —1/2) : |z1] <
N +1/2} of V| i.e., the “top” and “bottom” edges of V. Then

N
Str,o)nv = |J SnV,r0),

n=—N
where, for every n = —N,...,0,..., N

) Y

S(n,V,r,0) =S(r,0)NnVN(Rx[n—-1/2,n+1/2]).

Clearly
N
E[P;S(r,0)] = > E[P;S(n,V,r,0)].
n=—N

Now, for every n = —N,...,0,..., N, we have

Z[P;S(n,V,r,0)] =[N+ ntan — rsect + 1]
and

u(S(n,V,r,0)) = N +ntanf — rsecf + 1/2,
so that

E[P;S(n,V,r,0)] = —y(ntanf — rsech),
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where ¢ (z) = z — [z] — 1/2 for every z € R. Hence

E[P;S(r,0)] = — Z Y(ntanf — rsech).

n=—N

Case 2: (N+1/2)(cosf—sinf) <r < (N-+1/2)(cosf+sinf). It is not difficult to
see that T'(r, 6) intersects the edges {(z1, N+1/2) : |x1| < N+1/2} and {(N+1/2,x2) :
|za] < N +1/2} of V| ie., the “top” and “right” edges of V. Furthermore,

T(r,0) N{(N +1/2,25) : |xa] < N +1/2}
={(N+1/2,—(N +1/2)cot 6 + r cosech)}.

Then S(n,V,r,0) =0 if n < —(N +1/2) cot @ + rcosecd — 1/2. On the other hand, it
is trivial that E[P;S(n,V,r, 0)] = O(1) always. It follows that

N
E[P;S(r,0)] = — Z Y(ntanf — rsec) + O(1),
n=—N
(%)
where the summation is under the further restriction

n > —(N +1/2) cot 6 + r cosec 6. (%)

Note that in Case 1, the restriction (x) would become superfluous since it is weaker
than the requirement n > —N. It follows that for all » > 0, we have

E[P;S(r,0)] — G[P;r,0] < 1,

where

N
G[P;r, 0] = — Z Y(ntand — rsech).
’rL:(f)N

The function ¢(z) = z — [2] — 1/2 has the Fourier expansion

o Z G(ZV)
2miv
v#0

so that —¢(ntan6 — rsec) has the Fourier expansion

e(—rvsect
3 ( )

STy e(nvtan).
v#0
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It follows that the Fourier expansion of G[P;r, 0] is given by

e(—rvsech) al
ZT _z: e(nvtan).

v#£0 n=—N
(%)

However, the restriction (x) prevents us from applying Parseval’s theorem.

To overcome this difficulty, we introduce the following idea which is motivated by
Roth’s variation of Davenport’s method in §§2.1-2.2.

Let y = (y1,12) € [~1/2,1/2]%. For every 0 € [0,7/4] and every r > 1, let

T(yi7.0) = T(r + yy cosf+ y sin,0) (62)
and

S(yir.6) = S(r + g1 cos0 + yasin,6) (63
(note here that r 4+ y; cos @ + y2sin@ > 0 always). Then

E[P;S(y;r,6)] = E[P; S(r + y1 cosf + yasin 6, )].

It is not difficult to see that if we write

N
G[P;y;r,0] = — Z Y(ntan® — (r + yy cos§ 4+ yo sin ) sec ),
n=—N
(*)
then

cot (M(O)— (2N +1)sinf —1<r < M(6)),
E[P;S(y;r,0)] — G[P;y;r, 0] < ¢ 1 (otherwise),
N (trivially),

so that 1
/ / E[P;S(y;r,0)] — G[P;y;r,0]|drdd < N (6.4)

(note that |y; cosO+yasinf| < 1, so that if r < M(0)—(2N+1)sinf—1, then T'(y;r, 0)
intersects the top and bottom edges of V).
Now G[P;y;r, 0| has the Fourier expansion

Z e(—(r 4+ y1 cosf + y2 sinf)v sech) iv:
2miv
” o

_ Z —rvsect) Z e((n — y2)vtanf)e(—yiv).

2miv
n=—N

()

e(nvtand)

63



It follows that for every y» € [—1/2,1/2], we have, by Parseval’s theorem, that

2

1/2 00 1 N
[ IGIPyin 0P <3 | 3 el v and)
—1/2 1/:1]/ n=—N
(*)
2
o) 1 N
:Zﬁ Z e(nvtanf)| |
v=1 n=—N
(*)
so that
2
/2 p1/2 , o 4| X
G|P;y;r, 0] dy1dy, < — e(nvtan 6
1/2/1/2| | Iy ,,Z_:l”z n—E—:N ( )

(*)

[o@)
1 _
<> — min{N?, v tan 6| ~*},

v=1

where ||3]| = min, ez |3 — n| for every 5 € R.
We need the following crucial estimate.

Lemma 6.1. We have

w/4 00 1 1/2
/ (Z 2 min{ N2, ||v tan 9||_2}) df < (log N)Q_
0

v=1

Proof. Since tan =< 0 if 0 < 6 < 7 /4, it suffices to show that

1/ o 1/2
1 _
/(Z—Qmin{NQ,Han 2}) dw < (log N)?.
0 n

n=1

Clearly
00 1 N? 1
. -2 . —2
Zﬁmln{]\ﬂ,”nw” } < Zﬁmln{]\ﬂ,ﬂnwﬂ }+1,
n=1 n=1
so that

00 1 1/2 N2 1
— min{N?, |lnw| <) ~min{N BT
(;nzmm{ il }) <3 o minN, Inol ™'} +
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Now, for every n = 1,..., N2, we have

1 1/2n
/ min{ N, ||[nw| " }dw = Zn/ min{N, (nw) " }dw < log N. (6.8)
0 0

Inequality (6.6) now follows on combining (6.7) and (6.8). &

By the Cauchy—Schwarz inequality, we have

1/2 1/2
/ / G[P;y;r,0]|dyi1dy:

1/2J-1/2

1/2 1/2 , 1/2
(/ / G[P;y;r,0]| dyldy2> . (6.9)
1/2J-1/2

It follows from (6.4), (6.5), (6.9) and Lemma 6.1 that

12 p1/2 /4 pM(O)
/ / / / E[P: S(y:r, 0)][drddysdys < N(log N)2.  (6.10)

1/2J-1/2Jo
Note now that for every 6 € [0,7/4], every > 1 and every y € [—1/2,1/2]%, we have,

writing s = r + y; cos + yo sinf, that |r — s| < 1. It follows that since S(y;r,0) =
S(r 4 y1 cos + yasin 6, 0), where r + y; cos @ + y2 sinf > 0, we must have

(0)—-1 M(6)
/2 \B[P; S(r, 0)]|dr < /1 \B[P; S(y: . 0)]|dr. (6.11)

On the other hand,

M(0)
(/ / ) E[P: S(r, 0)]|dr < N. (6.12)
M(6)—1

It now follows from (6.10)—(6.12) that

w/4 pM(0)
/ E[P: S(r, 0)]|drdd < N(log N)2.
0

Similarly, for j =1,...,7, we have
(G+D)mw/4 pM(0) )
/ / E[P; S(r, 0)]|drdd < N(log N)2.
jm/4 0

Inequality (6.1) now follows.
Next, we consider the case when U is the closed disc of unit area and centred at
the origin 0.
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Let N be any given natural number. Again we consider a renormalized version of
the problem, and take V' to be the closed disc of area N and centred at the origin O.
However, if we simply attempt to take all the integer lattice points in V' as our set P,
then by a famous theorem of Hardy [21] on the number of lattice points in a disc, the
number of points of P can differ from N by an amount sufficiently large to make our
task impossible.

Our new idea is to introduce a set P such that the majority of points of P are
integer lattice points in V', and that the remaining points give rise to a one-dimensional
discrepancy along and near the boundary of V. More precisely, for any x = (z1,x2) €
72, let

A(x) = A(z1,22) = [x1 — 1/2,21 +1/2] X [x9 — 1/2, 20 + 1/2];

in other words, A(x) is the aligned closed square of unit area and centred at x. Let
Pr={peZ”: Alp) SV}

and write

Vi= U A(p).

pPEP1

Note that the points of P; form the majority of any point set P of N points in V. For
the remaining points, let
Vo=V \Vi.

Then it is easy to see, writing 7M? = N, that
u(Va) € N and pn(Va) < M.
We partition V5 as follows. Write

L = p(Va),

and let
0=0p<b;<...<0,_1<0;,=1

such that for every j =1,..., L, the set
Rj={xe€Vy:27m0,_1 <argx < 2mb;}

satisfies
n(R;) = 1.

For every j =1,...,L, let

and write
Py ={p1,....PL}
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If we now take
P =P UPs, (6.13)

then clearly P contains exactly N points.
For every measurable set B in R?, let Z[P; B] denote the number of points of P
in B, and write

E[P;B] = Z[P;B] —u(BnNYV).
It can be shown that the set (6.13) satisfies

/%/ E[P;S(r,0)]|drdf < M(log N)*. (6.14)

The inequality (6.14) can be proved using explicitly the equation of 0V, the bound-
ary of V. However, if we want to prove the full generality of Theorem 12C, then such
information is clearly not available. Extra geometric consideration is then required.

§6.2. Convex Polygons

Suppose that P is a distribution of N points in the unit square U = [0, 1]2, treated as
a torus. For every measurable set B in U, let Z[P; B] denote the number of points of
P in B, and write

D[P; B] = Z[P; B] — Nu(B),

where p denotes the usual measure in R2.

Let A C U be a closed convex polygon of diameter not exceeding 1 and centred
at the origin 0. For every real number r satisfying 0 < r < 1 and for every angle 6
satisfying 0 < 6 < 27, let v = 6(u) denote

vy _ [cosf —sinf Uy
(Uz)_(siné cosf ) <u2>’ (6.15)
where v = (v1,v2) and u = (u1,u2), and write

A(r,0) = {rv:v =0(u) for some u € A}; (6.16)

in other words, A(r,#) is obtained from A by first rotating clockwise by angle 6 and
then contracting by factor r» about the origin 0. For every x € U, let

Ax,r,0) ={x+v:ve Ao}, (6.17)
so that A(x,r,#) is a similar copy of A, with centre of gravity at x.

THEOREM 14B. For every natural number N > 2, there exists a distribution P
of N points in U such that

1 27
/ / / |D[P; A(x, 7, 0)]|dxdfdr < 4 (log N)>.
0 0 U
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Our proof is motivated by our study of irregularities of point distribution relative
to half-planes in §6.1. In fact, the analogy between the two problems becomes clear
on noting that a convex polygon is the intersection of a finite number of half-planes
(or, to put it in precisely the viewpoint held at the time, that a half-plane is a convex
“monogon”).

We shall only briefly discuss the problem when N is a perfect square. For ease
of notation, we consider the following renormalized version of the problem. Let V be
the square [0, N'/2]2, again treated as a torus (modulo N'/? for each coordinate). For
every finite distribution P of points in V' and every measurable set B in V', let Z[P; B]
denote the number of points of P in B, and write

E[P; B] = Z[P; B] — u(B).
Let A C V be a closed convex polygon of diameter not exceeding N/2 and centred at
the origin 0. For every real number r satisfying 0 < r < 1, every angle 6 satisfying
0 <0 <27 and every x € V, we define A(x,r,0) in terms of (6.15)—(6.17). It clearly
suffices to show that for every natural number N > 2, there exists a distribution P of
N points in V' such that

1 27
/ / / |E[P; A(x, 7, 0)]|dxdfdr <4 N(log N)>. (6.18)
0 0 1%

The key idea in the proof of (6.18) is to split the integral over V in (6.18) into
a sum of integrals over sets whose diameters are very small. We may then use the
variable x in the same way as the probabilistic variable y in §6.1.

Suppose that N = M2, where M € N. It can be shown that the set

P={(m-1/2,n—-1/2) :m,neNand 1 <m,n < M}

of N points in V satisfies the inequality (6.18).

The idea is roughly as follows. Let A C V be a closed convex polygon of k sides
and of diameter not exceeding M. Consider the set A(x,r,6), where the contraction
r € [0,1], the rotation 6 € [0,2x] and the centre of gravity x € V are fixed. Then
each edge of A(x,r,0) gives rise to a discrepancy of a similar nature to the discrepancy
arising from the edge of the half-plane S(r,0) in §6.1, and can be handled in a similar
manner. The only difference is that there are a few such edges rather than just one.
This difference poses no real difficulty, since discrepancy is “additive” in a certain sense.
The only difficulty is what is the analogue of the probabilistic variable y. The answer
to this is that the translation variable x, handled with great care, plays a similar role.
The result now follows modulo technical refinements.

Appendix. Roth’s Classical Theorem

The method of Roth [23] to prove Theorem 1A is dependent on Schwarz’s inequality.
Corresponding to every distribution P of N points in U, Roth constructed an auxiliary
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function F[P;x] such that, writing D(x) and F(x) in place of D[P; B(x)] and F[P;x]
respectively, and abusing notation and writing U instead of Uy,

/U _FE)D(x)dx > c1 (K)(log N (A1)

and
/U ) F?(x)dx < ¢o(K)(log N)* 1. (A.2)

These, together with Schwarz’s inequality, give
/ ID(x)[2dx > e5(K)(log NYE~L,
UK

so that Theorem 1A follows easily.

We remark here that to prove Theorem 1D, Schmidt [37] proved the analogue of
(A.2) for higher moments, and then used Holder’s inequality instead of Schwarz’s in-
equality. However, Schmidt’s auxiliary function is slightly different from Roth’s original
auxiliary function. Here, we shall use Schmidt’s auxiliary function.

Any x € Uy can be written in the form

xr = i Bj(x)2797 1
=0

where 3;(x) = 0 or 1 and such that the sequence ;(z) does not end with 1,1,.... For
r=0,1,2... let
Re(e) = (~1)*

(these are called the Rademacher functions).

Definition. By an r—interval, we mean an interval of the form [m2~", (m + 1)277),
where the integer m satisfies 0 < m < 2.

Definition. By an r—function, we mean a function f(x) defined on Uy such that in
every r—interval, f(z) = R,(z) or f(z) = —R,(x).

Clearly, if f(x) is an r—function, then

/Uf(.r)d:c =0.

Suppose now that r = (r1,...,7x) is a K-tuple of non—negative integers. Let
r|=r1+...+7rg;
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and for any x = (z1,...,2x) € UL, let

Rr(X) = er (%1) c. RTK (.CL’K)
Definition. By an r—box, we mean a set of the form I; x ... X Ix, where, for every
Jj=1,...,K, I; is an rj-interval.

Definition. By an r—function, we mean a function f(x) defined on UK such that in

every r-box, f(x) = Ry(x) or f(x) = —Ry(x).
Let n ><log N be a suitably chosen natural number.

Lemma A.1. Suppose that |r| = |s| =n. Then

| ReloRu(x)ax = {0 ey

Proof. The result is clear if r = s. If r # s, then there exists j = 1,..., K such that
r; # 5. Assume, without loss of generality, that r; > s;. Then R, (z;)Rs,(x;) is an
r;—function, so that

[ o) B (o) = *
U

We consider the function

F(x)= ) f(x), (A.3)

[r|=n
where, for each r, f.(x) is a suitably chosen r—function. To establish (A.2), we have

Lemma A.2. Suppose that K > 2 and n > 0. Suppose further that for every r with
lr| = n, fr(x) is an r—function. Then the function (A.3) satisfies

/ F?(x)dx <x nf L.
UK

Proof. Clearly

F2(x)dx = F(x)dx + Fox) fs(x)dx = ¥, + X,
/U - |r|z—n /U " |r|z—n /U "

|s|=n

r#s
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say. In view of Lemma A.1, X3 = 0. On the other hand, f2(x) = 1 for every x € Uf.

It follows that
_(n+K-1 K—1
¥ < E 1—( o1 ><<Kn - &

[r|=n
It remains to establish (A.1). Let n be chosen to satisfy
2N < 2" < 4N.

Lemma A.3. Suppose that 2™ > 2N. Then for every r satisfying |r| = n, there is
an r—function f, satisfying

- fe(x)D(x)dx > 272K~ N, (A.4)

(A.1) now follows, for we can construct F'(x) by (A.3), where for every |r| = n, f;
is chosen to satisfy (A.4). Now the number of K—tuples satisfying |r| = n is

( K—1 >>>K” !

so that

/ F(x)D(x)dx >x n 127" N.
UK

Proof of Lemma A.3. We decompose the integral in (A.4) into integrals over r—
boxes, and choose fy(x) such that the integral [ fy(x)D(x)dx over every r—box is
non—negative. Let B be an r—box given by
B=m27", (m1+1)27") x ... x [mg27"E, (mg +1)27"K),
and let B’ be the box
B '=[m27™, (m1 +1/2)27") x ... X [mg27"5  (mg +1/2)277K).

Then it is not difficult to see that

/B Re(x) D(x)dx

1 1
:/ D ()M TR D+ a2 yk + a2 dy.
B’ a1=0 ax=0
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Note that the sum

1 1
D () TR ZP B+ a2 yk a2 )]
Oé]_:O OLKZO

is the number of points of P in [y1,y1 + 27 71) x ... X [yk,yx + 2775~ 1). This box
is contained in B. Hence if B contains no points of P, the sum is 0. Note also that

1 1
Z Z (_1>a1+..,+ax (3/1 + a12—r1—1> o (yK + aK2—rK—1> _ (_1)K2—|r\—K.
a1=0 ag=0

It follows from the definition of D(x) that if B contains no points of P, then since
lr| = n, we have

/ Ry (x)D(x)dx = (—1)FT12=2n=2K N
B
There are 2" r-boxes B with |r| = n, but only N < 2"~! points. It follows that at

least half of the r—boxes contain no points of P. Since fr(x) is chosen to make the
integral [ fy(x)D(x)dx over any r—box non-negative, it follows that

fo(x)D(x)dx > (2" — N)2 22Ky > g-n—2K-1p s
UK
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