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§0. Introduction

The subject of irregularities of distribution arises from uniform distribution, but is of
independent interest, and owes its current prominance to the fundamental contribu-
tion of K.F. Roth [23–27] and W.M. Schmidt [28–38]. While the theory of uniform
distribution may be described as qualitative, the theory of irregularities of distribution
is definitely quantitative in nature, as one seeks to measure (with great precision in
many instances) the actual discrepancy (in a certain sense) incurred by a finite set
of points distributed within a finite region. There are lower bound results which say
that the discrepancy of a set of points cannot be less than a certain minimum value
which only depends on the number of points in question, and not where they are placed
within the finite region. On the other hand, there are upper bound results which say
that if the points are placed carefully, then the discrepancy cannot exceed a certain
maximum value which again only depends on the number of points in question. In
many instances, it has been shown that this upper bound is a constant multiple of the
lower bound.

The tools in this subject are diverse, and involve ideas in harmonic analysis, num-
ber theory, geometry, combinatorics and probability theory.

The purpose of this paper is to discuss some of the central ideas in the study of
upper bounds in the theory of irregularities of distribution. This paper is not intended
as a survey, and many results have been omitted. Also, only a few proofs are given in
detail; in many other instances, we shall discuss briefly the main ideas and omit the
(often very complicated) details.

In §1, we shall give an overview of the subject as a whole, and illustrate its devel-
opment from its infancy to the present day by mentioning some of the key results. We
also mention many extremely difficult problems which remain unsolved. In §§2–6, we
shall discuss the main ideas in the study of upper bound questions. We conclude this
paper by proving in the appendix the famous lower bound result of Roth [23] which
laid the foundations of the subject.

The material in this paper is the subject of a series of lectures given at Mac-
quarie University in the first half of 1992. I would like to express my thanks to Grigori
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Kolesnik, Gerry Myerson, Peter Pleasants and Tom Schmidt for their continuing inter-
est and patience.

§1. Summary of Main Results

§1.1. The Classical Problem

Let U0 = [0, 1) and U1 = (0, 1]. Suppose that P is a distribution of N points in UK0 ,
where K,N ∈ N with K ≥ 2. For every x = (x1, . . . , xK) ∈ UK1 , let

B(x) = [0, x1)× . . .× [0, xK);

in other words, B(x) denotes a K–dimensional aligned rectangular box with one corner
at the origin 0 and another corner at x. Furthermore, let

Z[P;B(x)] = #(P ∩B(x)),

and write
D[P;B(x)] = Z[P;B(x)]−Nµ(B(x)),

where µ denotes the usual measure in RK .
We are interested in the behaviour of the discrepancy function D[P;B(x)]. For

every W > 0, write

D(K,W,N) = inf
|P|=N

(∫
UK1

|D[P;B(x)]|Wdx

)1/W

,

where the infimum is taken over all distributions P of N points in UK0 . Also, write

D(K,∞, N) = inf
|P|=N

sup
x∈UK1

|D[P;B(x)]|,

where, again, the infimum is taken over all distributions P of N points in UK0 .
The presently known lower bound results are as follows. They can all be proved

by Roth’s orthogonal function method or modifications of it.

THEOREM 1A. (Roth [23]) We have

D(K, 2, N)�K (logN)
K−1

2 .
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THEOREM 1B. (Roth [23]) We have

D(K,∞, N)�K (logN)
K−1

2 .

THEOREM 1C. (Schmidt [34]) (Halász [18]) We have

D(2,∞, N)� logN.

THEOREM 1D. (Schmidt [37]) For every W > 1, we have

D(K,W,N)�K,W (logN)
K−1

2 .

THEOREM 1E. (Halász [18]) We have

D(K, 1, N)�K (logN)
1
2 .

THEOREM 1F. (Beck [6]) We have

D(3,∞, N)�ε (logN)(log logN)
1
8−ε.

These are complemented by the following presently known upper bound results.
For simplicity, assume that N ≥ 2 always.

THEOREM 2A. (Davenport [16]) We have

D(2, 2, N)� (logN)
1
2 .

THEOREM 2B. (Halton [19]) (Hammersley [20]) We have

D(K,∞, N)�K (logN)K−1
.

THEOREM 2C. (Roth [26]) We have

D(3, 2, N)� logN.

THEOREM 2D. (Roth [27]) We have

D(K, 2, N)�K (logN)
K−1

2 .
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THEOREM 2E. (Chen [12]) For every W > 0, we have

D(K,W,N)�K,W (logN)
K−1

2 .

There remain the following very hard open questions.

QUESTION 1. Is it true that

D(K,∞, N)�K (logN)K−1

for every K ≥ 2?

QUESTION 2. Is it true that

D(K, 1, N)�K (logN)
K−1

2

for every K ≥ 2?

QUESTION 3. What lower bound can one prove for D(K,W,N) if K ≥ 2 and
0 < W < 1?

Question 1 is referred to as the “Great Open Problem” in the literature. Question
2 is equally hard. Question 3 appears to be even harder.

§1.2. Some Questions Raised by Schmidt’s Work

In the late 60’s and early 70’s, Schmidt developed his integral equations method and
proved many new results. To understand some of these results, let us first of all
rephrase Theorems 1B and 1C above. For simplicity, write U = [0, 1], treated as a
torus. Suppose that P is a distribution of N points in UK , where K,N ∈ N with
K ≥ 2. For every measurable set B ⊆ UK , let

Z[P;B] = #(P ∩B),

and write
D[P;B] = Z[P;B]−Nµ(B),

where µ denotes the usual measure in RK .

THEOREM 1B’. There exists an aligned rectangular box B ⊆ UK such that

|D[P;B]| �K (logN)
K−1

2 .
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THEOREM 1C’. There exists an aligned rectangle B ⊆ U2 such that

|D[P;B]| � logN.

Suppose now that we no longer require our rectangular boxes to be aligned. In
other words, suppose that we may allow orthogonal transformations of our rectangular
boxes. Then the situation is very different.

THEOREM 3A. (Schmidt [31]) There exists a tilted rectangle B ⊆ U2, of diam-
eter less than 1, such that

|D[P;B]| �ε N
1
4−ε.

THEOREM 3B. (Schmidt [31]) There exists a tilted rectangular box B ⊆ U3, of
diameter less than 1, such that

|D[P;B]| �ε N
1
3−ε.

Although Schmidt’s method failed for K ≥ 4 in the case of tilted rectangular
boxes, it worked well for circular balls.

THEOREM 3C. (Schmidt [31]) There exists a circular ball C ⊆ UK , of diameter
less than 1, such that

|D[P;C]| �K,ε N
1
2−

1
2K−ε.

It can be shown that the exponents in these results are essentially sharp.

THEOREM 4A. (Beck [2]) For every N ∈ N, there exists a distribution P of N
points in UK such that for every rectangular box B ⊆ UK of diameter less than 1,

|D[P;B]| �K N
1
2−

1
2K (logN)O(1)

.

THEOREM 4B. (Beck [2]) For every N ∈ N, there exists a distribution P of N
points in UK such that for every circular ball C ⊆ UK of diameter less than 1,

|D[P;C]| �K N
1
2−

1
2K (logN)O(1)

.

§1.3. Some of Beck’s Work

Naturally, Schmidt’s work raised the question of the connection between tilted rectan-
gular boxes and circular balls. In the former case, we allow orthogonal transformation.
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In the latter case, the sets are invariant under orthogonal transformation. If one com-
pares Theorem 2B (in the case K = 2) and Theorem 3A, one might be tempted to
blame the “discrepancy” in the estimates on orthogonal transformation.

In arguably the greatest contribution to the subject to date, Beck [4,5] showed
essentially that the discrepancy arises from orthogonal transformation and/or from the
shape of the boundary surface.

Consider first of all the case when orthogonal transformation is permitted.
Let U = [0, 1], treated as a torus. Suppose that P is a distribution of N points

in UK , where K,N ∈ N with K ≥ 2. Let A be a compact and convex body in UK .
For any real number λ ∈ (0, 1], any proper orthogonal transformation τ in RK and any
vector u ∈ UK , let

A(λ, τ,u) = {τ(λx) + u : x ∈ A}

(note that A(λ, τ,u) and A are similar to each other), and let

Z[P;A(λ, τ,u)] = #(P ∩A(λ, τ,u)).

We are interested in the discrepancy function

D[P;A(λ, τ,u)] = Z[P;A(λ, τ,u)]−Nµ(A(λ, τ,u)),

where µ denotes the usual volume in UK .
Let T be the group of all proper orthogonal transformations in RK , and let dτ be

the volume element of the invariant measure on T , normalized such that
∫
T dτ = 1.

Let

D1(A, 2, N) = inf
|P|=N

(∫ 1

0

∫
T

∫
UK
|D[P;A(λ, τ,u)]|2dudτdλ

)1/2

,

where the infimum is taken over all distributions P of N points in UK . Also, write

D1(A,∞, N) = inf
|P|=N

sup
λ∈(0,1]
τ∈T

u∈UK

|D[P;A(λ, τ,u)]|,

where, again, the infimum is taken over all distributions P of N points in UK .

Theorem 5A. (Beck [4]) Suppose that r(A) ≥ N−1/K , where r(A) denotes the
radius of the largest inscribed ball of A. Then

D1(A, 2, N)�A N
1
2−

1
2K .

Theorem 5B. (Beck [4]) Suppose that r(A) ≥ N−1/K , where r(A) denotes the
radius of the largest inscribed ball of A. Then

D1(A,∞, N)�A N
1
2−

1
2K .
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These lower bound results are complemented by the following upper bound results.
On the one hand, we have

Theorem 6A. (Beck–Chen [9]) We have

D1(A, 2, N)�A N
1
2−

1
2K .

Also, similar to Theorems 4A and 4B, we have

Theorem 6B. (Beck [2]) We have

D1(A,∞, N)�A N
1
2−

1
2K (logN)O(1)

.

Consider next the case when orthogonal transformation is not permitted. There
are technical difficulties when K ≥ 3, so we shall concentrate on the case K = 2.

Let U = [0, 1], treated as a torus. Suppose that P is a distribution of N points in
U2, where N ∈ N. Let A be a compact and convex body in U2. For any real number
λ ∈ (0, 1] and any vector u ∈ UK , let

A(λ,u) = {λx + u : x ∈ A}

(note that A(λ,u) and A are homothetic to each other), and let

Z[P;A(λ,u)] = #(P ∩A(λ,u)).

We are interested in the discrepancy function

D[P;A(λ,u)] = Z[P;A(λ,u)]−Nµ(A(λ,u)),

where µ denotes the usual volume in U2.
Let

D0(A, 2, N) = inf
|P|=N

(∫ 1

0

∫
U2
|D[P;A(λ,u)]|2dudλ

)1/2

,

where the infimum is taken over all distributions P of N points in UK . Also, write

D0(A,∞, N) = inf
|P|=N

sup
λ∈(0,1]

u∈U2

|D[P;A(λ,u)]|,

where, again, the infimum is taken over all distributions P of N points in UK .

Theorem 7A. (Beck [5]) We have

D0(A, 2, N)�A max{(logN)
1
2 , ξN (A)},
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where ξN (A) depends on the boundary curve ∂A of A.

Theorem 7B. (Beck [5]) We have

D0(A,∞, N)�A max{(logN)
1
2 , ξN (A)}.

Roughly speaking, the function ξN (A) varies from being a constant, in the case
when A is a convex polygon, to being a power of N , in the case when A is a circular
disc. In fact, it is some sort of measure of how well A can be approximated by an
inscribed polygon.

Here, upper bounds are harder to obtain. We have, for example,

Theorem 8A. (Beck [5]) We have

D0(A,∞, N)�A max{logN, ξ2N (A)}.

Theorem 8B. (Beck–Chen [8]) Suppose that A is a convex polygon. Then

D0(A,∞, N)�A,ε (logN)5+ε.

We comment here that Theorem 8B is far from being best possible. In fact, it is
shown in [5] that the exponent can be replaced by 4 + ε. However, the argument is
much more complicated.

There are the following open questions.

QUESTION 4. Close tha gap between the lower estimate in Theorem 5B and the
upper estimate of Theorem 6B.

QUESTION 5. Is it true that

D0(A,∞, N)�A logN?

QUESTION 6. Study the higher–dimensional analogues of Theorem 7B. Is it true
that

D0(A,∞, N)�A (logN)K−1?

Question 6 is sometimes referred to as the “Greater Open Problem”.

§1.4. The Effect of Dimension on Discrepancy

Consider Theorems 1A and 2D. It is quite clear that the order of magnitude of the
function D(K, 2, N) depends on the dimension K. Consider also Theorems 5A and
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6A. It is again clear that the order of magnitude of the function D1(A, 2, N) depends
on the dimension K.

Let us consider now a combination of these two problems. Again let U = [0, 1],
treated as a torus. Suppose that P is a distribution of N points in UK+L, where
K,L,N ∈ N with K ≥ 2. Let A be a compact and convex body in UK . For any
real number λ ∈ (0, 1], any proper orthogonal transformation τ in RK and any vector
u ∈ UK , let

A(λ, τ,u) = {τ(λx) + u : x ∈ A}

as as §1.3. Also, for every y = (y1, . . . , yL) ∈ UL, let

B(y) = [0, y1)× . . .× [0, yL)

as in §1.1. We now consider the cartesian product

A(λ, τ,u)×B(y) ∈ UK+L,

and write
Z[P;A(λ, τ,u)×B(y)] = #(P ∩ (A(λ, τ,u)×B(y))).

We are interested in the discrepancy function

D[P;A(λ, τ,u)×B(y)] = Z[P;A(λ, τ,u)×B(y)]−NµK(A(λ, τ,u))µL(B(y)),

where µK and µL denote respectively the usual volume in UK and UL.
Again, let T be the group of all proper orthogonal transformations in RK , and

let dτ be the volume element of the invariant measure on T , normalized such that∫
T dτ = 1. Let

D(A,L, 2, N) = inf
|P|=N

(∫ 1

0

∫
T

∫
UK

∫
UL
|D[P;A(λ, τ,u)×B(y)]|2dydudτdλ

)1/2

,

where the infimum is taken over all distributions P of N points in UK+L.
It follows easily from Theorem 5A that

Theorem 9. Suppose that r(A) ≥ N−1/K , where r(A) denotes the radius of the
largest inscribed ball of A. Then

D(A,L, 2, N)�A,L N
1
2−

1
2K .

The natural question is whether this trivial lower estimate is best possible. Note
that the order of magnitude of this estimate, while naturally dependent on the dimen-
sion K, is independent of the dimension L. This raised the question of whether the
order of magnitude of D(A,L, 2, N) is independent of L. Rather surprisingly, this was
shown to be the case.
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Theorem 10. (Beck–Chen [9]) We have

D(A,L, 2, N)�A,L N
1
2−

1
2K .

There are the following open questions.

QUESTION 7. Repeat the investigation on the L∞–norms.

QUESTION 8. Find other situations when dimension has interesting effect (or lack
of it) on the discrepancy.

Question 7 involves possibly first solving Question 4, but one might get away with
not first having to solve Question 1.

§1.5. Roth’s Disc–Segment Problem

Suppose that P is a distribution of N points in U0, the closed disc of unit area and
centred at the origin 0. For every measurable set B in R2, let

Z[P;B] = #(P ∩B),

and write
D[P;B] = Z[P;B]−Nµ(B ∩ U0),

where µ denotes the usual measure in R2.
For every real number r ≥ 0 and every angle θ satisfying 0 ≤ θ ≤ 2π, let S(r, θ)

denote the closed half-plane

S(r, θ) = {x ∈ R2 : x · e(θ) ≥ r}.

Here e(θ) = (cos θ, sin θ) and x · y denotes the scalar product of x and y.
Let

D(∞, N) = inf
|P|=N

sup
0≤r≤π−1/2

0≤θ≤2π

|D[P;S(r, θ)]|,

where the infimum is taken over all distributions P of N points in U0.
Roth asked the question of whether D(∞, N) → +∞ as N → ∞. This question

was answered in the affirmative by Beck.

Theorem 11A. (Beck [3]) We have

D(∞, N)� N
1
4 (logN)−

7
2 .
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More recently, using integral–geometric ideas, Alexander proved the following
sharper result.

Theorem 11B. (Alexander [1]) We have

D(∞, N)� N
1
4 .

In fact, both Beck and Alexander studied the L2–norm of the discrepancy function.
For every W > 0, write

D(W,N) = inf
|P|=N

(∫ 2π

0

∫ π−1/2

0

|D[P;S(r, θ)]|Wdrdθ

)1/W

,

where the infimum is taken over all distributions P of N points in U0.

Theorem 11C. (Alexander [1]) We have

D(2, N)� N
1
4 .

Make the important observation that

1
2
− 1

2K
=

1
4

if K = 2.

This provides a link between the disc–segment problem and the questions in §1.3.
Theorem 11C is complemented by the result below, which can be proved using the

methods for proving Theorems 6A and 10.

Theorem 12A. We have
D(2, N)� N

1
4 .

The situation is drastically different when W = 1. We shall prove the following
rather surprising result.

Theorem 12B. (Beck–Chen [10]) We have

D(1, N)� (logN)2.

Simply compare the lower estimate in Theorem 11C and the upper estimate in
Theorem 12B.

On the other hand, there are the following open questions.
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QUESTION 9. Is it true that

(logN)
1
2 � D(1, N)� (logN)

1
2 ?

QUESTION 10. Study the behaviour of D(W,N) for 1 < W < 2.

Question 10 is due to Schmidt at Oberwolfach 1990.

§1.6. Convex Polygons

Let us return to the questions in §1.3, but restrict ourselves to the special case when A
is a convex polygon in U2. More precisely, let U = [0, 1], treated as a torus. Suppose
that P is a distribution of N points in U2, where N ∈ N. Let A be a convex polygon
in U2. For any real number λ ∈ (0, 1], any rotation τ ∈ [0, 2π) and any vector u ∈ U2,
let

A(λ, τ,u) = {τ(λx) + u : x ∈ A},

and let
Z[P;A(λ, τ,u)] = #(P ∩A(λ, τ,u)).

We are interested in the discrepancy function

D[P;A(λ, τ,u)] = Z[P;A(λ, τ,u)]−Nµ(A(λ, τ,u)),

where µ denotes the usual volume in U2.
For every W > 0, write

D(A,W,N) = inf
|P|=N

(∫ 1

0

∫ 2π

0

∫
U2
|D[P;A(λ, τ,u)]|Wdudτdλ

)1/W

,

where the infimum is taken over all distributions P of N points in U2.
As a special case of Theorem 5A and Theorem 6A, we have respectively

Theorem 13. Suppose that r(A) ≥ N−1/2, where r(A) denotes the radius of the
largest inscribed ball of A. Then

D(A, 2, N)�A N
1
4 .

Theorem 14A. We have

D(A, 2, N)�A N
1
4 .
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Note now that a convex polygon is the interesction of a finite number of half–
planes. We can therefore adapt the ideas in the proof of Theorem 12B to prove the
following result.

Theorem 14B. (Beck–Chen [11]) We have

D(A, 1, N)�A (logN)2.

There are the following open questions.

QUESTION 11. Is it true that

(logN)
1
2 �A D(A, 1, N)�A (logN)

1
2 ?

QUESTION 12. Study the behaviour of D(A,W,N) for 1 < W < 2.

QUESTION 13. Study the corresponding problem when rotation is omitted.

QUESTION 14. Investigate the problem in higher dimensions.

Some progress is being made on Question 13. However, study of Question 14
appears to be severely hindered by our lack of knowledge on exponential sums, unless,
of course, the answer is of an unexpected nature.

§1.7. Comments

Naturally, the above represent only a selection of results in the subject. Progress up
to the mid–1980’s is covered in the monograph of Beck–Chen [7]. Progress since is
expected to be covered in the second half of a forthcoming monograph.

We shall discuss Theorems 2A and 2C in §2, Theorems 2B and 2D in §3, Theorem
8B in §4, Theorems 6B, 6A and 10 in §5 and Theorems 12B and 14B in §6. We shall
also prove Theorem 1A in the appendix.

§2. Davenport’s Method

We shall follow the notation in §1.1. We state Davenport’s theorem [16] as follows.
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THEOREM 2A. For every even natural number N , there exists a distribution P
of N points in U2

0 such that∫
U2

1

|D[P;B(x)]|2dx� logN.

More than 20 years later, Roth [26] was able to extend Davenport’s ideas to prove
an analogue in U3

0 .

THEOREM 2C. For every natural number N ≥ 2, there exists a distribution P of
N points in U3

0 such that ∫
U3

1

|D[P;B(x)]|2dx� (logN)2.

§2.1. Davenport’s Ideas

Let θ be any irrational number having a continued fraction with bounded partial quo-
tients. A well–known result on diophantine approximation states that there exists a
positive constant c = c(θ), depending on θ, such that

ν‖νθ‖ > c > 0 (2.1)

for all positive integers ν, where ‖ ·‖ denotes the distance from the nearest integer. For
the remainder of this section, we assume that such a number θ has been chosen and
fixed, and constants in the subsequent argument may depend on this choice of θ.

Lemma 2.1. Let W1 ∈ Z and W ∈ N. Then

∞∑
ν=1

1
ν2

∣∣∣∣∣
W1+W−1∑
n=W1

e(θnν)

∣∣∣∣∣
2

� log(2W ).

Proof. It is well–known that∣∣∣∣∣
W1+W−1∑
n=W1

e(θnν)

∣∣∣∣∣� min{W, ‖νθ‖−1},

so that

S =
∞∑
ν=1

1
ν2

∣∣∣∣∣
W1+W−1∑
n=W1

e(θnν)

∣∣∣∣∣
2

�
∞∑
m=1

2−2m
∑

2m−1≤ν<2m

min{W 2, ‖νθ‖−1}.
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For any pair m, p ∈ N, there are at most two values of ν in the interval 2m−1 ≤ ν < 2m

for which
pc2−m ≤ ‖νθ‖ < (p+ 1)c2−m;

for otherwise the difference (ν1 − ν2) of two of them would contradict (2.1). Hence

S �
∞∑
m=1

∞∑
p=1

min{2−2mW 2, p−2}

=
∑

2m≤W

∞∑
p=1

min{2−2mW 2, p−2}+
∑

2m>W

∞∑
p=1

min{2−2mW 2, p−2}

�
∑

2m≤W

∞∑
p=1

p−2 +
∑

2m>W

2−2mW 22mW−1 +
∑

p>2mW−1

p−2


�

∑
2m≤W

1 +
∑

2m>W

2−mW � log(2W ). ♣

We shall be concerned with (2– and) 3–dimensional euclidean space, and denote
a typical point by (x, y, z). The vectors i, j,k denote respectively (1, 0, 0), (0, 1, 0),
(0, 0, 1). The symbol Λ is reserved for non–degenerate lattices in the xy–plane. We
also let

Λ0 = Λ0(θi + j, i)

denote the lattice generated by θi + j and i.
For any lattice Λ and any rectangle of the form R = [0, X)× [Y1, Y2), let Z[Λ;R]

denote the number of points of Λ that fall into R, and write

E[Λ;R] = Z[Λ;R]− |d(Λ)|−1
A(R),

where d(Λ) is the determinant of the lattice Λ and A(R) is the area of R.
It is clear that |d(Λ0)| = 1.
Let M ∈ N. We are interested in the M points of Λ0 that fall into [0, 1)× [0,M).

Let R∗ = [0, X) × [Y1, Y2), where 0 < X ≤ 1 and where the integers Y1, Y2 satisfy
0 ≤ Y1 < Y2 ≤M .

Let ψ(x) = x − [x] − 1/2 when x 6∈ Z and ψ(x) = 0 when x ∈ Z. Then since
0 < X ≤ 1, we have

ψ(x−X)− ψ(x) =
{

1−X (0 < {x} < X),
−X ({x} > X),

so that

Z[Λ0;R∗] =
Y2−1∑
n=Y1

(X + ψ(θn−X)− ψ(θn))
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for all but a finite number of values of X in the interval 0 < X ≤ 1. We comment
here that the use of the function ψ is a technical device. One really wants to study the
characteristic function.

It follows that

E[Λ0;R∗] =
Y2−1∑
n=Y1

(ψ(θn−X)− ψ(θn)) (2.2)

for all but a finite number of values of X in the interval 0 < X ≤ 1. Note now that
ψ(x) has the Fourier expansion

ψ(x) = −
∑
ν 6=0

e(xν)
2πiν

,

so that the right–hand side of (2.2) has the expansion

∑
ν 6=0

(
1− e(−νX)

2πiν

)(Y2−1∑
n=Y1

e(θnν)

)
. (2.3)

We would like to square the expression (2.3) and integrate with respect to X over
the interval (0, 1]. Unfortunately, the term 1 in (1− e(−νX)) proves to be a nuisance.

In order to overcome this difficulty, Davenport introduced another lattice Λ′0 =
Λ′0(−θi + j, i) and considered the 2M points of Λ0 ∪ Λ′0 in [0, 1)× [0,M). Then, since
ψ(x) is an odd function,

Z[Λ0 ∪ Λ′0;R∗]− 2A(R∗)

=
Y2−1∑
n=Y1

(ψ(θn−X)− ψ(θn) + ψ(−θn−X)− ψ(−θn))

=
Y2−1∑
n=Y1

(ψ(θn−X)− ψ(θn+X)) (2.4)

for all but a finite number of values of X in the interval 0 < X ≤ 1. Now the right–hand
side of (2.4) has the expansion

∑
ν 6=0

(
e(νX)− e(−νX)

2πiν

)(Y2−1∑
n=Y1

e(θnν)

)
,

so that by Parseval’s theorem and Lemma 2.1,

∫ 1

0

|Z[Λ0 ∪ Λ′0;R∗]− 2A(R∗)|2dX �
∞∑
ν=1

1
ν2

∣∣∣∣∣
Y2−1∑
n=Y1

e(θnν)

∣∣∣∣∣
2

� log(2(Y2 − Y1))� log(2M).
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If Y is any real number satisfying 0 < Y ≤ M , then for R = [0, X) × [0, Y ), we
take R∗ = [0, X)× [0,−[−Y ]), where −[−Y ] is the least integer not less than Y . Then

Z[Λ0 ∪ Λ′0;R] = Z[Λ0 ∪ Λ′0;R∗]

and
A(R)−A(R∗)� 1,

so that ∫ 1

0

|Z[Λ0 ∪ Λ′0;R]− 2A(R)|2dX � log(2M).

It follows that ∫ M

0

∫ 1

0

|Z[Λ0 ∪ Λ′0;R]− 2A(R)|2dXdY �M log(2M).

Rescaling in the Y –direction by a factor 1/M , we see that the set

P = {({±θn}, n/M) : 0 ≤ n ≤M − 1}

of 2M points in U2
0 satisfies the requirements of Theorem 2A.

§2.2. Roth’s Averaging Argument

Instead of introducing the extra lattice Λ′0 to overcome the difficulty in (2.3), Roth [26]
devised an ingenious variation of the argument. This new idea, in its various different
forms and disguises, proved to be extremely important in later work on upper bound
theorems, as will be evident in the rest of this section and in §3, §5 and §6.

For any t ∈ R, let ti + Λ0 be the lattice given by

ti + Λ0 = {ti + v : v ∈ Λ0};

in other words, ti + Λ0 is a translation in the x–direction of the lattice Λ0. Then

E[ti + Λ0;R∗] =
Y2−1∑
n=Y1

(ψ(t+ θn−X)− ψ(t+ θn))

has the expansion ∑
ν 6=0

(
1− e(−νX)

2πiν

)(Y2−1∑
n=Y1

e(θnν)

)
e(νt),

so that by Parseval’s theorem,∫ 1

0

|E[ti + Λ0;R∗]|2dt�
∞∑
ν=1

1
ν2

∣∣∣∣∣
Y2−1∑
n=Y1

e(θnν)

∣∣∣∣∣
2

.
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Hence Roth was able to prove

Lemma 2.2. Suppose that M ∈ N. Suppose further that 0 < X ′2 − X ′1 ≤ 1 and
0 < Y ′2 − Y ′1 ≤M . If R = [X ′1, X

′
2)× [Y ′1 , Y

′
2), then∫ 1

0

|E[ti + Λ0;R]|2dt� log(2M).

Note that the function E[ti + Λ0;R] is periodic in t with period 1, so that we can
assume that X ′1 = 0 when proving Lemma 2.2. On the other hand, if we take the
special case R = [0, X)× [0, Y ) where 0 < X ≤ 1 and 0 < Y ≤M , then on integrating
trivially with respect to X and Y , we obtain∫ 1

0

∫ M

0

∫ 1

0

|E[ti + Λ0;R]|2dXdY dt�M log(2M).

Rescaling in the Y –direction by a factor 1/M , we see that for some t ∈ [0, 1], the set

P = {({t+ θn}, n/M) : 0 ≤ n ≤M − 1}

of M points in U2
0 satisfies the requirements of Theorem 2A.

§2.3. Layers of Lattices

The following form of Lemma 2.2 is better suited for the proof of Theorem 2C.

Lemma 2.2’. Suppose that M ∈ N. Suppose further that 0 < X ′′2 −X ′′1 ≤M−1 and
0 < Y ′′2 − Y ′′1 ≤ 1. If R = [X ′′1 , X

′′
2 )× [Y ′′1 , Y

′′
2 ), then∫ 1

0

|E[M−1ti +M−1Λ0;R]|2dt� log(2M);

in other words, ∫ 1

0

|E[ti +M−1Λ0;R]|2dt� log(2M).

Note that the first inequality is obtained from Lemma 2.2 by a change of scale.
On the other hand, the second inequality follows from the first, as we have, in view of
periodicity, ∫ M

0

|E[M−1ti +M−1Λ0;R]|2dt�M log(2M).
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The idea of Roth is to consider layers of 2–dimensional lattices in 3–dimensional
euclidean space.

If S is any subset of the 3–dimensional euclidean space, we define, for any vector
v∗,

v∗ + S = {v∗ + v : v ∈ S};

in other words, v∗ + S is a translation by v∗ of the set S.
Roth considered sets Ω of the type

p2⋃
ν=p1

(νk + wν + Λ), (2.5)

where p1, p2 are non–negative integers, wν = (xν , yν , 0) is a vector in the xy–plane for
each ν, and Λ is a lattice in the xy–plane. He also considered boxes B of the type

[X ′, X ′′)× [Y ′, Y ′′)× [Z ′, Z ′′). (2.6)

If Ω is a set of the type (2.5) and B is a box of the type (2.6) with p1 ≤ Z ′ < Z ′′ ≤ p2+1,
we write Z[Ω;B] for the number of points of Ω that fall into B, and write

E[Ω;B] = Z[Ω;B]− |d(Λ)|−1
V (B),

where V (B) is the volume of B.
The sets Ω that Roth constructed are obtained from Λ0 as follows: Recall that

Λ0 = Λ0(u, i), where u = θi + j. For any non–negative integer m, write

Λm = 2−mΛ0 = Λ(2−mu, 2−mi).

Define
q0 = 0, q1 = 1

2u, q2 = 1
2 i, q3 = 1

2u + 1
2 i.

Then it is not difficult to see that for every non–negative integer m,

Λm+1 =
3⋃

τ=0

(2−mqτ + Λm).

Roth defined Ω0,Ω1, . . . successively by Ω0 = Λ0 and

Ωm+1 =
3⋃

τ=0

(τ4mk + 2−mqτ + Ωm).

Then it is easily seen that

Lemma 2.3. Ωm has a representation of the type (2.5) with p1 = 0, p2 = 4m−1 and
Λ = Λ0. Furthermore, the projection of Ωm onto the xy–plane is Λm.
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The special boxes that Roth considered are defined as follows.

Definition. A box of the type [0, X) × [0, Y ) × [0, Z) is said to be admissible with
respect to m if

0 < X ≤ 2−m, 0 < Y ≤ 1, 0 < Z ≤ 4m.

Theorem 2C can then be easily be deduced from the following lemma.

Lemma 2.4. There exists a constant c0 = c0(θ) such that for any non–negative
integer m, ∫ 1

0

∫ 1

0

|E[su + ti + Ωm;B]|2dsdt ≤ c0(m+ 1)2 (2.7)

for every box B that is admissible with respect to m.

For let the natural number N ≥ 2 be given. Choose m so that 2m−1 < N ≤ 2m.
Writing B = B(X,Y, Z) = [0, X)× [0, Y )× [0, Z), we have∫ 1

0

∫ 1

0

∫ 4m

0

∫ N2−m

0

∫ 2−m

0

|E[su + ti + Ωm;B(X,Y, Z)]|2dXdY dZdsdt

≤ c0(m+ 1)2N.

Hence there exist s∗, t∗ satisfying 0 ≤ s∗, t∗ < 1 such that∫ 4m

0

∫ N2−m

0

∫ 2−m

0

|E[s∗u + t∗i + Ωm;B(X,Y, Z)]|2dXdY dZ ≤ c0(m+ 1)2N.

By Lemma 2.3, there are exactly N points of s∗u + t∗i + Ωm in the region [0, 2−m)×
[0, N2−m)× [0, 4m). If these are the points

(2−mxν , N2−myν , 4mzν) (ν = 1, . . . , N),

then the set
P = {(xν , yν , zν) : ν = 1, . . . , N}

of N points in U3
0 satisfies the requirements of Theorem 2C.

We shall prove Lemma 2.4 by induction on m. For m = 0, the result is trivial if
the constant c0 is chosen to be large enough. Suppose now that m ≥ 0 and that (2.7)
holds for all boxes admissible with respect to m. Suppose now that the box

B∗ = [0, X∗)× [0, Y ∗)× [0, Z∗)

is admissible with respect to (m+ 1). Let the integer µ satisfy µ4m < Z∗ ≤ (µ+ 1)4m.
Then 0 ≤ µ ≤ 3. If µ = 0, then B∗ is admissible with respect to m. Hence we may
assume that 0 < µ ≤ 3. Then

B∗ =

(
µ−1⋃
τ=0

B(τ)

)
∪B∗∗,

20



where, for 0 ≤ τ ≤ µ− 1,

B(τ) = [0, X∗)× [0, Y ∗)× [τ4m, (τ + 1)4m)

and where
B∗∗ = [0, X∗)× [0, Y ∗)× [µ4m, Z∗).

The idea is to use Lemma 2.2’ on the projection of B(τ) onto the xy–plane, with
M = 2m, and to note that −µ4mk +B∗∗ is admissible with respect to m.

Writing

E1(s, t) =
µ−1∑
τ=0

E[su + ti + Ωm+1;B(τ)]

and
E2(s, t) = E[su + ti + Ωm+1;B∗∗],

we have ∫ 1

0

∫ 1

0

|E[su + ti + Ωm+1;B∗]|2dsdt = I1 + I2 + 2J,

where, for β = 1, 2,

Iβ =
∫ 1

0

∫ 1

0

|Eβ(s, t)|2dsdt,

and where

J =
∫ 1

0

∫ 1

0

E1(s, t)E2(s, t)dsdt.

Consider first

I1 ≤ µ
µ−1∑
τ=0

∫ 1

0

∫ 1

0

|E[su + ti + Ωm+1;B(τ)]|
2
dsdt.

Then writing R0 = [0, X∗)× [0, Y ∗), we see that

E[su + ti + Ωm+1;B(τ)] = E[su + ti + 2−mqτ + Λm;R0]. (2.8)

In view of periodicity in s and t, we have

I1 ≤ µ2

∫ 1

0

∫ 1

0

|E[su + ti + Λm;R0]|2dsdt� m+ 1 (2.9)

by Lemma 2.2’ with M = 2m. On the other hand,

I2 =
∫ 1

0

∫ 1

0

|E[su + ti + Ωm+1;B∗∗]|2dsdt

=
∫ 1

0

∫ 1

0

|E[su + ti + 2−mqµ + Ωm;−µ4mk +B∗∗]|2dsdt

=
∫ 1

0

∫ 1

0

|E[su + ti + Ωm;−µ4mk +B∗∗]|2dsdt,
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in view of periodicity. Since −µ4mk + B∗∗ is admissible with respect to m, we have,
by the induction hypothesis, that

I2 ≤ c0(m+ 1)2.

To complete the proof of Lemma 2.4, it remains to show that J � m+ 1. However, by
applying Schwarz’s inequality to J and using the estimates for I1 and I2, we only get
J � (m+ 1)3/2. We therefore need extra ideas.

Note that by periodicity in s and t, we have

J =
∫ 1

0

∫ 1

0

E1(s+ a2−m, t+ b2−m)E2(s+ a2−m, t+ b2−m)dsdt (2.10)

for every pair of integers a, b. Furthermore, by (2.8), E1(s, t) is concerned with the
lattice Λm, and so it is in fact periodic in both s and t with period 2−m. Hence,
summing (2.10) over the ranges 0 ≤ a, b ≤ 2m − 1, we have

4mJ =
∫ 1

0

∫ 1

0

E1(s, t)D(s, t)dsdt,

where

D(s, t) =
2m−1∑
a=0

2m−1∑
b=0

E2(s+ a2−m, t+ b2−m).

By Schwarz’s inequality and (2.9),

(4mJ)2 � (m+ 1)
∫ 1

0

∫ 1

0

|D(s, t)|2dsdt. (2.11)

We next show that D(s, t) is concerned with a very special Ω, where “the sheets Λ are
exactly on top of each other”. More precisely,

D(s, t) = Z[su + ti + Ω′;B∗∗]− 4mV (B∗∗),

where Ω′ is obtained from

2m−1⋃
a=0

2m−1⋃
b=0

(a2−mu + b2−mi + Ωm+1)

by restricting the last coordinate to the interval [µ4m, (µ+ 1)4m); in other words,

Ω′ = µ4mk + 2−mqµ +
2m−1⋃
a=0

2m−1⋃
b=0

(a2−mu + b2−mi + Ωm)

= µ4mk + 2−mqµ + Ω′′,
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say. In view of Lemma 2.3, it is not difficult to see that Ω′′ is of the form

Ω′′ =
4m−1⋃
ν=0

(νk + Λm).

Let
B∗∗∗ = [0, X∗)× [0, Y ∗)× [µ4m,−[−Z∗]).

Then
Z[su + ti + Ω′;B∗∗] = Z[su + ti + Ω′;B∗∗∗]

and
|4mV (B∗∗)− 4mV (B∗∗)| ≤ 2m.

Then using the projection onto the xy–plane, we have

D(s, t) = (−[−Z∗]− µ4m)E[su + ti + 2−mqµ + Λm;R0] +O(2m).

Since 0 ≤ −[−Z∗]− µ4m ≤ 4m, we have, by (2.9), that∫ 1

0

∫ 1

0

|D(s, t)|2dsdt� 42m(m+ 1). (2.12)

Combining (2.11) and (2.12), we have J � m+ 1. Lemma 2.4 follows.

§3. The Classical Method

We shall again follow the notation in §1.1. Let K ≥ 2. We shall first prove the theorem
of Halton–Hammersley [19,20].

THEOREM 2B. For every natural number N ≥ 2, there exists a distribution P of
N points in UK0 such that

sup
x∈UK1

|D[P;B(x)]| �K (logN)K−1
.

Some 20 years later, Roth [27] was able to introduce extra probabilistic ideas to
prove the following stronger result.

THEOREM 2D. For every natural number N ≥ 2, there exists a distribution P of
N points in UK0 such that∫

UK1

|D[P;B(x)]|2dx�K (logN)K−1
.

23



§3.1. Some Old Ideas

Theorem 2B was proved in the case K = 2 by Lerch [22] in 1904, some 31 years
before the subject of irregularities of distribution was born. In 1935, van der Corput
[14,15] gave an alternative proof of this special case, using what is known nowadays
as the van der Corput sequence. The argument of Halton–Hammersley is essentially a
generalization of this idea to higher dimensions.

For notational convenience, we shall write K = k + 1 throughout this section.
The first idea is to consider, instead of sets of N points in Uk+1

0 , infinite sets of
points in Uk0 × [0,∞) such that there is an average of one point per unit volume. We
then consider those N points contained in Uk0 × [0, N), and rescale the last coordinate
to obtain a set of N points in Uk+1

0 .
We shall be concerned with boxes in Uk0 × [0,∞) of the form

I1 × . . .× Ik × I0, (3.1)

where, for each j = 1, . . . , k, Ij is an interval of the form [αj , βj) and contained in U0,
while I0 is an interval of the form [α0, β0) satisfying 0 ≤ α0 < β0.

The second idea is to look for distributions such that many boxes of the type (3.1)
contain the right number of points (i.e. equal to the volume of the boxes), while making
sure that all other boxes can be approximated to a finite union of these boxes.

Definition. Let p be a prime and s be a non–negative integer. By an elementary p–
type interval of order s, we mean an interval of the type [α, β), contained in U0, where
α and β are consecutive integer multiples of p−s.

Let h be a non–negative integer, and let p1, . . . , pk be primes, not necessarily
distinct.

Definition. By an elementary box of order h with respect to the primes p1, . . . , pk
in Uk0 × [0,∞), we mean a set of the form (3.1), where, for each j = 1, . . . , k, Ij is
an elementary pj–type interval of order sj (0 ≤ sj ≤ h), and where I0 is an interval
of the form [α0, β0), with α0, β0 being consecutive non–negative integer multiples of
ps11 . . . pskk .

It is clear that any elementary box of order h in Uk0 × [0,∞) has volume 1.

Definition. By a special set of class h with respect to the primes p1, . . . , pk in Uk0 ×
[0,∞), we mean an infinite set Q of points in Uk0 × [0,∞) which has the property that
every elementary box of order h with respect to the primes p1, . . . , pk in Uk0 × [0,∞)
contains exactly one point of Q.

In 1935, van der Corput proved the following.
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Lemma 3.1. For each n ∈ N ∪ {0}, write

n =
∞∑
ν=1

aν2ν−1 (0 ≤ aν < 2),

where the integers aν are uniquely determined by n, and write

x(n) =
∞∑
ν=1

aν2−ν .

Then the set
{(x(n), n) : n ∈ N ∪ {0}}

is a special set of class h with respect to the prime 2 in U0× [0,∞) for any non–negative
integer h.

To prove Lemma 3.1, simply note that if I is an elementary 2–type interval of
order s, then the relation x(n) ∈ I is satisfied by precisely all the non–negative integers
of a residue class modulo 2s. Using this idea on different primes and using the Chinese
remainder theorem, we can prove the following generalization by Halton–Hammersley.

Lemma 3.2. Suppose that p1, . . . , pk are distinct primes. For each n ∈ N ∪ {0} and
each j = 1, . . . , k, write

n =
∞∑
ν=1

aj,νp
ν−1
j (0 ≤ aj,ν < pj),

where the integers aj,ν are uniquely determined by n, and write

xj(n) =
∞∑
ν=1

aj,νp
−ν
j .

Then the set
{(x1(n), . . . , xk(n), n) : n ∈ N ∪ {0}} (3.2)

is a special set of class h with respect to the primes p1, . . . , pk in Uk0 × [0,∞) for any
non–negative integer h.

For any special set Q and any box B of the type (3.1) in Uk0 × [0,∞), let Z[Q;B]
denote the number of points of Q in B, and write

E[Q;B] = Z[Q;B]− µ(B),

where µ(B) denotes the volume of B. Note that if B = B1 ∪ B2, where B1 ∩ B2 = ∅,
then

E[Q;B] = E[Q;B1] + E[Q;B2]. (3.3)
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Definition. Let s be a non–negative integer. Suppose that B∗ = I1×. . .×Ik×I∗, where
for each j = 1, . . . , k, Ij = [0, ηj), where 0 < ηj ≤ 1 and ηj is an integer multiple of p−sj .
Suppose further that I∗ = [0, Y ), where Y is positive but otherwise unrestricted. Then
we say that B∗ is a box of class s with respect to the primes p1, . . . , pk in Uk0 × [0,∞).

Theorem 2B can be deduced from Lemma 3.2 and the following lemma.

Lemma 3.3. For any special set of class h with respect to the primes p1, . . . , pk in
Uk0 ×[0,∞) and for any box B∗ of class h with respect to the same primes in Uk0 ×[0,∞),
we have

|E[Q;B∗]| < (p1 . . . pk)hk. (3.4)

Proof. Note that since each of the Ij = [0, ηj) is a disjoint union of at most pjh
elementary pj–type intervals of order at most h, B∗ is a disjoint union of at most
(p1 . . . pk)hk boxes of the type

I1 × . . .× Ik × [0, Y ), (3.5)

where, for each j = 1, . . . , k, Ij is an elementary pj–type interval of order sj where
0 ≤ sj ≤ h. To prove (3.4), it suffices to prove, in view of (3.3), that for each box B of
the type (3.5), |E[Q;B]| < 1. Let Y0 denote the greatest integer multiple of ps11 . . . pskk
not exceeding Y . Then [0, Y ) = [0, Y0) ∪ [Y0, Y ). The box I1 × . . . × Ik × [0, Y0) is
the union of a finite number of elementary boxes of order h with respect to the primes
p1, . . . , pk in Uk0 × [0,∞), and so contains the expected number of points of Q. Hence
E[Q; I1× . . .×Ik× [0, Y0)] = 0. On the other hand, the remainder I1× . . .×Ik× [Y0, Y )
is contained in an elementary box of order h with respect to the primes p1, . . . , pk in
Uk0 × [0,∞), and so contains at most one point of Q and has volume less than 1. It
follows that |E[Q; I1× . . .× Ik× [Y0, Y )]| < 1, and the proof of the lemma is complete.
♣

We now deduce Theorem 2B. Let the natural number N ≥ 2 be given. Let
p1, . . . , pk be the first k primes, and let Q be the set (3.2) in Lemma 3.2. We choose
integer h to satisfy

2h−1 < N ≤ 2h. (3.6)

For any x = (x1, . . . , xk) ∈ Uk1 and for any Y satisfying

0 < Y ≤ N, (3.7)

let B(x, Y ) denote the box

B(x, Y ) = [0, x1)× . . .× [0, xk)× [0, Y ).

Let y = y(x) = (y1, . . . , yk) be defined such that for every j = 1, . . . , k,

yj = yj(xj) = −p−hj [−phj xj ];
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in other words, yj is the least integer multiple of p−hj not less than xj .

Lemma 3.4. For any x ∈ Uk1 and any Y satisfying (3.7), we have

|E[Q;B(x;Y )]− E[Q;B∗(y(x);Y )]| ≤ k.

Proof. For j = 0, 1, . . . , k, for any fixed x ∈ Uk1 and for any fixed Y satisfying (3.7),
let

B(j) = [0, y1)× . . .× [0, yj)× [0, xj+1)× . . .× [0, xk)× [0, Y ).

Then clearly B(0) = B(x, Y ) and B(k) = B∗(y(x), Y ). To prove Lemma 3.4, it suffices
to show that for every j = 1, . . . , k, we have

|E[Q;B(j)]− E[Q;B(j−1)]| ≤ 1.

This follows from observing that B(j−1) ⊆ B(j) and that the complement of B(j−1) in
B(j) is contained in an elementary box of order h with respect to the primes p1, . . . , pk
in Uk0 × [0,∞). ♣

It now follows from Lemmas 3.3 and 3.4 that for any box B(x, Y ) with x ∈ Uk1
and 0 < Y ≤ N , we have

|E[Q;B(x, Y )]| < (p1 . . . pk)hk + k. (3.8)

The box [0, 1)k × [0, N) contains precisely the points

(x1(n), . . . , xk(n), n) (n = 0, 1, . . . , N − 1).

Hence the set
P = {(x1(n), . . . , xk(n), n/N) : 0 ≤ n < N}

satisfies, in view of (3.6) and (3.8),

sup
x∈Uk+1

1

|D[P;B(x)]| �k (logN)k.

This completes the proof of Theorem 2B.

§3.2. Some Simple Truths

The existence of special sets of any class with respect to the primes p1, . . . , pk in
Uk0 × [0,∞) has been studied more closely recently. Halton–Hammersley showed in
Lemma 3.2 that if p1, . . . , pk are distinct, then such sets exist. Faure [17] showed in
1982 that
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• if the primes p1, . . . , pk are all equal and if their common value is at least k, then
such sets exist; and
• if the primes p1, . . . , pk are all equal and if their common value is less than k, then

such sets do not exist unless h = 0.
I [13] observed in 1983 that
• if k = 3 and p1 = p2 = 2 and p3 = 3, then such sets do not exist unless h ≤ 1; and
• if k = 3 and p1 = 2 and p2 = p3 = 3, then such sets do not exist unless h = 0.

So perhaps the following is true. However, any counterexample will be very interesting.

Conjecture. Suppose that p1, . . . , pk are primes, not all distinct but not all equal.
Then there exists a positive integer h0, depending at most on p1, . . . , pk, such that for
every h ≥ h0, there are no special sets of class h with respect to the primes p1, . . . , pk
in Uk0 × [0,∞).

§3.3. More Old Ideas

The oldest idea in probability theory concerns taking an average. Accordingly, we shall
modify the set Q used in §3.1 and average the discrepancy over such modifications. For
the sake of convenience, we make a few technical refinements along the way.

Again, let p1, . . . , pk denote the first k primes. Consider the subset

{(x1(n), . . . , xk(n), n) : 0 ≤ n < (p1 . . . pk)h} (3.9)

of the set (3.2). We then extend the set (3.9) by periodicity as follows. Writing X(n) =
(X1(n), . . . , Xk(n)), we define Xj(n) = xj(n) for all j = 1, . . . , k if 0 ≤ n < (p1 . . . pk)h;
and let

X(n) = X(n+ (p1 . . . pk)h)

otherwise. Let
Ω = {(X(n), n) : n ∈ Z}. (3.10)

For any t ∈ R, we define the translation Ω(t) by

Ω(t) = {(X(n), n+ t) : n ∈ Z}. (3.11)

Clearly Ω(0) = Ω. Also, note that the subset {(X(n), n + t) : n + t ≥ 0} of Ω(t) is a
special set of class h with respect to the primes p1, . . . , pk in Uk0 × [0,∞).

For any box B in Uk0 × [0,∞), let Z[Ω(t);B] denote the number of points of Ω(t)
in B, and write

E[Ω(t);B] = Z[Ω(t);B]− µ(B).

Then Theorem 2D can easily be deduced from the following lemma. Let

M = p1 . . . pk. (3.12)

28



Lemma 3.5. For any box B∗ of class h with respect to the primes p1, . . . , pk in
Uk0 × [0,∞), we have∫ Mh

0

|E[Ω(t);B∗]|2dt < (4h)k(p1 . . . pk)2Mh.

Proof of Theorem 2D. For any natural number N ≥ 2, let the integer h satisfy
(3.6). For any x = (x1, . . . , xk) ∈ Uk1 and for any Y satisfying 0 < Y ≤ N , let
B(x, Y ) = [0, x1)× . . .× [0, xk)× [0, Y ). Then in view of Lemmas 3.4 and 3.5, we have∫ Mh

0

|E[Ω(t);B∗]|2dt�k M
hhk

for every B(x, Y ). Hence∫ Mh

0

∫ N

0

∫
UK
|E[Ω(t);B∗]|2dxdY dt�k NM

hhk,

so that there exists a real number t∗, satisfying 0 ≤ t∗ < Mh, such that∫ N

0

∫
UK
|E[Ω(t∗);B∗]|2dxdY �k N(logN)k.

It follows that the set

P = {(X1(n), . . . , Xk(n), N−1(n+ t∗)) : 0 ≤ n+ t∗ < N}

of N points in Uk+1
0 gives the desired result. ♣

It remains to prove Lemma 3.5. To do this, it is convenient to express E[Ω(t);B∗]
as a sum of a finite number of 1–dimensional discrepancy functions.

We use R to denote a residue class. In particular, R(m, q) denotes the residue
class of integers congruent to m modulo q. For any t ∈ R, we denote by t+ R the set
{t + n : n ∈ R}, and let Z[t + R; I∗] denote the number of elements of t + R that fall
into the interval I∗, and write

F [t+R; I∗] = Z[t+R; I∗]− q−1l(I∗), (3.13)

where q is the modulus of the residue class R, and where l(I∗) denotes the length of
I∗. It is obvious that

|F [t+R; I∗]| ≤ 1 (3.14)

always.
Suppose that B∗ = [0, η1) × . . . × [0, ηk) × I∗, where I∗ = [0, Y ) and where, for

each j = 1, . . . , k, [0, ηj) is a union of Lj < pjh elementary pj–type intervals Ij of order
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at most h and such that there are at most (pj − 1) elementary pj–type intervals of any
one order in the union.

Lemma 3.6. Suppose that for each j = 1, . . . , k, Ij is an elementary pj–type interval
of order sj , where 0 ≤ sj ≤ h. Then there is precisely one residue class R modulo
ps11 . . . pskk such that

E[Ω(t); I1 × . . .× Ik × I∗] = F [t+R; I∗].

Proof. Suppose that 0 ≤ n < (p1 . . . pk)h and Xj(n) ∈ Ij . Then since Xj(n) =∑∞
ν=1 aj,νp

−ν
j where n =

∑∞
ν=1 aj,νp

ν−1
j , the numbers aj,1, . . . , aj,sj are determined

uniquely, but the remaining aj,ν are left arbitrary. Since p
sj
j divides (p1 . . . pk)h, it

follows from periodicity that those integers n ∈ Z for which Xj(n) ∈ Ij constitute
precisely a residue class modulo psjj . By the Chinese remainder theorem, there exists
a unique residue class R modulo ps11 . . . pskk such that

X(n) ∈ I1 × . . .× Ik if and only if n ∈ R.

The lemma follows immediately. ♣

Suppose that for each j = 1, . . . , k, we have

[0, ηj) =
Lj⋃
lj=1

Ij,lj ,

where for every lj = 1, . . . , Lj , Ij,lj is an elementary pj–type interval. Then

B∗ =
L1⋃
l1=1

. . .

Lk⋃
lk=1

(I1,l1 × . . .× Ik,lk × I∗).

Writing l = (l1, . . . , lk) and writing R(l) for the residue class such that

E[Ω(t); I1,l1 × . . .× Ik,lk × I∗] = F [t+R(l); I∗],

we have, since E is additive,

E[Ω(t);B∗] =
L1∑
l1=1

. . .

Lk∑
lk=1

F [t+R(l); I∗],

so that, omitting reference to I∗, we have∫ Mh

0

|E[Ω(t);B∗]|2dt

=
L1∑
l′1=1

. . .

Lk∑
l′
k
=1

L1∑
l′′1 =1

. . .

Lk∑
l′′
k
=1

∫ Mh

0

F [t+R(l′)]F [t+R(l′′)]dt (3.15)
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Clearly, application of (3.14) alone is not sufficient to give the desired result. Roth
proved the following.

Lemma 3.7. Suppose that for each j = 1, . . . , k, we have 0 ≤ s′j , s
′′
j ≤ h. Suppose

further that m′,m′′ ∈ Z. Then, writing, for each j = 1, . . . , k, uj = min{s′j , s′′j } and
dj = |s′j − s′′j |, we have

∫ Mh

0

F [t+R(m′, ps
′
1

1 . . . p
s′k
k )]F [t+R(m′′, ps

′′
1

1 . . . p
s′′k
k )]dt

= p−d11 . . . p−dkk

∫ Mh

0

F [t+R(m′, pu1
1 . . . pukk )]F [t+R(m′′, pu1

1 . . . pukk )]dt. (3.16)

Proof. We shall only show that

I =
∫ Mh

0

F [t+R(m′, ps
′
1

1 P
′)]F [t+R(m′′, ps

′′
1

1 P ′′)]dt

= p−d11

∫ Mh

0

F [t+R(m′, pu1
1 P ′)]F [t+R(m′′, pu1

1 P ′′)]dt, (3.17)

where P ′ = p
s′2
2 . . . p

s′k
k and P ′′ = p

s′′2
2 . . . p

s′′k
k . (3.16) then follows by repeating the argu-

ment on the other primes. To prove (3.17), we may assume, without loss of generality,
that s′1 ≤ s′′1 , so that u1 = s′1. Then the function F [t + R(m′, ps

′
1

1 P
′)] is periodic in t

with period pu1
1 (p2 . . . pk)h, so that

F [t+ apu1
1 (p2 . . . pk)h +R(m′, ps

′
1

1 P
′)]

is independent of the choice of the integer a. Furthermore, since pu1
1 (p2 . . . pk)h divides

Mh, the period of the integrand in (3.17), we have

I =
∫ Mh

0

F [t+R(m′, pu1
1 P ′)]F [t+ apu1

1 (p2 . . . pk)h +R(m′′, ps
′′
1

1 P ′′)]dt

for every integer a. Hence

pd1I =
pd1∑
a=1

∫ Mh

0

F [t+R(m′, pu1
1 P ′)]F [t+ apu1

1 (p2 . . . pk)h +R(m′′, ps
′′
1

1 P ′′)]dt

=
∫ Mh

0

F [t+R(m′, pu1
1 P ′)]F [t+R(m′′, pu1

1 P ′′)]dt. ♣
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It now follows from (3.15) and Lemma 3.7 that if for each j = 1, . . . , k and lj =
1, . . . , Lj , the interval Ij,lj is of order s(j, lj), then in view of (3.14),

M−h
∫ Mh

0

|E[Ω(t);B∗]|2dt ≤ σ1 . . . σk,

where, for j = 1, . . . , k,

σj =
Lj∑
l′
j
=1

Lj∑
l′′
j
=1

p
−|s(j,l′j)−s(j,l

′′
j )|

j .

We can write

σj =
h∑
b=0

∑
1≤l′j≤Lj
1≤l′′j ≤Lj

min{s(j,l′j),s(j,l
′′
j )}=b

p
−|s(j,l′j)−s(j,l

′′
j )|

j .

If Lj = 1, we have σj = 1. If Lj > 1, then since there are at most (pj − 1) elementary
pj–type intervals of any fixed order, we have

σj < 2
h∑
b=1

∑
1≤l′j≤Lj
1≤l′′j ≤Lj

b=s(j,l′j)≤s(j,l
′′
j )

p
−|s(j,l′j)−s(j,l

′′
j )|

j ≤ 2h(pj − 1)2
∞∑
d=0

p−dj < 4hp2
j .

This completes the proof of Lemma 3.5.

§3.4. More Simple Truths

The same construction by Roth is sufficient to give Theorem 2E, but not sufficient to
prove it. To prove Theorem 2E, we need to consider a whole class of distributions
similar to that constructed by Roth, and use induction on both h and the dimension
k.

On the other hand, recall §3.2. If p1 = . . . = pk ≥ k, then Faure showed that
special sets of any class with respect to p1, . . . , pk in Uk0 × [0,∞) exist. However,
Roth’s method using the variable t fails to give an alterntaive proof of Theorem 2D.
In fact, I [13] showed that there is a way to give a proof of Theorem 2E, the stronger
version of Theorem 2D, using special sets described in this section, as long as such sets
can be shown to exist.
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§4. A Combinatorial and Geometric Approach

In this section, we consider the problem of convex polygons, and prove a result which
will imply Theorem 8B. Let l ≥ 2, and let θ = (θ1, . . . , θl) satisfy 0 ≤ θ1 < . . . < θl < π.
For each i = 1, . . . , l, let ei = (cos θi, sin θi), and denote by POL∞(θ) the family
of convex polygons A ⊆ R2 such that each side of A is parallel to one of the given
directions ei.

Theorem 8C. For every ε > 0, there exists an infinite discrete set Q ⊆ R2 such that
for every A ∈ POL∞(θ) with d(A) ≥ 2,

|#(Q∩A)− µ(A)| �l,ε (log d(A))5+ε,

where d(A) denotes the diameter of A.

The proof of Theorem 8C is based on a combination of combinatorial and geometric
arguments. We shall duscuss the (short) combinatorial part in §4.1 and the (lengthy)
geometric part in §4.2.

§4.1. A Combinatorial Lemma

The combinatorial part of the argument is summarized by the following lemma.

Lemma 4.1. Suppose that X = {x1, . . . , xp} is a finite set. For i = 1, 2, . . . , let

Y(i) = Y
(i)
1 ∪ Y (i)

2 ∪ . . . be a partition of X; in other words,

X =
⋃
j≥1

Y
(i)
j

is a union of mutually disjoint sets Y
(i)
j . For every k = 1, . . . , p, let αk ∈ [0, 1]. Then

for every ε > 0, there exists a positive constant c(ε), depending only on ε, and integers
a1, . . . , ap ∈ {0, 1} such that ∣∣∣∣∣∣∣

∑
xk∈Y (i)

j

(ak − αk)

∣∣∣∣∣∣∣ < c(ε)i1+ε (4.1)

for every i ≥ 1 and j ≥ 1.

The construction of the integers ak is based on the well–known result in linear alge-
bra that a system of homogeneous linear equations with more variables than equations
has a non–trivial solution.
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Let α = (α1, . . . , αp) ∈ [0, 1]p. We shall construct a sequence

α0, α1, α2, . . . , αν = (α1,ν , . . . , αp,ν), . . . (4.2)

of vectors in [0, 1]p with the following properties. Let

Xν = {xk ∈ X : αk,ν 6∈ {0, 1}}.

Then we need
Xν+1 $ Xν , (4.3)

αk,ν ∈ {0, 1} ⇒ αk,ν = αk,ν+1, (4.4)

and ∑
xk∈Y (i)

j

αk,ν =
∑

xk∈Y (i)
j

αk,ν+1 (4.5)

for all i and j with #(Y (i)
j ∩Xν) ≥ c(ε)i1+ε. We shall construct the sequence (4.2) by

induction.
Let α0 = α. Suppose that αν has been defined and Xν in non–empty. Let

Zν = {Y (i)
j : i, j ≥ 1 and #(Y (i)

j ∩Xν) ≥ c(ε)i1+ε}.

We claim that
#Zν < #Xν . (4.6)

To see this, note that Y (i)
j ∩ Y (i)

k = ∅ whenever j 6= k, so that

#Zν =
∞∑
i=1

#{j : #(Y (i)
j ∩Xν) ≥ c(ε)i1+ε} <

∞∑
i=1

#Xν

c(ε)i1+ε
= #Xν

if we choose

c(ε) =
∞∑
i=1

1
i1+ε

<∞.

For k = 1, . . . , p, let yk be a real variable, and consider the system of linear
equations ∑

xk∈Y (i)
j
∩Xν

yk = 0 (Y (i)
j ∈ Zν),

and with yk = 0 for all xk ∈ X \Xν . In view of (4.6), this system has more variables
than equations, and so has a non–trivial solution y = (y1, . . . , yp).

Suppose that t0 is the largest positive value for which the inequalities

0 ≤ αk,ν + t0yk ≤ 1 (xk ∈ Xν)
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hold. For k = 1, . . . , p, let
αk,ν+1 = αk,ν + t0yk.

Then (4.3) clearly holds, in view of the maximality of t0. On the other hand, (4.4)
follows on noting that if αk,ν ∈ {0, 1}, then xk ∈ X \Xν and so yk = 0. It now follows
from (4.3) that the sequence α0, α1, α2, . . . will remain constant after a finite number
of steps (s steps, say). Then Xs = ∅ and the vector αs has coordinates 0 and 1 only.
For every k = 1, . . . , p, we now let ak = αk,s. Then it follows from (4.4) and (4.5) that
(4.1) holds for all Y (i)

j ∈ Y(i) satisfying i ≥ 1 and j ≥ 1. This completes the proof of
Lemma 4.1.

§4.2. A Geometric Lemma

We shall consider the family POL∞(θ;x1, x2) of convex polygons A ⊆ R2 such that
each side of A is parallel to one of the given directions ei or parallel to one of the
coordinate axes x1 or x2. Our aim in this section is to approximate the characteristic
function of an arbitrary polygon in POL∞(θ;x1, x2) by those of some special geometric
objects. We shall therefore need to define these special objects first.

Definition. Suppose that n = (n1, n2) ∈ Z2. By a special rectangle of order n, we
mean a rectangle of the form

[m12n1 , (m1 + 1)2n1)× [m22n2 , (m2 + 1)2n2), (4.7)

where m = (m1,m2) ∈ Z2. We denote by SR(n) the family of all special rectangles of
order n.

Definition. Suppose that 1 ≤ i ≤ l. By a triangle of type i, we mean a triangle with
sides parallel to x1, x2 and ei.

Suppose that ∆i is a triangle of type i, where 1 ≤ i ≤ l. Suppose further that t(1)i
and t

(2)
i denote respectively the lengths of the sides of ∆i parallel to x1 and x2. Let

λi =
t
(1)
i

t
(2)
i

,

and note that the value of λi is independent of the choice of the triangle ∆i. Also, for
i = 1, . . . , l, write

δi =
{
−1 (θi < π/2),
1 (θi > π/2).

Naturally, we may assume, without generality, that θi 6= π/2 for any i = 1, . . . , l.

35



For any i = 1, . . . , l and any n ∈ Z, let Λ(i, n) denote the rectangular lattice
generated by (2nλ1/2

i , 0) and (0, 2nλ−1/2
i ); in other words, the lattice of points

u(i, n,m) = (m12nλ1/2
i ,m22nλ−1/2

i ) (m = (m1,m2) ∈ Z2).

For convenience of notation, let E1 = (1, 0) and E2 = (0, 1).

Definition. Suppose that 1 ≤ i ≤ l and n ∈ Z. By a special triangle of type i and
order n, we mean a triangle with vertices

u(i, n,m), u(i, n,m + δiE1), u(i, n,m + E2),

or a triangle with vertices

u(i, n,m), u(i, n,m− δiE1), u(i, n,m−E2),

where m ∈ Z2. We denote by ST(i, n) the family of all special triangles of type i and
order n.

Definition. Suppose that 1 ≤ i ≤ l and j = 1, 2. By a parallelogram of type (i, j), we
mean a parallelogram with sides parallel to ei and xj .

For i = 1, . . . , l, let ψ∗i denote the linear transformation of determinant 1 repre-
sented in matrix notation by

ψ∗i

(
x1

x2

)
=
(
λ

1/2
i −δiλ1/2

i

0 λ
−1/2
i

)(
x1

x2

)
.

Let U2 denote the unit square [0, 1]2. Then it is not difficult to see that P ∗i = {ψ∗i (x) :
x ∈ U2} is a parallelogram with vertices

u(i, 0,0), u(i, 0,E1), u(i, 0,−δiE1 + E2), u(i, 0, (1− δi)E1 + E2).

Definition. Suppose that 1 ≤ i ≤ l and n ∈ Z2. By a special parallelogram of type
(i, 1) and order n, we mean the image under ψ∗i of a special rectangle of the form
(4.7), where m = (m1,m2) ∈ Z2. We denote by SP(i, 1,n) the family of all special
parallelograms of type (i, 1) and order n.

Similarly, for i = 1, . . . , l, let ψ∗∗i denote the linear transformation of determinant
1 represented in matrix notation by

ψ∗∗i

(
x1

x2

)
=
(

λ
1/2
i 0

−δiλ−1/2
i λ

−1/2
i

)(
x1

x2

)
.
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Again, it is not difficult to see that P ∗∗i = {ψ∗∗i (x) : x ∈ U2} is a parallelogram with
vertices

u(i, 0,0), u(i, 0,E2), u(i, 0,E1 − δiE2), u(i, 0,E1 + (1− δi)E2).

Definition. Suppose that 1 ≤ i ≤ l and n ∈ Z2. By a special parallelogram of type
(i, 2) and order n, we mean the image under ψ∗∗i of a special rectangle of the form
(4.7), where m = (m1,m2) ∈ Z2. We denote by SP(i, 2,n) the family of all special
parallelograms of type (i, 2) and order n.

We shall also frequently refer to special rectangles as special parallelograms of type
(0, 0). Also, for any set B ⊆ R2, let χB denote the characteristic function of B. We
shall prove

Lemma 4.2. Suppose that A ∈ POL∞(θ;x1, x2). Then there exist special triangles
T ′1, . . . , T

′
m and T ′′1 , . . . , T

′′
M of types ∈ {1, . . . , l}, special parallelograms P ′1, . . . , P

′
n

and P ′′1 , . . . , P
′′
N of types ∈ {(0, 0)} ∪ {(i, j) : i = 1, . . . , l and j = 1, 2} and signs

ε′1, . . . , ε
′
m, ε

′′
1 , . . . , ε

′′
M , δ

′
1, . . . , δ

′
n, δ
′′
1 , . . . , δ

′′
N ∈ {±1} such that

m∑
ν=1

ε′νχT ′ν +
n∑
β=1

δ′βχP ′β ≤ χA ≤
M∑
ν=1

ε′′νχT ′′ν +
N∑
β=1

δ′′βχP ′′β (4.8)

and

M∑
ν=1

ε′′νµ(T ′′ν ) +
N∑
β=1

δ′′βµ(P ′′β )−
m∑
ν=1

ε′νµ(T ′ν)−
n∑
β=1

δ′βµ(P ′β)� l log(d(A) + 2).

Furthermore, these special objects can be chosen in such a way that

max
ν,β
{d(T ′ν), d(P ′β), d(T ′′ν ), d(P ′′β )} � d(A)

and the numbers m,M,n,N satisfy

max{m,M} � l log(d(A) + 2)

and

max{n,N} � l(log(d(A) + 2))3.

The first step in the proof of Lemma 4.2 is to reduce the problem to one of
investigating rectangles and triangles.
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Lemma 4.3. Every A ∈ POL∞(θ;x1, x2) is representable in the form

A = (P1 ∪ P2 ∪ P3 ∪ P4) \

 q1⋃
β=1

Rβ

 ∪( q2⋃
ν=1

Tν

) ,

where
i) P1, . . . , P4 are special rectangles of the same order and for every α = 1, . . . , 4,
d(Pα) < 3d(A);

ii) for every β = 1, . . . , q1, Rβ is an aligned rectangle and d(Rβ) < 5d(A);
iii) for every ν = 1, . . . , q2, Tν is a triangle of type ∈ {1, . . . , l} and d(Tν) ≤ d(A);
iv) q1 ≤ 4l + 8 and q2 ≤ 4l + 6; and
v) Rβ (β = 1, . . . , q1) and Tν (ν = 1, . . . , q2) are pairwise disjoint (in the sense that

the intersection has measure zero).

Proof. For j = 1, 2, denote the projection of A onto the xj–axis by A(j), and let L(j)

denote the length of the interval A(j). Suppose that nj ∈ Z satisfies 2nj−1 < L(j) ≤ 2nj .
Then the interval A(j) is contained in the union of at most two intervals of the type
[mj2nj , (mj + 1)2nj ], where mj ∈ Z. Let n = (n1, n2). Then A is contained in the
union of at most four special rectangles of order n. Denote these rectangles by Pα
(α = 1, . . . , 4) with the convention that they may not be distinct, and note that

d(Pα) = (22n1 + 22n2)
1/2

< (4d2 + 4d2)
1/2

< 3d,

where d = d(A). Suppose now that P = P1 ∪ . . .∪P4. For j = 1, 2, denote by P (j) the
projection of P onto the xj–axis. Since A is convex, it has at most (2l + 4) vertices.
It follows that if we draw a straight line parallel to the x1–axis through each of these
vertices, these lines will give a decomposition of A into at most two triangles and at
most (2l + 1) trapeziums. Let B denote one of these triangles or trapeziums, and for
j = 1, 2, let B(j) denote the projection of B onto the xj–axis. Clearly

B(1) ×B(2) = B ∪ T ′ ∪ T ′′,

where T ′ and T ′′ are disjoint triangles of types ∈ {1, . . . , l} and with diameters not
exceeding d(A). Furthermore,

P (1) ×B(2) = (B(1) ×B(2)) ∪R′ ∪R′′,

where T ′ and T ′′ are disjoint rectangles with diameters not exceeding ((4d)2 + d2)1/2.
Clearly A ⊆ P (1)×A(2), and (P (1)×A(2)) \A is a (pairwise disjoint) union of at most
(4l + 6) triangles of type ∈ {1, . . . , l} and (4l + 6) aligned rectangles. Finally, observe
that P \ (P (1) × A(2)) is a union of at most two disjoint rectangles of diameter not
exceeding ((4d)2 + (2d)2)1/2. ♣

Our next step is clearly to investigate these rectangles and triangles obtained from
Lemma 4.3. We first of all study the rectangles.
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Lemma 4.4. Suppose that R is an aligned rectangle.
i) There exist an integer s� (log(µ(R) + 2))2 and mutually disjoint special rectan-

gles R′1, . . . , R
′
s such that

s⋃
β=1

R′β ⊆ R

and

µ

R \
 s⋃
β=1

R′β

 ≤ 1.

ii) There exist mutually disjoint special rectangles R′′1 , . . . , R
′′
4 , with µ(R′′β) < 4µ(R)

for every β = 1, . . . , 4, an integer t � (log(µ(R) + 2))2 and mutually disjoint
special rectangles R′′5 , . . . , R

′′
t such that

R ⊆ (R′′1 ∪ . . . ∪R′′4 ) \

 t⋃
β=5

R′′β


and

µ

(R′′1 ∪ . . . ∪R′′4 ) \

 t⋃
β=5

R′′β

 \R
 ≤ 1.

The proof of Lemma 4.4 is based on the following simple one–dimensional result.
By a special interval, we mean an interval of the type [m2n, (m+1)2n), where m,n ∈ Z.
Clearly, special rectangles are simply the cartesian product of two special intervals.

Lemma 4.5. Suppose that [a, b) is an interval in R. Then for every natural number
D, there exist special intervals I1, . . . , ID such that

D⋃
α=1

Iα ⊆ [a, b)

and

µ0

(
[a, b) \

(
D⋃
α=1

Iα

))
≤
(

7
8

)D
(b− a).

Here µ0 denotes the usual measure on R.

Proof. Let I1 denote the longest special interval in [a, b). We then define Iα for α ≥ 2
inductively such that

i) Iα is the longest special interval in [a, b) \ (I1 ∪ . . . ∪ Iα−1);
ii) I1 ∪ . . . ∪ Iα is an interval; and
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iii) if [a, b) \ (I1 ∪ . . . ∪ Iα−1) is a union of two disjoint intervals, then Iα belongs to
the longer of the two (any one if of equal length).

Clearly µ0(I1) ≥ (b − a)/4. Indeed, if n ∈ Z satisfies 2n+1 ≤ b − a < 2n+2, then
2n > (b−a)/4 and so there exists m ∈ Z such that [m2n, (m+ 1)2n) ⊆ [a, b). A similar
argument will give the inequality µ0(Iα) ≥ µ0([a, b) \ (I1 ∪ . . . ∪ Iα−1))/8. The lemma
follows easily. ♣

Proof of Lemma 4.4. Suppose that R = [a1, b1) × [a2, b2). For j = 1, 2, we now
apply Lemma 4.5 to the interval [aj , bj) and obtain special intervals I(j)

1 , . . . , I
(j)
Dj

, with
Dj � log(µ(R) + 2), such that

Dj⋃
αj=1

I(j)
αj ⊆ [aj , bj)

and

µ0

[aj , bj) \

 Dj⋃
αj=1

I(j)
αj

 ≤ bj − aj
2µ(R)

.

The family of special rectangles

I(1)
α1
× I(2)

α2
(1 ≤ α1 ≤ D1 and 1 ≤ α2 ≤ D2)

clearly satisfies the requirements of (i). To prove (ii), note first of all that for j = 1, 2,
if nj ∈ Z satisfies 2nj−1 < aj ≤ 2nj , then

[aj , bj) ⊆ [mj2nj , (mj + 2)2nj )

for some mj ∈ Z. It follows that there exist four mutually disjoint special rectangles
R′′1 , . . . , R

′′
4 such that R ⊆ R′′1 ∪ . . . ∪ R′′4 . Obviously, for every β = 1, . . . , 4, µ(R′′β) <

4µ(R). Furthermore, the set (R′′1 ∪ . . . ∪ R′′4 ) \ R is the disjoint union of at most four
aligned rectangles. Applying (i) to each of these completes the proof. ♣

Next we study the triangles arising from Lemma 4.3. Note that they are of types
∈ {1, . . . , l}.

Definition. Suppose that 1 ≤ i ≤ l. By a nice triangle of type i, we mean a triangle
which is the intersection of a special triangle T ∗ of type i and a half–plane with the
boundary parallel to one of the sides of T ∗.

Suppose that 1 ≤ i ≤ l, and that T is a triangle of type i. Let T0 ⊆ T be the
largest inscribed special triangle of type i. Extending the edges of T0 to the boundary
of T , we see that T is the disjoint (in the sense of measure) union of T0 and at most
three trapeziums and three parallelograms. Each of these trapeziums is clearly the
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disjoint union of a nice triangle of type i and a parallelogram. Note also that all the
parallelograms are of types ∈ {(0, 0), (i, 1), (i, 2)}. To summarize, we have

Lemma 4.6. Suppose that 1 ≤ i ≤ l, and that T is a triangle of type i. Then T is
the disjoint union of one special triangle of type i and at most three nice triangles of
type i and six parallelograms of types ∈ {(0, 0), (i, 1), (i, 2)}.

It follows that to handle the triangles arising from Lemma 4.3, we need to inves-
tigate parallelograms of various types as well as nice triangles. Recall now that special
parallelograms of type (i, j) and order n are obtained from special rectangles of order
n by a linear transformation of determinant 1. The following analogue of Lemma 4.4
is therefore obvious.

Lemma 4.7. Suppose that 1 ≤ i ≤ l, and that j = 1, 2. Suppose further that P is a
parallelogram of type (i, j).

i) There exist an integer s � (log(µ(P ) + 2))2 and mutually disjoint special paral-
lelograms P ′1, . . . , P

′
s of type (i, j) such that

s⋃
β=1

P ′β ⊆ P

and

µ

P \
 s⋃
β=1

P ′β

 ≤ 1.

ii) There exist mutually disjoint special parallelograms P ′′1 , . . . , P
′′
4 of type (i, j), with

µ(P ′′β ) < 4µ(P ) for every β = 1, . . . , 4, an integer t� (log(µ(P ) + 2))2 and mutu-
ally disjoint special parallelograms P ′′5 , . . . , P

′′
t of type (i, j) such that

P ⊆ (P ′′1 ∪ . . . ∪ P ′′4 ) \

 t⋃
β=5

P ′′β


and

µ

(P ′′1 ∪ . . . ∪ P ′′4 ) \

 t⋃
β=5

P ′′β

 \ P
 ≤ 1.

It remains to investigate nice triangles.

Lemma 4.8. Suppose that 1 ≤ i ≤ l, and that T is a nice triangle of type i.
i) There exist an integer s� (log(µ(T ) + 2)) and mutually disjoint special triangles
T ′1, . . . , T

′
s of type i and parallelograms P ′1, . . . , P

′
s of types ∈ {(0, 0), (i, 1), (i, 2)}

such that (
s⋃

ν=1

T ′ν

)
∪

(
s⋃

ν=1

P ′ν

)
⊆ T
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and

µ

(
T \

((
s⋃

ν=1

T ′ν

)
∪

(
s⋃

ν=1

P ′ν

)))
≤ 1.

ii) There exist a special triangle T ′′0 of type i, with d(T ′′0 ) < 4d(T ), integers t, q �
(log(µ(T ) + 2)) and mutually disjoint special triangles T ′′1 , . . . , T

′′
t of type i and

parallelograms P ′′1 , . . . , P
′′
q of types ∈ {(0, 0), (i, 1), (i, 2)} such that

T ⊆ T ′′0 \

((
t⋃

ν=1

T ′′ν

)
∪

(
q⋃

ν=1

P ′′ν

))

and

µ

((
T ′′0 \

((
t⋃

ν=1

T ′′ν

)
∪

(
q⋃

ν=1

P ′′ν

)))
\ T

)
≤ 1.

Proof. (i) will follows if we can prove that for every natural number D, there exist
mutually disjoint special triangles T1, . . . , TD of type i and parallelograms P1, . . . , PD
of types ∈ {(0, 0), (i, 1), (i, 2)} such that(

D⋃
ν=1

Tν

)
∪

(
D⋃
ν=1

Pν

)
⊆ T (4.9)

and

µ

(
T \

((
D⋃
ν=1

Tν

)
∪

(
D⋃
ν=1

Pν

)))
≤ 4−Dµ(T ). (4.10)

To prove (4.9) and (4.10), note that T , being a nice triangle of type i, is the intersection
of a special triangle T ∗ of type i and a half–plane H with boundary parallel to one of
the sides of T . Let v′ and v′′ denote the vertices of T on the boundary of H, and let
c denote the third vertex of T . Suppose that T1 ⊆ T is the largest inscribed special
triangle of type i. Then c is a vertex of T1 and µ(T1) ≥ µ(T )/4. Let v′1 and v′′1
denote the two other vertices of T1. The trapezium with vertices v′,v′′,v′1,v

′′
1 is then

clearly the disjoint union of a nice triangle T ′1 of type i and a parallelogram P1 of type
∈ {(0, 0), (i, 1), (i, 2)}. Obviously µ(T ′1) ≤ µ(T )/4. We now repeat the argument to T ′1
and obtain a special triangle T2 of type i, a nice triangle T ′2 of type i and a parallelogram
P2, mutually disjoint and such that T ′1 = T2 ∪ T ′2 ∪ P2 and µ(T ′2) ≤ µ(T ′1)/4. After
D steps, we obtain (4.9) and (4.10). (i) now follows from a suitable choice of D. To
prove (ii), denote by T ′′0 the smallest special triangle of type i containing T . Then
d(T ′′0 ) < 2d(T ). Furthermore, T ′′0 \ T is the disjoint union of a nice triangle of type i
and a parellelogram of type ∈ {(0, 0), (i, 1), (i, 2)}. (ii) now follows on applying (i) to
this latter nice triangle. ♣

Lemma 4.2 now follows on combining Lemmas 4.3, 4.4, 4.6, 4.7 and 4.8.

42



§4.3. Completion of the Proof

In this section, we combine the combinatorial Lemma 4.1 and the geometric Lemma
4.2 to give a proof of Theorem 8C. Our strategy is as follows. Lemma 4.2 enables
us to obtain information on the discrepancy function of any given convex polygon in
POL∞(θ;x1, x2). On the other hand, suppose that P is a discrete and finite subset of
R2, containing many more points than we need. Let X = P, and let the partitions be
given by the various families of special objects. We shall use Lemma 4.1 to choose a
suitable subset of P to use in our construction of the desired infinite discrete set Q in
Theorem 8C.

Given any discrete subset P ⊆ R2 and any compact subset B ⊆ R2, we are
interested in the discrepancy function

E[P;B] = #(P ∩B)− µ(B).

Suppose that A ∈ POL∞(θ;x1, x2) is arbitrary. We shall first of all use Lemma 4.2 to
investigate the discrepancy function of A. The following lemma is in a more general
form than needed.

Lemma 4.9. Suppose that A,B′1, . . . , B
′
q, B

′′
1 , . . . , B

′′
r are compact subsets of R2.

Suppose further that there exist ε′1, . . . , ε
′
q, ε
′′
1 , . . . , ε

′′
r ∈ {±1} such that

q∑
τ=1

ε′τχB′τ ≤ χA ≤
r∑

τ=1

ε′′τχB′′τ

and
r∑

τ=1

ε′′τµ(B′′τ )−
q∑

τ=1

ε′τµ(B′τ ) ≤ D1.

Let P ⊆ R2 be a discrete set such that for every τ = 1, . . . , q,

|E[P;B′τ ]| ≤ D2,

and that for every τ = 1, . . . , r,

|E[P;B′′τ ]| ≤ D2.

Then
|E[P;A]| ≤ D1 +D2 max{q, r}.

Proof. Clearly

E[P;A] =
∑

p∈A∩P
1− µ(A) ≤

r∑
τ=1

ε′′τ
∑

p∈B′′τ ∩P
1− µ(A)
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=
r∑

τ=1

ε′′τ

 ∑
p∈B′′τ ∩P

1− µ(B′′τ )

+

(
r∑

τ=1

ε′′τµ(B′′τ )− µ(A)

)

=
r∑

τ=1

ε′′τE[P;B′′τ ] +

(
r∑

τ=1

ε′′τµ(B′′τ )− µ(A)

)

≤
r∑

τ=1

|E[P;B′′τ ]|+

(
r∑

τ=1

ε′′τµ(B′′τ )−
r∑

τ=1

ε′τµ(B′τ )

)
≤ D2r +D1. (4.11)

A similar argument gives
−E[P;A] ≤ D2q +D1. (4.12)

The result now follows on combining (4.11) and (4.12). ♣

Let SPEC∞(θ;x1, x2) denote the big family of all special triangles, special paral-
lelograms and special rectangles defined in §4.2; in other words,

SPEC∞(θ;x1, x2) =

 ⋃
1≤i≤l
n∈Z

ST(i, n)

+


⋃

1≤i≤l
1≤j≤2

N∈Z2

SP(i, j,n)

+

( ⋃
n∈Z2

SR(n)

)
.

We now make use of the combinatorial information derived from Lemma 4.1.

Lemma 4.10. Suppose that P ⊆ R2 is a finite set, and that α ∈ [0, 1] is fixed.
Then there exists a function f : P → {−α, 1 − α} such that for every polygon B ∈
SPEC∞(θ;x1, x2) satisfying d(B) ≥ 1, we have∣∣∣∣∣∣

∑
p∈B∩P

f(p)

∣∣∣∣∣∣�ε (l(log(d(B) + 2))2)
1+ε

. (4.13)

Proof. We apply Lemma 4.1 with X = P, and so have to introduce a sequence of
partitions of P. Let

SET∞(θ;x1, x2) ={ST(i, n) : 1 ≤ i ≤ l and n ∈ Z}
∪ {SP(i, j,n) : 1 ≤ i ≤ l and 1 ≤ j ≤ 2 and n ∈ Z2}
∪ {SR(n) : n ∈ Z2}.

For every C ∈ SET∞(θ;x1, x2), denote by d(C) the common diameter of all the ele-
ments of C. We now define a linear ordering on the subset

{C ∈ SET∞(θ;x1, x2) : d(C) ≥ 1}
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according to the size of d(C) with the convention that this ordering is defined arbitrarily
in the case of equal diameters. Observe that for any real number y ≥ 1,

#{C ∈ SET∞(θ;x1, x2) : 1 ≤ d(C) ≤ y} =
l∑
i=1

#{n ∈ Z : 1 ≤ d(ST(i, n)) ≤ y}

+
l∑
i=1

2∑
j=1

#{n ∈ Z2 : 1 ≤ d(SP(i, j,n)) ≤ y}+ #{n ∈ Z2 : 1 ≤ d(SR(n)) ≤ y}

� l log(y + 2) + l(log(y + 2))2 � l(log(y + 2))2. (4.14)

Suppose that P is fixed. We now let Y(1),Y(2),Y(3), . . . be the partitions of P defined
by the families in {C ∈ SET∞(θ;x1, x2) : 1 ≤ d(C) ≤ d(B)} ordered in the way
described. Lemma 4.10 now follows from Lemma 4.1 and (4.14). ♣

We now use Lemma 4.10 to construct the desired set Q. Let κ = 2k, where k ∈ N,
and consider the set

P = {(a/κ, b/κ) : a, b ∈ Z and − κ2 ≤ a, b < κ2}

in the square [−κ, κ)2. Clearly #P = 4κ4. Let α = κ−2. Then α#P = 4κ2, the
expected number of points of the desired set Q in [−κ, κ)2. We now apply Lemma
4.10. There exists a function f : P → {−α, 1 − α} such that for all polygons B ∈
SPEC∞(θ;x1, x2) satisfying B ⊆ [−κ, κ)2 and d(B) ≥ 1, we have (4.13). Writing
Pk = {p ∈ P : f(p) = 1− α}, we have∑

p∈B∩P
f(p) =

∑
p∈B∩Pk

1− κ−2
∑

p∈B∩P
1. (4.15)

Furthermore, it is easy to see that for any convex B ⊆ [−κ, κ)2, we have∣∣∣∣∣∣
∑

p∈B∩P
1− κ2µ(B)

∣∣∣∣∣∣� κσ(∂B)� κ2, (4.16)

where σ(∂B) denotes the length of the perimeter of B. It follows, on combining (4.13),
(4.15) and (4.16), that

|E[Pk;B]| =

∣∣∣∣∣∣
∑

p∈B∩PK

1− µ(B)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

p∈B∩PK

1− κ−2
∑

p∈B∩P
1

∣∣∣∣∣∣+

∣∣∣∣∣∣κ−2
∑

p∈B∩P
1− µ(B)

∣∣∣∣∣∣
�ε (l(log(d(B) + 2))2)

1+ε
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for all polygons B ∈ SPEC∞(θ;x1, x2) satisfying B ⊆ [−κ, κ)2 and d(B) ≥ 1.
Suppose now that the polygon B ∈ SPEC∞(θ;x1, x2) satisfies B ⊆ [−κ, κ)2 and

d(B) < 1. Then B ⊆ B0 for some B0 ∈ SPEC∞(θ;x1, x2) with 1 ≤ d(B0) < 2.
Applying (4.13) and (4.15) to B0, we have∑

p∈B0∩PK

1 = κ−2
∑

p∈B0∩P
1 +

∑
p∈B0∩P

f(p) ≤ 4 +
∑

p∈B0∩P
f(p)�ε l

1+ε,

noting that µ(B0) ≤ (d(B0))2 < 4. Hence∑
p∈B∩PK

1 ≤
∑

p∈B0∩PK

1�ε (l(log(d(B) + 2))2)
1+ε

.

Using µ(B) < µ(B0) < 4, we have

|E[Pk;B]| �ε (l(log(d(B) + 2))2)
1+ε

. (4.17)

It now follows that (4.17) holds for all B ∈ SPEC∞(θ;x1, x2) satisfying B ⊆
[−κ, κ)2. Combining this with Lemmas 4.2 and 4.9, we conclude that

|E[Pk;C]| �ε l
2+ε(log(d(C) + 2))5+ε (4.18)

for all C ∈ POL∞(θ;x1, x2) satisfying C ⊆ [−κ, κ)2.
We now construct the set Q in terms of the sets Pk of some selected integer values

of k. Note first of all that⋃
n∈N

([
−22n , 22n

)2

\
[
−22n−1

, 22n−1
)2
)

= R2 \ [−2, 2)2,

and that any set in this union is the disjoint union of four aligned rectangles. We shall
show that the set

Q = P1 ∪

 ⋃
k=2n

n∈N

(
Pk ∩

(
[−2k, 2k)

2 \ [−2k/2, 2k/2)
2
))

satisfies the requirements of Theorem 8C.
Consider any arbitrary A ∈ POL∞(θ;x1, x2). For every k = 2n with n ∈ N, the

intersection
Ak = A ∩

(
[−2k, 2k)

2 \ [−2k/2, 2k/2)
2
)

is the disjoint union of at most four sets in POL∞(θ;x1, x2). It follows from (4.18) that

|E[Q;A]| =

∣∣∣∣∣∣
∑

q∈A∩Q
1− µ(A)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣#(A ∩ P1)− µ(A ∩ [−2, 2)2) +
∑
k=2n

n∈N

(#(Ak ∩ Pk)− µ(Ak))

∣∣∣∣∣∣∣
�ε

∑∗
l2+ε(min{log(d(A) + 2), k})5+ε. (4.19)
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Here the summation
∑∗ is extended over all k = 2n, where n ∈ N, and for which Ak

is non–empty. Simple calculation gives∑∗
(min{log(d(A) + 2), k})5+ε �ε (log(d(A) + 2))5+ε. (4.20)

Theorem 8C now follows from (4.19) and (4.20).

§5. Another Probabilistic Approach

§5.1. A Simple Argument

In this section, we give a simple proof of a special case of a renormalized version of
Theorem 6B. Suppose that N = MK , where M ∈ N. Consider the cube [0,M)K ,
treated as a torus. Let A be a compact, convex set in [0,M)K . If the radius r(A) of
the largest inscribed ball of A satisfies r(A)� 1, then the result is trivial. We therefore
assume, without loss of generality, that r(A)� 1. We shall prove the following result.

Theorem 6C. There exists an N = MK–element setQ with the following properties:
i) For every l = (l1, . . . , lK) ∈ ZK ∩ [0,M)K , the cube

Q(l) = [l1, l1 + 1)× . . .× [lK , lK + 1)

contains precisely one point of Q.
ii) For any λ ∈ (0, 1], any proper orthogonal transformation τ ∈ T and any vector

u ∈ RK , we have

|#(Q∩A(λ, τ,u))− µ(A(λ, τ,u))| �K (σ(∂A))1/2(logM)1/2, (5.1)

where ∂A denotes the boundary surface of A, and where σ denotes the usual
measure in RK−1.

The first idea is to approximate every similar copy of A in question by the members
of a finite set of similar copies of A. The collection of all similar copies of A in question
is given by

G = {A(λ, τ,u) : 0 < λ ≤ 1, τ ∈ T ,u ∈ RK}.

We now slightly extend the restrictions on λ to obtain the bigger collection

G0 = {A(λ, τ,u) : 0 ≤ λ ≤ 1.1, τ ∈ T ,u ∈ RK}.

Geometric consideration shows that there exists a finite subset G∗ of G0 such that

#G∗ ≤M c(K), (5.2)
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where c(K) is a positive constant depending at most on K, and that for any B ∈ G,
there exists B−, B+ ∈ G∗ such that B− ⊆ B ⊆ B+ and µ(B+ \ B−) ≤ 1. We then
examine the set G∗ more closely.

The second idea is classical probability theory. Note that

[0,M)K =
∑

l∈ZK∩[0,M)K

Q(l).

For each l ∈ ZK ∩ [0,M)K , let ql be a random point in Q(l), uniformly distributed
within Q(l). Assume further that the random variables ql (l ∈ ZK ∩ [0,M)K) are
independent of each other. Our aim is to show that the random set

{ql : l ∈ ZK ∩ [0,M)K}

satisfies (5.1) simultaneously for all A1 ∈ G∗ with probability greater than 1/2.
Let A1 ∈ G∗. Clearly the subset

Ã1 =
⋃

Q(l)⊆A1

Q(l)

has no discrepancy. It remains to consider A1 \ Ã1. Let

L(A1) = {l ∈ ZK ∩ [0,M)K : A1 ∩Q(l) 6= ∅ and Q(l) 6⊆ A1}.

Then clearly
L(A1)�K σ(∂A1)�K σ(∂A). (5.3)

For each l ∈ L(A1), we define the random variable

ξl =
{

1 (ql ∈ A1),
0 (otherwise).

Then ∑
ql∈A1

1− µ(A1) =
∑

l∈L(A1)

ξl −
∑

l∈L(A1)

µ(A1 ∩Q(l)) =
∑

l∈L(A1)

(ξl − Eξl).

Note now that the random variables ξl (l ∈ L(A1)) are independent of each other. We
can therefore apply the classical large–deviation type inequality due to Bernstein and
Chernoff.

Lemma 5.1. Suppose that ξ1, . . . , ξm are independent random variables satisfying
|ξi| ≤ 1 for every i = 1, . . . ,m. Suppose further that β =

∑m
i=1 E(ξi − Eξi)2. Then

Prob

(∣∣∣∣∣
m∑
i=1

(ξi − Eξi)

∣∣∣∣∣ ≥ γ
)
≤
{

2e−γ/4 (γ ≥ β),

2e−γ
2/4β (γ ≤ β).
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In view of (5.3), we now take

β1 =
∑

l∈L(A1)

E(ξl − Eξl)2 ≤ L(A1)�K σ(∂A),

and take γ1 to be a sufficiently large absolute constant (depending on K) multiple of
(σ(∂A))1/2(logM)1/2. Then elementary calculation gives

1
2M

−c(K) ≥
{

2e−γ1/4 (γ1 ≥ β1),
2e−γ

2
1/4β1 (γ1 ≤ β1).

It follows from Lemma 5.1 and (5.2) that

Prob

∣∣∣∣∣∣
∑

l∈L(A1)

(ξl − Eξl)

∣∣∣∣∣∣ ≥ γ1

 ≤ 1
2

(#G∗)−1
.

It now follows that

Prob

∣∣∣∣∣∣
∑

ql∈A1

1− µ(A1)

∣∣∣∣∣∣ ≥ γ1 for some A1 ∈ G∗
 ≤ 1

2
.

This completes the proof of Theorem 6C.

§5.2. Preliminary Discussion on Theorem 10

In §§5.3–5.5, we shall indicate a proof of the case L = 1 of Theorem 10. The argument
will also give a proof of Theorem 6A.

The spirit of the proof is similar to that in the previous section, although we need
extra combinatorial and probabilistic ideas. Let A be given and fixed. Given any
natural number N , we shall first of all construct a sequence

q0, . . . ,qN−1 (5.4)

of N points in UK , and shall eventually consider some random version of the set

{(q0, 0), (q1,
1
N ), . . . , (qN−1,

N−1
N )}

of N points in UK+1. However, as we shall also discuss Theorem 6A at the same time,
it is convenient to note that Theorem 10 will follow if we can show that the sequence
(5.4) of N points in UK satisfies

1
N

N∑
M=1

∫ 1

0

∫
T

∫
UK
|D[QM ;A(λ, τ,u)]|2dudτdλ�A,WN

1−1/K , (5.5)
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where QM = {q0, . . . ,qM−1} for 1 ≤M ≤ N , and where

D[QM ;A(λ, τ,u)] = Z[QM ;A(λ, τ,u)]−Mµ(A(λ, τ,u)).

Here, and in §§5.3–5.5, our discrepancy functions D[P;A] always denote discrepancy
functions in UK and not UK+1.

Before we can construct the sequence, we need some notation and terminology.
Let h be a natural number, to be fixed later. For every s = 0, 1, . . . , h and for

every c ∈ Z, let
I(s, c) = [c2−s, (c+ 1)2−s). (5.6)

In other words, I(s, c) is an interval of length 2−s and whose endpoints are consecutive
integer multiples of 2−s.

We shall construct a finite sequence qn (0 ≤ n < 2Kh) of 2Kh ≥ N points in UK

such that the following is satisfied. For every s = 0, 1, . . . , h and for every non–negative
integer c satisfying c < 2K(h−s), every set of the form

I(s, a1)× . . .× I(s, aK)

in UK , where a1, . . . , aK ∈ Z, contains exactly one point of

{qn : c2Ks ≤ n < (c+ 1)2Ks}.

We shall describe the combinatorial part of the argument in §5.3 and the proba-
bilistic part of the argument in §5.4.

§5.3. A Combinatorial Approach

For every integer s satisfying 1 ≤ s ≤ h, integers τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1} and
vectors a1, . . . ,as−1 ∈ {0, 1}K , let

G[τ1, . . . , τs−1; a1, . . . ,as−1] : {0, 1, . . . , 2K − 1} → {0, 1}K

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[∅]. Given these mappings, we can define a bijective mapping

F : {0, 1, . . . , 2Kh − 1} → {0, 1, . . . , 2h − 1}K

as follows. Suppose that n is an integer satisfying 0 ≤ n < 2Kh. Write

n = τh2K(h−1) + τh−12K(h−2) + . . .+ τ1, (5.7)
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where τ1, . . . , τh ∈ {0, 1, . . . , 2K − 1}. We now let a1, . . . ,ah ∈ {0, 1}K be the solution
of the system of equations

G[∅](τ1) = a1,
G[τ1; a1](τ2) = a2,
G[τ1, τ2; a1,a2](τ3) = a3,

...
G[τ1, . . . , τs−1; a1, . . . ,as−1](τs) = as,

...
G[τ1, . . . , τh−2; a1, . . . ,ah−2](τh−1) = ah−1,
G[τ1, . . . , τh−1; a1, . . . ,ah−1](τh) = ah.

(5.8)

Suppose now that for each integer t = 1, . . . , h,

at = (at,1, . . . , at,K) ∈ {0, 1}K . (5.9)

We now write
Fj(n) = a1,j2h−1 + a2,j2h−2 + . . .+ ah,j (5.10)

and let
F (n) = (F1(n), . . . , Fk(n)). (5.11)

We next partition UK into a sequence of 2Kh smaller cubes

S(n) = I(h, F1(n))× . . .× I(h, Fk(n)),

where, for every j = 1, . . . ,K and every n = 0, 1, ..., 2Kh − 1, the interval I(h, Fj(n))
is defined by (5.6)–(5.10).

Lemma 5.2. Suppose that s is an integer satisfying 0 ≤ s ≤ h. Then for every
integer n0, the set ⋃

0≤n<2Kh

n≡n0 (mod 2Ks)

S(n) (5.12)

is a cube of the form

C(s, c) = I(s, c1)× . . .× I(s, cK) ⊆ UK , (5.13)

where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K . On the other hand, every cube of the

form (5.13), where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , is a union of the form (5.12)
for some integer n0.

Proof. Note that the condition n ≡ n0 (mod 2Ks) determines precisely the values of
τ1, . . . , τs in (5.7). We can therefore solve the system of equations

G[∅](τ1) = a1

G[τ1; a1](τ2) = a2

...
G[τ1, . . . , τs−1; a1, . . . ,as−1](τs) = as

(5.14)
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for a1, . . . ,as. On the other hand, τs+1, . . . , τh in (5.7) can take all possible values. It
follows from 

G[τ1, . . . , τs; a1, . . . ,as](τs+1) = as+1

...
G[τ1, . . . , τh−1; a1, . . . ,ah−1](τh) = ah

(5.15)

that as+1, . . . ,ah can take all possible values. The first assertion follows. To prove
the second assertion, simply note that τ1, . . . , τs are determined uniquely with given
a1, . . . ,as by (5.14), and that if as+1, . . . ,ah take all possible values, then τs+1, . . . , τh
take all possible values in view of (5.15). ♣

For every c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K , let q(c) be a point in the cube

C(h; c) = I(h, c1)× . . .× I(h, cK) ⊆ UK .

Using F , we can define a permutation qn (0 ≤ n < 2Kh) of the q(c) as follows. For
n = 0, 1, . . . , 2Kh − 1, let

qn = q(F (n)) = q(F1(n), . . . , FK(n)).

Clearly qn ∈ S(n) for every n = 0, 1, . . . , 2Kh − 1. Then it follows from Lemma 5.2
that

Lemma 5.3. Suppose that s and H are integers satisfying 0 ≤ s ≤ h and 0 ≤ H ≤
2K(h−s). Suppose further that c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K . Then the cube
(5.13) contains exactly one element of the set

{qn : H2Ks ≤ n < (H + 1)2Ks}.

Proof. The restriction H2Ks ≤ n < (H + 1)2Ks determines precisely the values of
τs+1, . . . , τh in (5.7) with no restriction on τ1, . . . , τs. On the other hand, the restric-
tion qn ∈ C(s; c) for a given c determines precisely the values of a1, . . . ,as with no
restriction on as+1, . . . ,ah. The system of equations (5.14) now determines precisely
the values of τ1, . . . , τs. Hence n is uniquely determined. ♣

We denote this element obtained by Lemma 5.3 by q(s; c;H). In other words, for
integers s, c1, . . . , cK , H satisfying the hypotheses of Lemma 5.3,

q(s; c;H) = {qn : H2Ks ≤ n < (H + 1)2Ks} ∩ C(s; c).

§5.4. Some Probabilistic Lemmas

We now use some elementary concepts and facts from probability theory and de-
fine a “randomization” of the deterministic points q(c) = q(c1, . . . , cK), mappings
G[τ1, . . . , τs−1; a1, . . . ,as−1] and F , and the sequence qn as follows.
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(A) For c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K , let q̃(c) be a random point uni-
formly distributed in the cube C(h; c). More precisely,

Prob(q̃(c) ∈ S) =
µ(C(h; c) ∩ S)
µ(C(h; c))

for all Borel sets S ⊆ RK .
(B) For every integer s satisfying 1 ≤ s ≤ h, integers τ1, . . . , τs−1 ∈ {0, 1, . . . ,

2K − 1} and vectors a1, . . . ,as−1 ∈ {0, 1}K , let G̃[τ1, . . . , τs−1; a1, . . . ,as−1] be a uni-
formly distributed random bijective mapping from {0, 1, ..., 2K − 1} to {0, 1}K . More
precisely, if π : {0, 1, ..., 2K − 1} → {0, 1}K is one of the (2K)! different (deterministic)
bijective mappings, then

Prob(G̃[τ1, . . . , τs−1; a1, . . . ,as−1] = π) =
1

(2K)!
.

(C) Let F̃ be the random bijective mapping from {0, 1, . . . , 2Kh−1} to {0, 1, . . . ,
2h−1}K defined by (5.7), (5̃.8) and (5.9)–(5.11), where (5̃.8) denotes that in the system
(5.8) of equations, we replace each deterministic mapping by its corresponding random
mapping.

(D) Let q̃n (0 ≤ n < 2Kh) denote the random sequence defined by F̃ ; in other
words, for n = 0, 1, . . . , 2Kh − 1,

q̃n = q(F̃ (n)).

(E) Let q̃(s; c;H) denote the randomization of q(s; c;H); in other words, for
integers s, c1, . . . , cK , H satisfying the hypotheses of Lemma 5.3,

q̃(s; c;H) = {q̃n : H2Ks ≤ n < (H + 1)2Ks} ∩ C(s; c). (5.16)

(F) Finally, we may assume that the random variables

q̃(c) (c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K)

and

G̃[τ1, . . . , τs−1; a1, . . . ,as−1] (1 ≤ s ≤ h and τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1}
and a1, . . . ,as−1 ∈ {0, 1}K)

are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.

Let (Ω,F ,Prob) denote the underlying probability measure space.
We have
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Lemma 5.4. Suppose that s and H are integers satisfying 0 ≤ s ≤ h and 0 ≤ H <
2K(h−s). Then for every c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , the random point
q̃(s; c;H) is uniformly distributed in the cube C(s; c).

Proof. Suppose that for j = 1, . . . ,K,

cj = a1,j2s−1 + a2,j2s−2 + . . .+ as,j .

For t = 1, . . . , s, let
at = (at,1, . . . , at,K).

Since the random mapping G̃[∅] is uniformly distributed, it follows that the (random)
solution τ̃1 of the equation

G̃[∅](τ̃1) = a1

has the property that for any δ ∈ {0, 1, . . . , 2K − 1},

Prob(τ̃1 = δ) = 2−K .

Now let τ̃1 = τ1 (i.e. fix the value of this random variable), and consider the (random)
equation

G̃[τ1; a1](τ̃2) = a2.

Since G̃[τ1; a1] is also uniformly distributed, we have, for any δ = {0, 1, . . . , 2K − 1},
that

Prob(τ̃2 = δ|τ1 = τ) = 2−K .

In other words, the random variables τ̃1 and τ̃2 are independent of each other. Repeat-
ing this argument, we conclude that τ̃1, . . . , τ̃s, obtained from

G̃[∅](τ̃1) = a1,

G̃[τ1; a1](τ̃2) = a2,
...

G̃[τ1, . . . , τs−1; a1, . . . ,as−1](τ̃s) = as,

are independent random variables with common distribution function

Prob(τ̃t = δ) = 2−K

for every t = 1, . . . , s and δ ∈ {0, 1, . . . , 2K − 1}. Let

ñ0 = τ̃s2K(s−1) + τ̃s−12K(s−2) + . . .+ τ̃1.

Then ñ0 is uniformly distributed in the set {0, 1, . . . , 2Ks − 1}. Write

ñ = τh2K(h−1) + . . .+ τs+12Ks + ñ0,
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where
H2Ks = τh2K(h−1) + . . .+ τs+12Ks.

Then
q̃(s; c;H) = q̃

ñ
.

Suppose now that H2Ks ≤ n < (H + 1)2Ks. Then

Prob(q̃(s; c;H) = q̃n) = Prob(ñ = n) = 2−Ks.

Since q̃n is uniformly distributed in S(n) for every n satisfying H2Ks ≤ n < (H+1)2Ks,
the result follows from the independence of ñ and q̃n. ♣

Let S be a fixed compact and convex set in UK . For integers s and H satisfying
0 ≤ s ≤ h and 0 ≤ H < 2K(h−s), consider the random set

P̃(s,H) = {q̃(s; c;H) : c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K}, (5.17)

and write
Z[P̃(s,H);S] = #(P̃(s,H) ∩ S)

and
D̃(s,H) = Z[P̃(s,H);S]− 2Ksµ(S). (5.18)

Note that D̃(s,H) depends on S. Let

T (s,H) = {c ∈ {0, 1, . . . , 2s − 1}K : C(s; c) ∩ S 6= ∅ and C(s; c) \ S 6= ∅}.

It is easy to see that
#T (s,H) ≤ 2K2(K−1)s. (5.19)

Since every cube C(s; c) contains exactly one element (namely q̃(s; c;H)) of the (ran-
dom) set P̃(s,H), we have

D̃(s,H) =
∑

c∈T (s,H)

q̃(s;c;H)∈S

1− 2Ks
∑

c∈T (s,H)

µ(C(s; c) ∩ S).

For every c ∈ T (s,H), let

ξ(s; c;H) =
{

1 (q̃(s; c;H) ∈ S),
0 (otherwise). (5.20)

By Lemma 5.4, we have

Eξ(s; c;H) =
µ(C(s; c) ∩ S)
µ(C(s; c))

= 2Ksµ(C(s; c) ∩ S),
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so that writing
η(s; c;H) = ξ(s; c;H)− Eξ(s; c;H), (5.21)

we have
D̃(s,H) =

∑
c∈T (s,H)

η(s; c;H). (5.22)

Note that Eη = 0 and |η| ≤ 1.
We need the following result, but we omit its lengthy proof.

Lemma 5.5. Suppose that s′, s′′ ∈ {0, 1, . . . , h}. Suppose further that H ′ and H ′′

are integers satisfying 0 ≤ H ′ < 2K(h−s′) and 0 ≤ H ′′ < 2K(h−s′′) and that c′ ∈
{0, 1, . . . , 2s′ − 1}

K
and c′′ ∈ {0, 1, . . . , 2s′′ − 1}

K
. Suppose further that either

i) s′ = s′′ and c′ 6= c′′; or
ii) s′ > s′′.

Then

E(η(s′; c′;H ′)η(s′′; c′′;H ′′)) ≤ µ(C(s′; c′) ∩ C(s′′; c′′))
µ(C(s′′; c′′))

.

§5.5. Continuation of the Proof

For every natural number M satisfying 1 ≤M ≤ 2Kh, let

Q̃M = {q̃0, q̃1, . . . , q̃M−1} (5.23)

and, for every compact and convex set S ⊆ UK , let

Z[Q̃M ;S] = #(Q̃M ∩ S),

and write
D[Q̃M ;S] = Z[Q̃M ;S]−Mµ(S). (5.24)

Lemma 5.6. For every natural number M satisfying 1 ≤M ≤ 2Kh, we have

E
(
D[Q̃M ;S]

)2

≤ K24KM1−1/K .

Proof. Write
M − 1 = τh2K(h−1) + τh−12K(h−2) + . . .+ τ1,

where τ1, . . . , τh ∈ {0, 1, . . . , 2K − 1}. Suppose that τk+1 = . . . = τh = 0 and τk 6= 0.
Then

Q̃M =
k⋃
s=1

τs−1⋃
ms=0

{
q̃n : Ms +ms2K(s−1) ≤ n < Ms + (ms + 1)2K(s−1)

}
, (5.25)
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where, for 1 ≤ s ≤ k,

Ms = τh2K(h−1) + τh−12K(h−2) + . . .+ τs+12Ks

= τk2K(k−1) + τk−12K(k−2) + . . .+ τs+12Ks. (5.26)

Note that
M ≥ 2K(k−1). (5.27)

It now follows from (5.16), (5.17), (5.25) and (5.26) that

Q̃M =
k⋃
s=1

τs−1⋃
ms=0

P̃(s− 1, H(s,ms)), (5.28)

where, for 1 ≤ s ≤ k,

H(s,ms) = 2−K(s−1)Ms +ms

= τk2K(k−s) + τk−12K(k−s−1) + . . .+ τs+12K +ms.

Combining (5.18), (5.22), (5.24) and (5.28), we have

D[Q̃M ;S] =
k∑
s=1

τs−1∑
ms=0

∑
c∈T (s−1,H(s,ms))

η(s− 1; c;H(s,ms)). (5.29)

For s = 1, . . . , k, let

Xs = {η(s− 1; c;H(s,ms)) : 0 ≤ ms < τs and c ∈ T (s− 1, H(s,ms))},

and let

X =
k⋃
s=1

Xs.

Then by (5.29), we have

E
(
D[Q̃M ;S]

)2

=
∑
η1∈X

∑
η2∈X

E(η1η2) = I1 + 2I2, (5.30)

where

I1 =
k∑
s=1

∑
η1,η2∈Xs

E(η1η2) and I2 =
∑

1≤s<t≤k

∑
η1∈Xs

∑
η2∈Xt

E(η1η2).

Consider first I1. By (5.19) and Lemma 5.5, and noting that |η| ≤ 1, we have

|I1| ≤
k∑
s=1

τs−1∑
m′s=0

τs−1∑
m′′s=0

#(T (s− 1, H(s,m′s)) ∩ T (s− 1, H(s,m′′s )))

≤
k∑
s=1

τ2
s 2K2(K−1)s ≤ K22K+22(K−1)k = K23K+12(K−1)(k−1)

≤ K23K+1M1−1/K , (5.31)
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in view of (5.27). We now consider I2. Suppose that 1 ≤ s < t ≤ k and c ∈ T (t −
1, H(t,mt)). Then there is at most one c′ ∈ T (s− 1, H(s,ms)) such that C(s− 1; c′)∩
C(t− 1; c) 6= ∅. In fact, we then have C(t− 1; c) ⊆ C(s− 1; c′), and so

µ(C(s− 1; c′) ∩ C(t− 1; c))
µ(C(s− 1; c′))

= 2K(s−t).

It follows from (5.19) and Lemma 5.5 that

|I2| ≤
k∑
t=1

∑
η∈Xt

t−1∑
s=1

τs−1∑
ms=0

2K(s−t) ≤ 2
k∑
t=1

∑
η∈Xt

1 = 2
k∑
t=1

τt−1∑
mt=0

#(T (t− 1, H(t,mt))

≤ 4K
k∑
t=1

τt−1∑
mt=0

2(K−1)(t−1) ≤ K2K+2
k∑
t=1

2(K−1)(t−1)

≤ K2K+32(K−1)(k−1) ≤ K2K+3M1−1/K , (5.32)

in view of (5.27). The lemma now follows on combining (5.30)–(5.32). ♣

Let A be a given compact and convex body in UK . It now follows from Lemma
5.6 that for any real number λ ∈ (0, 1], any proper orthogonal transformation τ in RK
and any vector u ∈ UK , we have

E
(
D[Q̃M ;A(λ, τ,u)]

)2

�K M1−1/K

for every M satisfying 1 ≤M ≤ 2Kh. If we now choose h to satisfy

2K(h−1) < N ≤ 2Kh,

then

E

(
1
N

N∑
M=1

∫ 1

0

∫
T

∫
UK
|D[Q̃M ;A(λ, τ,u)]|

2
dudτdλ

)
�K N1−1/K .

(5.5) follows immediately. This proves Theorem 10 in the case L = 1. Note also the
simpler inequality

E
(∫ 1

0

∫
T

∫
UK
|D[Q̃N ;A(λ, τ,u)]|

2
dudτdλ

)
�K N1−1/K .

Theorem 6A follows.

§5.6. The General Case

We now discuss briefly how we may expand on the argument in §§5.3–5.5 to give a
proof of Theorem 10.
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We shall in fact construct an infinite sequence of points in UK+L and use only
the first N terms of this sequence. The main ingredient in the construction of this
sequence is the Chinese remainder theorem. This not only makes it possible for the
determination of the first K coordinates of the points of the sequence to be carried out
independently of the determination of the last L coordinates of these points, but also
enables us to treat the discrepancy arising from A(λ, τ,u) quite separately from the
discrepancy arising from the B(y). Furthermore, it ensures that important properties
of the sequence are also present in many subsequences that arise from our argument.

Let h be a natural number, to be fixed subsequently in the argument. Let
p1, . . . , pL denote the first L odd primes.

For every p = 2, p1, . . . , pL, for every s = 0, 1, . . . , h and for every c ∈ Z, let

I(p, s, c) = [cp−s, (c+ 1)p−s).

In other words, I(p, s, c) is an interval of length p−s and whose endpoints are consecutive
integer multiples of p−s.

We shall construct an infinite sequence p0,p1,p2, . . . of points in UK+L such that
the following is satisfied. For every s0, s1, . . . , sL ∈ {0, 1, . . . , h} and for every non–
negative integer c, every set of the form

I(2, s0, a1)× . . .× I(2, s0, aK)× I(p1, s1, b1)× . . .× I(pL, sL, bL)

in UK+L, where a1, . . . , aK , b1, . . . , bL ∈ Z, contains exactly one point of

{pn : c2Ks0ps11 . . . psLL ≤ n < (c+ 1)2Ks0ps11 . . . psLL }.
As before, the construction of such a sequence involves ideas in combinatorics and

poses no real difficulty. The firstK coordinates of the points are constructed in a similar
fashion as in the special case discussed earlier, although we also use periodicity to obtain
an infinite sequence. The last L coordinates of the points are constructed as in §3.3,
using the Halton–Hammersley sequence. As before, such a sequence alone is insufficient
to give a proof of Theorem 10, and we appeal again to tools in probability theory. Note,
however, that the situation here is much more complicated than the situation when
L = 1. Indeed, we need to apply probabilistic arguments in two quite different ways.
One of these, to deal with the discrepancy arising from A(λ, τ,u), is essentially similar
to the probabilistic arguments in §5.4, with only minor modifications. However, to
deal with the discrepancy arising from B(y), we appeal to my discrete version of the
probabilistic idea of Roth in §3.3. This discrete version was first developed in [13] to
show that Faure sets, as discussed in §3.2, give an alternative proof of Theorem 2D.

Needless to say, our combinatorial construction has to be carried out in such a
way that our probabilistic arguments can be implemented with ease.

§6. Davenport’s Method Revisited

In this section, we use the ideas of Davenport [16] and Roth [26] described in §§2.1–2.2
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to prove two upper bound theorems on certain L1–norms concerning irregularities of
distribution relative to half–planes and relative to convex polygons. In the two parts
of this section, we shall employ slightly different notation.

§6.1. Roth’s Disc–Segment Problem

Let U be a convex set in R2 of unit area, and with centre of gravity at the origin 0.
Suppose that P is a distribution of N points in U . For every measurable set B in R2,
let Z[P;B] denote the number of points of P in B, and write

D[P;B] = Z[P;B]−Nµ(B ∩ U),

where µ denotes the usual measure in R2.
For every real number r ∈ R and every angle θ satisfying 0 ≤ θ ≤ 2π, let S(r, θ)

denote the closed half–plane

S(r, θ) = {x ∈ R2 : x · e(θ) ≥ r}.

Here e(θ) = (cos θ, sin θ) and x · y denotes the scalar product of x and y. For any θ
satisfying 0 ≤ θ ≤ 2π, let

R(θ) = sup{r ≥ 0 : S(r, θ) ∩ U 6= ∅}.

The following theorem is more general than Theorem 12B.

THEOREM 12C. (Beck–Chen [10]) For every natural number N ≥ 2, there
exists a distribution P of N points in U such that∫ 2π

0

∫ R(θ)

0

|D[P;S(r, θ)]|drdθ �U (logN)2.

The proof is motivated by the special case when U is the square [−1/2, 1/2]2. We
shall therefore first of all show that for every natural number N , there exists a set P
of 4N2 + 4N + 1 points in U such that∫ 2π

0

∫ R(θ)

0

|D[P;S(r, θ)]|drdθ � (logN)2.

For ease of notation, we consider the following renormalized version of the problem.
Let V be the square [−N − 1/2, N + 1/2]2. For every finite distribution P of points in
V and every measurable set B in R2, let Z[P;B] denote the number of points of P in
B, and write

E[P;B] = Z[P;B]− µ(B ∩ V ).

60



We shall show that the set

P = {−N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N}2

of 4N2 + 4N + 1 integer lattice points in V satisfies∫ 2π

0

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N(logN)2, (6.1)

where, for every θ ∈ [0, 2π], we have M(θ) = (2N + 1)R(θ).
The line

T (r, θ) = {x ∈ R2 : x · e(θ) = r}

is the boundary of the half–plane S(r, θ), and can be rewritten in the form

x1 cos θ + x2 sin θ = r,

where x = (x1, x2) ∈ R2.
Suppose that 0 ≤ θ ≤ π/4. Clearly M(θ) = (N+1/2)(cos θ+sin θ). We distinguish

two cases.
Case 1: 0 ≤ r ≤ (N + 1/2)(cos θ − sin θ). It is not difficult to see that T (r, θ)

intersects the edges {(x1, N + 1/2) : |x1| ≤ N + 1/2} and {(x1,−N − 1/2) : |x1| ≤
N + 1/2} of V , i.e., the “top” and “bottom” edges of V . Then

S(r, θ) ∩ V =
N⋃

n=−N
S(n, V, r, θ),

where, for every n = −N, . . . , 0, . . . , N ,

S(n, V, r, θ) = S(r, θ) ∩ V ∩ (R× [n− 1/2, n+ 1/2]).

Clearly

E[P;S(r, θ)] =
N∑

n=−N
E[P;S(n, V, r, θ)].

Now, for every n = −N, . . . , 0, . . . , N , we have

Z[P;S(n, V, r, θ)] = [N + n tan θ − r sec θ + 1]

and
µ(S(n, V, r, θ)) = N + n tan θ − r sec θ + 1/2,

so that
E[P;S(n, V, r, θ)] = −ψ(n tan θ − r sec θ),
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where ψ(z) = z − [z]− 1/2 for every z ∈ R. Hence

E[P;S(r, θ)] = −
N∑

n=−N
ψ(n tan θ − r sec θ).

Case 2: (N+1/2)(cos θ−sin θ) ≤ r ≤ (N+1/2)(cos θ+sin θ). It is not difficult to
see that T (r, θ) intersects the edges {(x1, N+1/2) : |x1| ≤ N+1/2} and {(N+1/2, x2) :
|x2| ≤ N + 1/2} of V , i.e., the “top” and “right” edges of V . Furthermore,

T (r, θ) ∩ {(N + 1/2, x2) : |x2| ≤ N + 1/2}
= {(N + 1/2,−(N + 1/2) cot θ + r cosec θ)}.

Then S(n, V, r, θ) = ∅ if n < −(N + 1/2) cot θ + r cosec θ − 1/2. On the other hand, it
is trivial that E[P;S(n, V, r, θ)] = O(1) always. It follows that

E[P;S(r, θ)] = −
N∑

n=−N
(∗)

ψ(n tan θ − r sec θ) +O(1),

where the summation is under the further restriction

n ≥ −(N + 1/2) cot θ + r cosec θ. (∗)

Note that in Case 1, the restriction (∗) would become superfluous since it is weaker
than the requirement n ≥ −N . It follows that for all r ≥ 0, we have

E[P;S(r, θ)]−G[P; r, θ]� 1,

where

G[P; r, θ] = −
N∑

n=−N
(∗)

ψ(n tan θ − r sec θ).

The function ψ(z) = z − [z]− 1/2 has the Fourier expansion

−
∑
ν 6=0

e(zν)
2πiν

,

so that −ψ(n tan θ − r sec θ) has the Fourier expansion

∑
ν 6=0

e(−rν sec θ)
2πiν

e(nν tan θ).
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It follows that the Fourier expansion of G[P; r, θ] is given by

∑
ν 6=0

e(−rν sec θ)
2πiν

N∑
n=−N

(∗)

e(nν tan θ).

However, the restriction (∗) prevents us from applying Parseval’s theorem.
To overcome this difficulty, we introduce the following idea which is motivated by

Roth’s variation of Davenport’s method in §§2.1–2.2.
Let y = (y1, y2) ∈ [−1/2, 1/2]2. For every θ ∈ [0, π/4] and every r ≥ 1, let

T (y; r, θ) = T (r + y1 cos θ + y2 sin θ, θ) (6.2)

and
S(y; r, θ) = S(r + y1 cos θ + y2 sin θ, θ) (6.3)

(note here that r + y1 cos θ + y2 sin θ ≥ 0 always). Then

E[P;S(y; r, θ)] = E[P;S(r + y1 cos θ + y2 sin θ, θ)].

It is not difficult to see that if we write

G[P; y; r, θ] = −
N∑

n=−N
(∗)

ψ(n tan θ − (r + y1 cos θ + y2 sin θ) sec θ),

then

E[P;S(y; r, θ)]−G[P; y; r, θ]�

 cot θ (M(θ)− (2N + 1) sin θ − 1 ≤ r ≤M(θ)),
1 (otherwise),
N (trivially),

so that ∫ π/4

0

∫ M(θ)

1

|E[P;S(y; r, θ)]−G[P; y; r, θ]|drdθ � N (6.4)

(note that |y1 cos θ+y2 sin θ| ≤ 1, so that if r ≤M(θ)−(2N+1) sin θ−1, then T (y; r, θ)
intersects the top and bottom edges of V ).

Now G[P; y; r, θ] has the Fourier expansion

∑
ν 6=0

e(−(r + y1 cos θ + y2 sin θ)ν sec θ)
2πiν

N∑
n=−N

(∗)

e(nν tan θ)

=
∑
ν 6=0

e(−rν sec θ)
2πiν

N∑
n=−N

(∗)

e((n− y2)ν tan θ)e(−y1ν).
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It follows that for every y2 ∈ [−1/2, 1/2], we have, by Parseval’s theorem, that

∫ 1/2

−1/2

|G[P; y; r, θ]|2dy1 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣∣∣
N∑

n=−N
(∗)

e((n− y2)ν tan θ)

∣∣∣∣∣∣∣∣
2

=
∞∑
ν=1

1
ν2

∣∣∣∣∣∣∣∣
N∑

n=−N
(∗)

e(nν tan θ)

∣∣∣∣∣∣∣∣
2

,

so that

∫ 1/2

−1/2

∫ 1/2

−1/2

|G[P; y; r, θ]|2dy1dy2 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣∣∣
N∑

n=−N
(∗)

e(nν tan θ)

∣∣∣∣∣∣∣∣
2

�
∞∑
ν=1

1
ν2

min{N2, ‖ν tan θ‖−2}, (6.5)

where ‖β‖ = minn∈Z |β − n| for every β ∈ R.
We need the following crucial estimate.

Lemma 6.1. We have

∫ π/4

0

( ∞∑
ν=1

1
ν2

min{N2, ‖ν tan θ‖−2}

)1/2

dθ � (logN)2.

Proof. Since tan θ � θ if 0 ≤ θ ≤ π/4, it suffices to show that

∫ 1

0

( ∞∑
n=1

1
n2

min{N2, ‖nω‖−2}

)1/2

dω � (logN)2. (6.6)

Clearly
∞∑
n=1

1
n2

min{N2, ‖nω‖−2} ≤
N2∑
n=1

1
n2

min{N2, ‖nω‖−2}+ 1,

so that ( ∞∑
n=1

1
n2

min{N2, ‖nω‖−2}

)1/2

≤
N2∑
n=1

1
n

min{N, ‖nω‖−1}+ 1. (6.7)
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Now, for every n = 1, . . . , N2, we have∫ 1

0

min{N, ‖nω‖−1}dω = 2n
∫ 1/2n

0

min{N, (nω)−1}dω � logN. (6.8)

Inequality (6.6) now follows on combining (6.7) and (6.8). ♣

By the Cauchy–Schwarz inequality, we have∫ 1/2

−1/2

∫ 1/2

−1/2

|G[P; y; r, θ]|dy1dy2

�

(∫ 1/2

−1/2

∫ 1/2

−1/2

|G[P; y; r, θ]|2dy1dy2

)1/2

. (6.9)

It follows from (6.4), (6.5), (6.9) and Lemma 6.1 that∫ 1/2

−1/2

∫ 1/2

−1/2

∫ π/4

0

∫ M(θ)

1

|E[P;S(y; r, θ)]|drdθdy1dy2 � N(logN)2. (6.10)

Note now that for every θ ∈ [0, π/4], every r ≥ 1 and every y ∈ [−1/2, 1/2]2, we have,
writing s = r + y1 cos θ + y2 sin θ, that |r − s| < 1. It follows that since S(y; r, θ) =
S(r + y1 cos θ + y2 sin θ, θ), where r + y1 cos θ + y2 sin θ ≥ 0, we must have∫ M(θ)−1

2

|E[P;S(r, θ)]|dr ≤
∫ M(θ)

1

|E[P;S(y; r, θ)]|dr. (6.11)

On the other hand, (∫ 2

0

+
∫ M(θ)

M(θ)−1

)
|E[P;S(r, θ)]|dr � N. (6.12)

It now follows from (6.10)–(6.12) that∫ π/4

0

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N(logN)2.

Similarly, for j = 1, . . . , 7, we have∫ (j+1)π/4

jπ/4

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N(logN)2.

Inequality (6.1) now follows.
Next, we consider the case when U is the closed disc of unit area and centred at

the origin 0.
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Let N be any given natural number. Again we consider a renormalized version of
the problem, and take V to be the closed disc of area N and centred at the origin 0.
However, if we simply attempt to take all the integer lattice points in V as our set P,
then by a famous theorem of Hardy [21] on the number of lattice points in a disc, the
number of points of P can differ from N by an amount sufficiently large to make our
task impossible.

Our new idea is to introduce a set P such that the majority of points of P are
integer lattice points in V , and that the remaining points give rise to a one–dimensional
discrepancy along and near the boundary of V . More precisely, for any x = (x1, x2) ∈
Z2, let

A(x) = A(x1, x2) = [x1 − 1/2, x1 + 1/2]× [x2 − 1/2, x2 + 1/2];

in other words, A(x) is the aligned closed square of unit area and centred at x. Let

P1 = {p ∈ Z2 : A(p) ⊆ V },

and write
V1 =

⋃
p∈P1

A(p).

Note that the points of P1 form the majority of any point set P of N points in V . For
the remaining points, let

V2 = V \ V1.

Then it is easy to see, writing πM2 = N , that

µ(V2) ∈ N and µ(V2)�M.

We partition V2 as follows. Write

L = µ(V2),

and let
0 = θ0 < θ1 < . . . < θL−1 < θL = 1

such that for every j = 1, . . . , L, the set

Rj = {x ∈ V2 : 2πθj−1 ≤ arg x < 2πθj}

satisfies
µ(Rj) = 1.

For every j = 1, . . . , L, let
pj ∈ Rj ,

and write
P2 = {p1, . . . ,pL}.
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If we now take
P = P1 ∪ P2, (6.13)

then clearly P contains exactly N points.
For every measurable set B in R2, let Z[P;B] denote the number of points of P

in B, and write
E[P;B] = Z[P;B]− µ(B ∩ V ).

It can be shown that the set (6.13) satisfies∫ 2π

0

∫ M

0

|E[P;S(r, θ)]|drdθ �M(logN)2. (6.14)

The inequality (6.14) can be proved using explicitly the equation of ∂V , the bound-
ary of V . However, if we want to prove the full generality of Theorem 12C, then such
information is clearly not available. Extra geometric consideration is then required.

§6.2. Convex Polygons

Suppose that P is a distribution of N points in the unit square U = [0, 1]2, treated as
a torus. For every measurable set B in U , let Z[P;B] denote the number of points of
P in B, and write

D[P;B] = Z[P;B]−Nµ(B),

where µ denotes the usual measure in R2.
Let A ⊆ U be a closed convex polygon of diameter not exceeding 1 and centred

at the origin 0. For every real number r satisfying 0 ≤ r ≤ 1 and for every angle θ
satisfying 0 ≤ θ ≤ 2π, let v = θ(u) denote(

v1
v2

)
=
(

cos θ − sin θ
sin θ cos θ

)(
u1

u2

)
, (6.15)

where v = (v1, v2) and u = (u1, u2), and write

A(r, θ) = {rv : v = θ(u) for some u ∈ A}; (6.16)

in other words, A(r, θ) is obtained from A by first rotating clockwise by angle θ and
then contracting by factor r about the origin 0. For every x ∈ U , let

A(x, r, θ) = {x + v : v ∈ A(r, θ)}, (6.17)

so that A(x, r, θ) is a similar copy of A, with centre of gravity at x.

THEOREM 14B. For every natural number N ≥ 2, there exists a distribution P
of N points in U such that∫ 1

0

∫ 2π

0

∫
U

|D[P;A(x, r, θ)]|dxdθdr �A (logN)2.
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Our proof is motivated by our study of irregularities of point distribution relative
to half–planes in §6.1. In fact, the analogy between the two problems becomes clear
on noting that a convex polygon is the intersection of a finite number of half–planes
(or, to put it in precisely the viewpoint held at the time, that a half–plane is a convex
“monogon”).

We shall only briefly discuss the problem when N is a perfect square. For ease
of notation, we consider the following renormalized version of the problem. Let V be
the square [0, N1/2]2, again treated as a torus (modulo N1/2 for each coordinate). For
every finite distribution P of points in V and every measurable set B in V , let Z[P;B]
denote the number of points of P in B, and write

E[P;B] = Z[P;B]− µ(B).

Let A ⊆ V be a closed convex polygon of diameter not exceeding N1/2 and centred at
the origin 0. For every real number r satisfying 0 ≤ r ≤ 1, every angle θ satisfying
0 ≤ θ ≤ 2π and every x ∈ V , we define A(x, r, θ) in terms of (6.15)–(6.17). It clearly
suffices to show that for every natural number N ≥ 2, there exists a distribution P of
N points in V such that∫ 1

0

∫ 2π

0

∫
V

|E[P;A(x, r, θ)]|dxdθdr �A N(logN)2. (6.18)

The key idea in the proof of (6.18) is to split the integral over V in (6.18) into
a sum of integrals over sets whose diameters are very small. We may then use the
variable x in the same way as the probabilistic variable y in §6.1.

Suppose that N = M2, where M ∈ N. It can be shown that the set

P = {(m− 1/2, n− 1/2) : m,n ∈ N and 1 ≤ m,n ≤M}
of N points in V satisfies the inequality (6.18).

The idea is roughly as follows. Let A ⊆ V be a closed convex polygon of k sides
and of diameter not exceeding M . Consider the set A(x, r, θ), where the contraction
r ∈ [0, 1], the rotation θ ∈ [0, 2π] and the centre of gravity x ∈ V are fixed. Then
each edge of A(x, r, θ) gives rise to a discrepancy of a similar nature to the discrepancy
arising from the edge of the half–plane S(r, θ) in §6.1, and can be handled in a similar
manner. The only difference is that there are a few such edges rather than just one.
This difference poses no real difficulty, since discrepancy is “additive” in a certain sense.
The only difficulty is what is the analogue of the probabilistic variable y. The answer
to this is that the translation variable x, handled with great care, plays a similar role.
The result now follows modulo technical refinements.

Appendix. Roth’s Classical Theorem

The method of Roth [23] to prove Theorem 1A is dependent on Schwarz’s inequality.
Corresponding to every distribution P ofN points in UK0 , Roth constructed an auxiliary

68



function F [P; x] such that, writing D(x) and F (x) in place of D[P;B(x)] and F [P; x]
respectively, and abusing notation and writing U instead of U0,∫

UK
F (x)D(x)dx > c1(K)(logN)K−1 (A.1)

and ∫
UK

F 2(x)dx < c2(K)(logN)K−1
. (A.2)

These, together with Schwarz’s inequality, give∫
UK
|D(x)|2dx > c3(K)(logN)K−1

,

so that Theorem 1A follows easily.
We remark here that to prove Theorem 1D, Schmidt [37] proved the analogue of

(A.2) for higher moments, and then used Hölder’s inequality instead of Schwarz’s in-
equality. However, Schmidt’s auxiliary function is slightly different from Roth’s original
auxiliary function. Here, we shall use Schmidt’s auxiliary function.

Any x ∈ U0 can be written in the form

x =
∞∑
j=0

βj(x)2−j−1,

where βj(x) = 0 or 1 and such that the sequence βj(x) does not end with 1, 1, . . .. For
r = 0, 1, 2, . . ., let

Rr(x) = (−1)βr(x)

(these are called the Rademacher functions).

Definition. By an r–interval, we mean an interval of the form [m2−r, (m + 1)2−r),
where the integer m satisfies 0 ≤ m < 2r.

Definition. By an r–function, we mean a function f(x) defined on U0 such that in
every r–interval, f(x) = Rr(x) or f(x) = −Rr(x).

Clearly, if f(x) is an r–function, then∫
U

f(x)dx = 0.

Suppose now that r = (r1, . . . , rK) is a K–tuple of non–negative integers. Let

|r| = r1 + . . .+ rK ;
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and for any x = (x1, . . . , xK) ∈ UK0 , let

Rr(x) = Rr1(x1) . . . RrK (xK).

Definition. By an r–box, we mean a set of the form I1 × . . . × IK , where, for every
j = 1, . . . ,K, Ij is an rj–interval.

Definition. By an r–function, we mean a function f(x) defined on UK0 such that in
every r–box, f(x) = Rr(x) or f(x) = −Rr(x).

Let n�� logN be a suitably chosen natural number.

Lemma A.1. Suppose that |r| = |s| = n. Then∫
UK

Rr(x)Rs(x)dx =
{

1 (r = s),
0 (r 6= s).

Proof. The result is clear if r = s. If r 6= s, then there exists j = 1, . . . ,K such that
rj 6= sj . Assume, without loss of generality, that rj > sj . Then Rrj (xj)Rsj (xj) is an
rj–function, so that ∫

U

Rrj (xj)Rsj (xj)dxj = 0. ♣

We consider the function

F (x) =
∑
|r|=n

fr(x), (A.3)

where, for each r, fr(x) is a suitably chosen r–function. To establish (A.2), we have

Lemma A.2. Suppose that K ≥ 2 and n ≥ 0. Suppose further that for every r with
|r| = n, fr(x) is an r–function. Then the function (A.3) satisfies∫

UK
F 2(x)dx�K nK−1.

Proof. Clearly∫
UK

F 2(x)dx =
∑
|r|=n

∫
UK

f2
r (x)dx +

∑
|r|=n
|s|=n
r 6=s

∫
UK

fr(x)fs(x)dx = Σ1 + Σ2,
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say. In view of Lemma A.1, Σ2 = 0. On the other hand, f2
r (x) = 1 for every x ∈ UK0 .

It follows that

Σ1 ≤
∑
|r|=n

1 =
(
n+K − 1
K − 1

)
�K nK−1. ♣

It remains to establish (A.1). Let n be chosen to satisfy

2N ≤ 2n < 4N.

Lemma A.3. Suppose that 2n ≥ 2N . Then for every r satisfying |r| = n, there is
an r–function fr satisfying∫

UK
fr(x)D(x)dx ≥ 2−n−2K−1N. (A.4)

(A.1) now follows, for we can construct F (x) by (A.3), where for every |r| = n, fr
is chosen to satisfy (A.4). Now the number of K–tuples satisfying |r| = n is(

n+K − 1
K − 1

)
�K nK−1,

so that ∫
UK

F (x)D(x)dx�K nK−12−nN.

Proof of Lemma A.3. We decompose the integral in (A.4) into integrals over r–
boxes, and choose fr(x) such that the integral

∫
fr(x)D(x)dx over every r–box is

non–negative. Let B be an r–box given by

B = [m12−r1 , (m1 + 1)2−r1)× . . .× [mK2−rK , (mK + 1)2−rK ),

and let B′ be the box

B′ = [m12−r1 , (m1 + 1/2)2−r1)× . . .× [mK2−rK , (mK + 1/2)2−rK ).

Then it is not difficult to see that∫
B

Rr(x)D(x)dx

=
∫
B′

1∑
α1=0

. . .
1∑

αK=0

(−1)α1+...+αKD((y1 + α12−r1−1, . . . , yK + αK2−rK−1))dy.
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Note that the sum∣∣∣∣∣
1∑

α1=0

. . .
1∑

αK=0

(−1)α1+...+αKZ[P;B((y1 + α12−r1−1, . . . , yK + αK2−rK−1))]

∣∣∣∣∣
is the number of points of P in [y1, y1 + 2−r1−1)× . . .× [yK , yK + 2−rK−1). This box
is contained in B. Hence if B contains no points of P, the sum is 0. Note also that

1∑
α1=0

. . .

1∑
αK=0

(−1)α1+...+αK (y1 + α12−r1−1) . . . (yK + αK2−rK−1) = (−1)K2−|r|−K .

It follows from the definition of D(x) that if B contains no points of P, then since
|r| = n, we have ∫

B

Rr(x)D(x)dx = (−1)K+12−2n−2KN.

There are 2n r–boxes B with |r| = n, but only N ≤ 2n−1 points. It follows that at
least half of the r–boxes contain no points of P. Since fr(x) is chosen to make the
integral

∫
fr(x)D(x)dx over any r–box non–negative, it follows that∫

UK
fr(x)D(x)dx ≥ (2n −N)2−2n−2KN ≥ 2−n−2K−1N. ♣
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