Bull. London Math. Soc. 50 (2018) 529-560 © 2017 Authors
doi:10.1112/blms.12143

OBITUARY

Klaus Friedrich Roth, 1925-2015

© The Godfrey Argent Studio

Klaus Friedrich Roth, who died in Inverness on 10 November 2015 aged 90, made fundamental
contributions to different areas of number theory, including diophantine approximation,
the large sieve, irregularities of distribution and what is nowadays known as arithmetic
combinatorics. He was the first British winner of the Fields Medal, awarded in 1958 for his
solution in 1955 of the famous Siegel conjecture concerning approximation of algebraic numbers
by rationals. He was elected a member of the London Mathematical Society on 17 May 1951,
and received its De Morgan Medal in 1983.

1. Life and career

Klaus Roth, son of Franz and Matilde (née Liebrecht), was born on 29 October 1925, in the
German city of Breslau, in Lower Silesia, Prussia, now Wroclaw in Poland. To escape from
Nazism, he and his parents moved to England in 1933 and settled in London. He would recall
that the flight from Berlin to London took eight hours and landed in Croydon. Franz, a solicitor
by training, had suffered from gas poisoning during the First World War, and died a few years
after their arrival in England.

Roth studied at St Paul’s School between 1937 and 1943, during which time the school was
relocated to Easthampstead Park, near Crowthorne in Berkshire, as part of the wartime evac-
uation of London. There he excelled in mathematics and chess, and one master, Mr Dowswell,
observed interestingly that he possessed complete intellectual honesty. As extracurricular
activity, Roth was deeply interested in the Air Training Corps, but his efforts to be a member
were thwarted for a long time because of his German nationality, until special permission
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was finally given towards the end of his time at St Paul’s. His badly coordinated muscular
movements ensured that his wish to become a pilot was never going to be realized.

Roth proceeded to read mathematics at the University of Cambridge, and became a student
at Peterhouse. He also played first board for the university chess team. However, he had
many unhappy and painful memories of his two years in Cambridge as an undergraduate.
Uncontrollable nerves would seriously hamper his examination results, and he graduated with
third class honours.

After this not too distinguished start to his academic career, Roth then did his war time
service as an alien and became a junior master at Gordonstoun, where he divided his spare
time between roaming the Scottish countryside on a powerful motorcycle and playing chess
with Robert Combe. On the first day of the first British Chess Championships after the war,
Roth famously went up to Hugh Alexander, the reigning champion, to tell him that he would
not retain his title. This was of course right — the previously largely unknown Robert Combe
became the new British Champion.

Peterhouse did not support Roth’s return to Cambridge after his war service, and his tutor
John Charles Burkill had suggested instead that he pursued ‘some commercial job with a
statistical bias’. Fortunately, his real ability and potential, particularly his problem solving
skills, had not escaped the eyes of Harold Davenport, who subsequently arranged for him
to pursue mathematical research at University College London, funded by the then highest
leaving exhibition ever awarded by his old school. Although Theodor Estermann was officially
his thesis advisor, Roth was heavily influenced by Davenport during this period, and indeed
into the mid-1960s. He completed his PhD work which Estermann considered good enough for
a DSc, and also joined the staff of the Department of Mathematics.

Davenport’s influence clearly cultivated Roth’s interest in diophantine approximation.
Significant work had already been done by Dirichlet, Liouville, Thue, Siegel, Dyson and
Gelfond. Indeed, a crucial exponent was believed to depend on the degree of the algebraic
number under consideration, but Siegel had conjectured that it should be 2. In 1955, Roth
showed precisely that. In a letter to Davenport, Siegel commented that this result ‘will be
remembered as long as mankind is interested in mathematics’. For this, Roth was awarded the
Fields Medal in 1958. In speaking of Roth’s work at the Opening Ceremony of the International
Congress of Mathematicians in 1958, Davenport said, ‘The achievement is one that speaks for
itself: it closes a chapter, and a new chapter is opened. Roth’s theorem settles a question
which is both of a fundamental nature and of extreme difficulty. It will stand as a landmark
in mathematics for as long as mathematics is cultivated,” and ended with the following words.
‘The Duchess, in Alice in Wonderland, said that there is a moral in everything if only you can
find it. It is not difficult to find the moral of Dr Roth’s work. It is that the great unsolved
problems may still yield to direct attack however difficult and forbidding they appear to be,
and however much effort has already been spent on them.’

While most mathematicians consider Roth’s result on diophantine approximation as his
most famous, it is in fact another problem that gave him the greatest satisfaction. At
about the same time, he became interested in the question of the impossibility of a just
distribution for any sequence in the unit interval, conjectured by van der Corput in 1935.
Van Aardenne-Ehrenfest obtained the first quantitative estimate in 1949. By reformulating
the problem in a geometric setting, Roth obtained in 1954 the best possible lower bound
for the mean squares of the discrepancy function. This geometric setting paved the way for
what is now known as geometric discrepancy theory, a subject at the crossroads of harmonic
analysis, combinatorics, approximation theory, probability theory and even group theory. Once
asked why he considered this his best work, Roth replied, ‘But I started a subject!” He was
particularly pleased that Burkill, with whom he had remained on good terms, offered the same
opinion.
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Further recognition came. Roth was elected Fellow of the Royal Society in 1960 and also
promoted to a professorship at the University of London in 1961. He was very proud that the
Fields Medal, the Fellowship of the Royal Society and the professorship came in reverse order.

The close relationship between Roth and Davenport in those days can be illustrated by a
charming incident some time in the 1950s and which Heini Halberstam recalled with great
delight. Early one Sunday morning, Davenport went to his bathroom and switched on the
light. The phone rang, and it was Roth. Could he possibly come over and explain the proof of
a new result? Davenport suggested that Roth should come after breakfast, but as soon as he
put the phone down, the door bell rang. Roth had been so eager that he had spent much of
the early morning waiting in the telephone booth across the street.

It was also during this time at University College London that Roth met his wife Melek
Khairy. Melek and her sister Hoda, daughters of the senator Khairy Pacha in Egypt, had
defied the wishes of their old-fashioned family apart from their father and come to study in
London. It was the first ever university lecture given by Roth and the first ever university
lecture attended by Melek. After the lecture, Roth had asked Halberstam whether he had
noticed the young lady on the front row. ‘I will marry her,” he claimed. By the end of that
year, Roth had felt unsuitable to mark Melek’s examination script, claiming that he felt ‘unable
to be impartial’, much to the amusement of his colleagues. Another problem at the time was
that during their courtship, Hoda often tagged along, much to Roth’s annoyance. To counter
that, Roth brought along his best friend Laimons Ozolins, the Latvian born architect and
fellow pupil at St Paul’s School, as a distraction for Hoda. Ozolins took to his assignment with
great gusto, and indeed married Hoda.

In the mid-1960s, Roth had planned to emigrate to the United States to take up the offer
of a position at the Massachusetts Institute of Technology where he had spent a year a decade
earlier. Imperial College and Walter Hayman intervened, and agreement was reached in the
middle of a reception at the Soviet Embassy in London. Roth recalled that Sir Patrick Linstead,
then Rector of Imperial College, told him that he needed to make an application, but reassured
him that there would be no other applicant. So Roth joined Imperial College in 1966 after a
sabbatical at the MIT, and remained there until his retirement.

Following his retirement in 1987, Roth moved with Melek to Inverness. Melek’s death in
2002 was a great setback, and Roth never recovered from this loss. In later years, Roth became
increasingly disappointed at the services and facilities available to old people in Inverness, and
subsequently left the bulk of his estate towards improving these.

Roth was an excellent lecturer. He explained his points so clearly that a good student could
often just sit there and listen, and only had to record the details afterwards in the evening.
However, he occasionally would have a bad day, and he warned his students at the beginning
of the year that they would notice these very easily. One of us recalls that on one occasion,
Roth wrote down a very complicated expression on the blackboard, then retired to the back
of the room. A lot of thought was followed by an equal sign, and he retired to the back of the
room again. After a long time he came once more up to the board and wrote down the same
complicated expression on the right hand side. The audience held their collective breath at this
profound assertion. But the best was yet to come. He then proceeded to write down +0O(1), at
which point all burst into laughter. Roth looked at his masterpiece again, turned to the class
and protested, ‘But it is correct, isn’t it?’

Outside mathematics, Roth enjoyed Latin American dancing, and would elegantly jive away
the evening with Melek. They took this very seriously, to the point that they had a room in
their house in Inverness specially fitted for dancing practice. For many years while they were
in London, they had dancing lessons with Alan Fletcher, who, with wife Hazel, was five-time
world Latin American dancing champion. Indeed, Roth dedicated one of his research papers to
Fletcher. He explained that he had been bothered by a problem which he could not solve and
was therefore not dancing very well, and that Fletcher had annoyed him so much by asking
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him week after week without fail whether he had solved his problem. So to get Fletcher off his
back, he just had to crack the problem, and when he did, he needed to acknowledge Fletcher
for having provided the annoyance.

Roth maintained great modesty throughout his life. He felt very privileged to have been
given the opportunity to pursue what he loved, and very lucky that he had some ‘moderate
success’. He had always been very generous to his colleagues, and had inspired many to achieve
good results.

Roth also received the De Morgan Medal of the London Mathematical Society in 1983 and
the Sylvester Medal of the Royal Society in 1991. He was also elected Honorary Fellow of
the Royal Society of Edinburgh in 1993, Fellow of University College London in 1979 and of
Imperial College London in 1999, and an Honorary Fellow of Peterhouse in 1989. He and Melek
had no children.

2. Very brief summary of mathematical work

Roth’s work in the very early part of his career concerns the application of the Hardy-—
Littlewood method to study certain additive questions in number theory. His subsequent work
can be described as a career long fascination with and repeated efforts at understanding the
limitations to the degree of regularity possible in various discrete systems, often making very
clever use of artificial orthogonality or quasi-orthogonality, and punctuated by a small number
of spectacular digressions, including his seminal contribution to diophantine approximation
[14] and to the large sieve [21].

In the mid-1950s, with encouragement and advice from Paul Erdés, Roth and his close
colleague Heini Halberstam began to write the influential volume Sequences [23]. The effort
took nearly ten years, and Roth particularly enjoyed writing about Rényi’s version of the
large sieve. He worked on it even after the completion of the book, culminating in his own
remarkable contribution to the subject. Halberstam recalled fondly that Roth carried the
completed manuscript by hand all the way to the offices of the Clarendon Press in Oxford.

Questions on regularity occupy the bulk of Roth’s writings, and these can be divided roughly
into three areas: irregularities of integer sequences in arithmetic progressions, irregularities of
point distribution and Heilbronn’s triangle problem.

NoOTATION. Throughout this article, we adopt the O, o as well as Vinogradov notation <
and >. Thus for any function f and any positive function g, we write f = O(g) or f < g to
denote that there exists a positive constant ¢ such that |f| < cg, and write f = o(g) to denote
that |f/g| — 0. Furthermore, if f is also a positive function, then we write f > g to denote
g < f, and write f =< ¢ to indicate that f < g and f > ¢ both hold. The symbols O, o, <
and > may have subscripts if the constant ¢ in question depends on the variables represented
by those subscripts. The cardinality of a finite set < is denoted by |.<7|.

3. FEarly work

3.1. Squarefree and k-free numbers

A squarefree number is a positive integer with no repeated prime factors. They have some
properties analogous to prime numbers but are generally less demanding to understand, and
thus often provide a good testing ground for techniques.

Estermann (39) had obtained an asymptotic formula for the number of representations of a
large natural number as the sum of a square and a squarefree number. In his first research paper
Roth [1] extended this result to the situation in which the square was restricted to being the
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square of a squarefree number. Whilst not a technically demanding problem, it nevertheless
provided a good introduction to the methodology applied to questions in analytic number
theory.

His second paper [4] on squarefree numbers is of considerable importance, and deals with
gaps between squarefree numbers.

It is an elementary exercise to show that the number Q(z) of squarefree numbers not
exceeding z satisfies

Q) = Sy + 0@,
Thus if g, is the nth squarefree number in order of magnitude, then it follows that
Gn+1 — Gn = O(nl/Q)'
Generally it is believed that
Gnt1 — qn = O(n%)

for every fixed positive €, and this would follow from the ABC' conjecture; see Granville (51).

Fogels (44) had reduced the exponent 1/2 to 2/5+ e. Estermann and Roth had found
different methods to further reduce the exponent to 1/3. Estermann’s simple elementary
argument was outlined by Roth in his paper [4], which also outlined a small further
improvement shown to him by Davenport. However, Roth also made substantial further
improvements. He first gave a simple proof that

gn+1 — qn = O(n1/4)’
and then went on to combine this with a method of van der Corput (24) to show that
Gnr1 = n = O(n/ 1 (logn)*/*?).

There followed papers by Richert (98), Rankin (86), Schmidt (104), Graham and Kolesnik
(50), Trifonov (123, 124) and Filaseta (41), many of them quite technical.

The current best bound is due to Filaseta and Trifonov (43), and their method leans heavily
on the elementary method of Roth. They showed that

dn+1 — qn = O(n1/5 log n)7

and said that their core lemma, namely Lemma 1, was ‘essentially contained in Roth’s
paper [4]’, and the final section of the paper was entitled ‘The use of Roth’s method’.

On the other hand, in collaboration with Halberstam, Roth developed his original ideas to
treat k-free numbers, namely, those integers with no more than k& — 1 repeated prime factors,
in their paper [5].

There is also a substantial literature on gaps between k-free numbers, and also on k-free
values of polynomials, much of it stimulated by the ideas in [5]. For an article with a good
overview of the subject, see Filaseta (42).

3.2. The Hardy-Littlewood method

The Hardy-Littlewood method is a technique in additive number theory, developed in the
1920s from a famous paper of Hardy and Ramanujan (66) by Hardy and Littlewood in a series
of papers (58, 59, 60, 62, 61, 63, 64, 65).

There had been many important developments by Davenport and I. M. Vinogradov, and
Estermann was also considered a leading expert on the method. Thus it is not surprising that,
with both Davenport and Estermann as mentors at University College London, several chapters
in Roth’s PhD thesis should involve applications of the method.
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Roth had been given by Davenport the problem of showing that almost every natural number
n could be expressed as the sum of a square, a cube, a fourth power and a fifth power, in the
sense that the number of exceptional n < N is o(N). He met Estermann one day and announced
that actually he did not need the fifth power. This result in [2] was quite sensational. At the
time there had been relatively little done on ternary additive problems. Of course, there was
the classical theorem of Gauss-Legendre that every natural number not of the form 47 (8k + 7)
could be expressed as the sum of three squares. There were also a couple of papers by Davenport
and Heilbronn. In (32), they showed that almost every natural number could be expressed as
the sum of two squares and a kth power with k odd. In (31), they showed that almost every
natural number could be expressed as the sum of a square and two cubes. However, these were
the extent of the known results. Thus Roth’s theorem pushed the envelope of what was known.

Estermann, however, insisted that the result with the four terms should be written up as
well, on the grounds that Davenport must have had a reason for wanting the fifth power! That
the reason was to make the question amenable to a beginning postgraduate student seemed to
have escaped Estermann. Anyway, a variation of the problem was eventually found, and in [7],
Roth showed that every sufficiently large natural number could be expressed in the form

S
1
Z T
j=1

with s = 50. This question was worked on subsequently by several researchers. Thanigasalam,
Vaughan and Briidern successively reduced the size of s, and the best current result is due to
Ford (45) with s = 14.

The earlier paper [2] also stimulated quite a lot of later work. Suppose that 2 < k1 < ko < k3.
Then one can ask about the solubility for large n of the diophantine equation

n =zt 4 zk? 4 2fs, (3.1)

with the integral variables x1,x2, x3 all positive. For this to hold for almost all n, one needs

In this case, it is readily seen that there are only four possible configurations of exponents,
namely

k1 = ko = 2, ks arbitrary, (3.2)
ky =2, ky =3, ks =3, (3.3)
k1 =2, ko =3, ks =4, (3.4)
ki =2, ko =3, ks =5. (3.5)

A further necessary condition for solubility of these equations is that they be soluble modulo ¢
for every modulus ¢, and this is essentially the same as requiring that there be a non-singular
solution in each p-adic field. In particular, since there are a positive proportion of n which
cannot be represented as the sum of three squares, we may suppose in the case (3.2) that ks
is odd.

We now know that in many of these configurations, there are infinitely many natural numbers
n for which local solubility is not sufficient. The first such examples are due to Jagy and
Kaplansky (69); see also Vaughan (129, Chapter 8, Exercise 5). More recently, others have
been added to the list by Dietmann and Elsholtz (35, 36) and by Gundlach (54). Apparently,
in each case, the counter-example can be interpreted as a Brauer—-Manin obstruction. However,
these failures of the local to global principle only occur for a thin set of natural numbers n, and
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this enhances the interest of results which show solubility for almost all natural numbers n,
and in particular in estimates for the size of any exceptional set.

It has been possible to show in each case (3.2)—(3.5) that almost all natural numbers n can
be represented in the form (3.1). As mentioned above the first results of this kind are due to
Davenport and Heilbronn, and Roth added to this with his work on a square, a cube and a
fourth power. The picture was completed by Vaughan (127) who established that almost all
natural numbers could be expressed as the sum of a square, a cube and a fifth power.

Of enhanced interest, following the work of Jagy and Kaplansky and of others, is the size of
the exceptional set. Davenport and Heilbronn (32) gave the bound

< X(log X)~3/5%¢

for the number of exceptional natural numbers not exceeding X and not representable as the
sum of two squares and a cube. They (31) also gave the bound

< X(log X))~ /1

for the number of natural numbers not exceeding X and not representable as the sum of a
square and two cubes. In the case of a square, a cube and a fourth power, Roth [2] obtained
the bound

< X(log X)~1/20

for the number of exceptions.

The first improvement on results of this kind was given by Vaughan (127) who showed the
existence of a positive number § such that the number of exceptional natural numbers n not
exceeding X and not representable in the form (3.1) for the case (3.5) could not exceed

< X179,

The crucial new ideas stemmed from the large sieve (see Section 5) and could also be applied
to the other cases considered here.

There is a considerable body of work on adapting these methods to situations in which one
or more of the variables are restricted in some way. See Vaughan (132) for a review of this
material.

Davenport had used the Hardy-Littlewood method to show in (27) that every sufficiently
large natural number could be expressed as the sum of eight cubes and, more significantly,
that almost every natural number could be expressed as the sum of four cubes. Roth then
showed in [6] that in each case all but one of the variables could be taken to be prime. This
is somewhat routine, although there are some technical difficulties to be overcome. However
this paper clearly led to an interest in Vinogradov’s methods for estimating exponential sums
and resulted in the translation into English by Roth and Anne Davenport of Vinogradov’s
monograph (134) on exponential sums. Roth added extensive notes to each of the chapters,
and Vinogradov told him at the International Congress of Mathematicians in Edinburgh in
1958 that serious consideration should be given to translating the book back into Russian!

The work on cubes also attracted a large body of modern work, leading, for example, to
Kawada’s result in (70) that the non-prime variable could be replaced by a number having at
most three prime factors. It would be of great interest if the non-prime could be replaced by a
prime. There is a brief survey of this area in Vaughan (131).

Roth also has a joint paper [15] with Davenport which uses the Hardy—Littlewood method.
This concerns the following question. Suppose that Aj,..., \s are real numbers, not all of the
same sign and not all in rational ratio. Given k, 1 and ¢, how small can s = s(k) be taken as
a function of k£ so that the inequality

|n+)\1x}f+---—|—)\sxf’<€

has infinitely many solutions in positive integers z1,...,zs?
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When 1 = 0 and k = 2, Davenport and Heilbronn (33) had shown that s = 5 was permissible
and it was clear that their method would establish the desired conclusion for general k£ and
n with s = 2% + 1. In their paper, Davenport and Roth obtained a result with s(k) satisfying
lim sup s(k)/(klog k) = 6. For joint work by two of the most powerful analytic number theorists
of the era, this is a surprisingly ordinary result. In dealing with the somewhat more onerous
situation in which the variables were assumed to be prime, Vaughan (126) was able to obtain
s(k) with limsups(k)/(klogk) = 4. Later, applying the techniques developed in Waring’s
problem by Vaughan (128) and Wooley (136), Li (74) was able to obtain the desired conclusion
with an s(k) satisfying limsup s(k)/(klogk) = 1.

The method used here depends on rational approximations a/q to one of the irrational ratios,
for example A,/ \s, as given by the continued fraction expansion. In particular, the range for the
variables z1, ...,z depends on the size of q. However, suitably good rational approximations
a/q can be very rare, so that the denominator ¢, of the nth convergent can grow extremely
rapidly as a function of n. This can happen if, for example, the ratio is a Liouville number.
Thus the method does not allow one to localize the solutions, in the sense that given a large
parameter X, one cannot guarantee that there is a solution with, say, vV X < max; z; < X.
There has been a considerable blossoming of work in this area since the problem of localization
of solutions was overcome in a ground breaking paper of Bentkus and Gotze (12). This was
followed by papers by Freeman (46) and Wooley (137). A comprehensive review of this area
is given in the paper of Briidern, Kawada and Wooley (17).

There is one other paper which can be considered in the classical Hardy—Littlewood method
milieu. The paper [13] with Szekeres on generalized partition functions has been largely
overlooked. It restricts to the case when the summands in a partition are distinct but the
method applies more generally. In particular the method is easily adapted to give an asymptotic
formula for the number of partitions of a large number into primes, a result which until quite
recently, with the appearance of Vaughan (130), experts in the area had thought could not be
obtained in the current state of knowledge.

It can be said that Roth’s early work on the Hardy-Littlewood method is not his most
important work. Yet it is unlikely that, without this introductory phase, Roth would have
considered using a variant of the Hardy-Littlewood method to treat sets having no three
terms in arithmetic progression, with all that which followed. See Section 7.

4. Diophantine approximation

Questions of diophantine approximation have attracted the attention of the world’s leading
mathematicians for at least four centuries, and continue to do so. Roth’s theorem on
diophantine approximation settled a central question which had already been heavily worked
over by leading researchers. To appreciate his achievement, it is necessary to give a short review
of the earlier work.

Given a real irrational number «, how small can one make

o— =
q

b

where a is an integer, ¢ is a positive integer and (a,q) = 1, as a function of ¢? The continued
fraction algorithm shows that for infinitely many ¢, one has

< 1

~ q2 .

a
a— =
q

When « is a quadratic irrational, it is readily seen that this cannot be much improved. For
example, from the irrationality of v/2, it follows that for any a and ¢, one has |2¢® — a?| > 1,
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and so there is a positive constant ¢ such that

q

A similar observation holds for any quadratic surd «. On the other hand, Liouville (77)
constructed irrational numbers, known nowadays as Liouville numbers, such as

oo
A=Y 2
n=1

which have approximations of the form

‘)\ _ g < i
q ¢"

with x arbitrarily large. A number « is algebraic of degree d if it is the root of a polynomial
of degree d with integer coefficients and d is the smallest possible degree of such a polynomial.
When one supposes that the coefficients do not have a common factor and the leading coefficient
is positive, then the polynomial is unique and is known as the minimal polynomial. If the leading
coeflicient is 1, then « is called an algebraic integer.

Liouville had also shown by a generalization of the argument above that for any « algebraic
of degree d > 2, one could find a positive constant C'(«) such that

’ al 1
q| = Cla)g®
Thus inter alia, Liouville numbers are transcendental.

When d > 2, it was generally believed that equations such as 2a® — ¢ = 1 and, more gen-
erally, equations of the form ¢?f(a/q) = ¢, with f(z) = cqz? + cq_129~1 + - -+ + ¢ irreducible
over Q and integer coefficients ¢ and cg, . . ., ¢4, had only a finite number of solutions in integers
a and ¢ with (a,q) = 1. This was established by Thue (122) who showed that for any « algebraic
of degree d and any x > 1+ d/2, one could find a positive constant C'(«) such that

a
a— —
q

(4.1)

Cla)g”

had only a finite number of solutions.

Suppose that a;/q satisfies (4.1) with ¢; sufficiently large and as/go also satisfies (4.1)
with g2 > ¢1. Then one can construct a family of polynomials P, (x1,z2) of two variables with
integer coefficients which vanish to high order at the point (o, @) but only to low order at
(a1/q1,a2/g2). This is used to show that go is excluded from an interval of the kind

(n)

I, ={x: c”qf <z < c‘"qf(”)}

for suitable functions (n) and ¢(n). Thue’s proof is then completed by showing that for large n,
these intervals overlap and cover the line segment [C,00). There is a nice account of this in
Davenport (30).

The permissible size of k was refined by Siegel (117) to

d
/~;>min{—|—m—1:m:1,27...,d}7
m

so that x > 2v/d, and independently by Dyson (37) and Gelfond to &k > V2d. In overall
structure the proofs follow Thue’s. Siegel had also conjectured that for any x > 2, the inequality
(4.1) could have only a finite number of solutions.

It was generally understood that the way forward was to use polynomials P(x1,...,z)) in
many variables. However, it was not until 1955 that Roth caused a sensation by proving Siegel’s
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conjecture. The crucial part of the proof is the construction of such polynomials which, whilst
vanishing to high order at & = (e, ..., @), only vanish to low order at p = (a1/q1,. .., ar/qx).
This is a considerable escalation in the difficulty of the proof. Consider a general
polynomial

P(x) = Z Z b(r)a} ... alk, (4.2)

r1=0 re=0
with integer coefficients b(r), the generalized derivative
1 o o

i) d! 61;111 8:]32’"

Dl =

)

and the associated index

k.
I(e,e) =min{ > 2 : P(a) =0},
=1 €
wherer = (r1,...,7%), 1= (i1,...,%) and e = (eq, ..., er). The positive integers ey, ..., ex are

at our disposal but are typically chosen to make ¢i*, ..., ¢." roughly equal. Also, let the height
of P be defined by

H(P) = max{|b(r)| : r}.

It suffices to suppose that « is an algebraic integer of degree d > 2. The first step is the index
theorem. This states that if « is an algebraic integer, k > d/2e? and ey,...,e; are positive
integers, then there is a polynomial of the form (4.2), not identically zero, such that P has
degree at most e; in the variable z;, I(a,e) > k(1 —¢)/2 and H(P) < C(a) T Fex,

The core of the argument is Roth’s lemma. This shows that if P is as in (4.2) and satisfies
H(P) < qfle, where § < 1 depends at most on k and e, then I(p,e) < e. The proof is based
on the properties of generalized Wronskians.

Given a non-negative integer ¢, choose i so that i + -+ ix_1 < 7 and put

o1
(j — )10z "

When i is large, there are many possible choices of i. Hence, when ¢ is large, there are many
possible generalized Wronskians

Aij = Aij(X) = .Di P(X)

W(X) = (det Aij)lgi,jgf-

Thus it is not completely surprising that it can be shown that at least one can be factored
into two polynomials, each with fewer independent variables. Moreover, Wronskians preserve
the dichotomy of having a high order zero at a and a low order zero at p. This enables an
induction to be performed on the number of variables. This realization must have been the
Eureka moment in Roth’s discovery.

The proof is completed by using Roth’s lemma to obtain a contradiction against the index
theorem.

The method was extended by Baker (4) to show, for example, that the transcendental
(Champernowne) number 0.1234567890111213. .. is not a U-number in the sense of Mahler.

Although Roth’s theorem on diophantine approximation is essentially best possible, this is
not the end of the story, only perhaps the end of the beginning. The underlying ideas have been
highly influential and have had far reaching consequences. Most notably Schmidt generalized
the result to establish his theorem on simultaneous diophantine approximation (109) and his
subspace theorem (115). The latter states that if Lq,..., L, are linear forms in n variables
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with algebraic coefficients which are linearly independent and if € is any positive real number,
then the non-zero integer points x with

|Li(x) ... Ly (x)| < |x|7°

lie in a finite number of proper subspaces of Q.

Whilst Roth’s theorem gives no bound on the size of possible ¢ occurring in the inequality,
Davenport and Roth [16] were able to obtain a bound for the number of pairs a, ¢ which satisfy
an inequality of the type

when k > 2.

5. The large sieve

The large sieve was introduced by Linnik (75) with the aim of considering questions in which,
at least on average, one could sieve out a large number of residue classes modulo each prime p.

Let o be a subset of Z integers in the interval [1, N]. For every n =1,...,N, let ¢, = 1 if
n € o and ¢, =0if n € &/. Then

N
Z = Z Cn-
n=1

Given a positive integer g, let
N

Z(q,a) = Z Cn

n=1
n=a mod ¢

denote the number of members of o7 in the residue class a modulo g. An easy calculation shows
that the variance

satisfies

where
N
S(a) = Z cne(an).
n=1

Here e(z) = e?™# for every z € R.
Linnik related the quantity |S(a/q)|? to the integral

o[ o2

for a suitably small positive §. Then, as long as the various intervals (a/q — d,a/q + ¢) do not
overlap, Parseval’s identity

2
dg

1 N
/ S@Pda=3leul?,
0 n=1
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which in this instance is equal to Z, can be used to obtain an upper bound. In this way, Linnik
obtained a non-trivial upper bound for the sum

> pVip)

p<@Q
in terms of N, Q and Z. If Z(p,a) = 0 for many values of a, in other words, if one is sieving
out a large number of residue classes modulo p for each prime p, then this enables one to show
that Z is strikingly small. Thus Linnik (76) was able to show that, for any fixed § > 0, writing
n(p) for the least quadratic non-residue modulo p, the number P of primes not exceeding X
for which n(p) > p° would satisfy P < loglog X.

This work was then developed by Rényi in a long series of papers (87, 88, 89, 90, 91, 92,
93, 94, 95, 96); see also (97). Perhaps the most important application made by Rényi was
as an aid to small sieves which led to theorems of the kind that every sufficiently large even
number could be expressed as the sum of a prime and a number having a bounded number of
prime factors.

Rényi seemed to have been seduced by the probabilistic nature of the sum V(q), but this
did not really lead to any further profound advances. The state of the art before the seminal
papers of Roth [21] and Bombieri (15) was summarized by Barban (5, 6). At this point, the
methods were quite effective when Q < N'/2, but less effective for larger values of Q. However,
by the time the survey article by Barban (6) appeared, it was obsolescent.

Roth [21] was the first to realize that harmonic analysis was the key and that one could
fruitfully use Fourier analysis on an interval to obtain bounds close to best possible. He was
able to obtain a bound which in particular gave

> V) < (N +Q%logQ) Z el

p<Q
That this should remain effective even with @ close to N'/2 was a huge breakthrough. This,
together with the almost contemporaneous paper of Bombieri (15), led to a huge amount of
activity through the 1970s, and continues to have a profound impact on analytic number theory
today.

In order to describe the modern developments, one should view ¢, as an arbitrary sequence

of complex numbers with support on [1, N]. Also, to enable a comparison with Roth’s result,

one should observe that
S-S5l <5 £ kG
q<Q
(
Thus a non-trivial bound of the type
R N
D 18(an)? < AN,6) D fenl?
r=1 n=1

PLQ p<Q a=1
where the points aq, ..., ar satisfy

Irn?gl Izneln lay —as — 2| =

has become known as the large sieve inequality. Bombieri and Davenport (16) showed that in
general A(N,d) could not be taken smaller than

A(N,§) =N —1461, (5.1)

and Selberg (116) showed that A(N,d) could indeed be given by (5.1). Selberg’s method
represents the ultimate development of the Fourier analysis attack introduced by Roth. These
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methods were adapted by Vaaler (125) and others for a variety of applications in analytic
number theory and related areas. See, for example, Montgomery (82).

Perhaps the most significant development stemming from this work is the following result
of Bombieri (15) and A. I. Vinogradov (133), stated here in a slightly sharper form due to
Bombieri. Suppose that A is any given positive real number. Then there are two positive real
numbers B = B(A) and Xy = Xo(A) such that for every X > X, we have

3 N viga) L /Y | X
max sup |[7(Y:;q,a)— I
<XV (log X) B (n G V<X ¢(a) Jo logt| — (log X)

Here m(Y;q,a) denotes the number of primes not exceeding Y in the residue class a
modulo ¢, and ¢ is Euler’s function. This result can often be used in place of the as yet
unestablished generalized Riemann hypothesis, perhaps the most important unsolved problem
in mathematics, and the exponent 1/2 here is crucial in many applications. Thus the recent
work of Goldston, Pintz and Yildirim (47), Zhang (138), Maynard (80) and Tao, showing
that there are bounded gaps in the primes, would not have been possible without many of the
developments stemming from the large sieve.

6. Miscellany

6.1. Lattice coverings

Roth essayed only one paper in convexity and the geometry of numbers. This is especially
surprising since this was a major interest of Davenport, and Roth was ideally equipped to
work in the area. However, Rogers was already making great progress and undoubtedly Roth
was only too happy to let him get on with it. However, a visit by Bambah stimulated his
interest.

A lattice A in n-dimensional space is called a covering lattice for a symmetrical convex body
K if every point of the space belongs to a body of the type K 4+ P, where P is a point of the
lattice. Let V(K) denote the volume of K, and let d(A) denote the discriminant of A. The
lattice covering density 9(K) of K is defined by

where the infimum is taken over all covering lattices A for K.
Hlawka (68) had shown that ¥(K) < n™, and Rogers (99) had lowered this bound to
Y(K) < 3". By use of the Brunn-Minkowski theorem, Bambah and Roth [9] established that

™n"

n27"

This is at most me™/v/27, so is clearly stronger, and is asymptotically e”(r/(54n))'/2. This
question then attracted a series of improvements by Rogers (100) and Schmidt (105),
culminating in the bound

I(K) <

logn
log 2

I(K) < exp < loglogn + clog n)

by Rogers (101), apparently still the best that is known.
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6.2. Cosine polynomials

There are two intriguing questions that involve trigonometrical polynomials with integer
frequencies.
Let NV denote a set of N distinct natural numbers, and define

E(a) = Z e(an),
neN
where e(3) = ¢?>™8  Furthermore, put
Cla) = Z cos(2mna),
neN

so that C(a) = £E(a) + 1 E(—), and write

A(N)Z/O |E(a)|de and B(N)=— min C(«).

agl0,1]

Littlewood, in a list of problems circulated privately, had conjectured the existence of a
positive constant ¢ such that

A(N) = clog N. (6.1)

If true, this would be best possible, as could be seen by taking the set A to consist of an
arithmetic progression.
It is clear that the identity

/01 C(a)da =0,

together with the value C'(0) = N, implies that B(N) > 0. Ankeny and Chowla (20) had
conjectured that

BN) > f(N), (6.2)

where f(N) — 0o as N — cc.
There is a connection between the two problems, since

C(a)] da = / (I0(a)| - C(a)) da < 2B(N)

0

and
1
Cla)] = 51(E(a) + E(-a))e(aM)],
and so if M is large enough, then

(E(a) + E(—a))e(aM) = > e(an),
neM
where M is a set of 2N distinct natural numbers. Thus

A(M) <ABN).

Roth [32], by a unique method, directly established the existence of a positive constant ¢

such that
log N 1/2
B _— .
W) > e (loglogN>
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At the time the best that was known for A(N'), and hence for B(N), was the bound

log N 1/4
AWN) > ¢ (loglogN> ’
obtained by Davenport (29) following earlier work of Cohen (23).

Later, following progress by Pichorides and Fournier, Konyagin (73) and McGehee, Pigno
and Smith (81) independently and by different methods proved Littlewood’s conjecture (6.1).
For a comprehensive survey of the area, see Odlyzko (84).

With regard to the Ankeny—Chowla problem, it is still an open question as to how large one
can take f(N) in (6.2). Chowla (21) conjectured that there might even be a positive constant
¢ such that f(N) = ¢N'/? would hold. If true, this would be best possible; see Pichorides (85).

6.3. Square packing

The story behind this is that, some time in the late spring of 1977, Hugh Montgomery had
mentioned to one of us [Vaughan] the question of packing unit squares into a large square of
side length ¢ not equal to an integer, say £ = n + 6 where 0 < 6 < 1.

Perhaps not surprisingly, just lining up as many unit squares as possible with the sides of
the large square, which leaves an area uncovered of 2nf + 62, is not very efficient, at least
when 6 is not very small, and rather more efficient packings are known. For example, Chung
and Graham (22) could exhibit a packing with the uncovered area at most C/¢? log ¢, where
= (3++2)/7=0.6306....

The more interesting question is whether one can show that a certain amount of space can
never be covered however ingenious the packing.

The Imperial College Mathematics Department held its annual examiners meeting in June,
which went on all day. That year it was, as usual, quite tedious. One had to stay alert in case
something came up about one’s own tutees, and occasionally there would be some discussion
about borderline or exceptional cases, but otherwise it could be a bit of a bore. Anyway, at
lunch that day, in order to lighten the mood, the problem was described to Roth. He visibly
brightened, and a few days later came up with a very clever argument which eventually led to a
joint paper [35] showing that the amount of waste space, whatever the packing, was always at
least c(nmin{f, 1 — #})'/2. Afterwards he claimed that this had been a much more interesting
examiners meeting than usual!

The principal idea is to think of a ray entering the large square from the left and to suppose
that on reaching the side of a unit square it is ‘refracted’ to a direction orthogonal to that
face. If the little squares through which it passes are not skewed very much, then it will have
to pass through waste space to a distance of roughly . If there is an appreciable amount of
skewing, then there will be triangular pieces of waste between successive squares the area of
which can be approximated in terms of the angles of skew. Thus the amount of waste space
can be bounded below by a sum of cosines. There are complications if rays cross each other,
but in principle one can obtain a lower bound for the amount of waste area.

The question then arises whether 1/2 is the right exponent. Probably it is not. The proof was
‘one dimensional’. If one could take advantage of both dimensions, then perhaps the exponent
could be made larger. Nevertheless the theorem is still the best that is known.

7. Distribution of integer sequences in arithmetic progression

Roth wrote eight papers [8, 10, 11, 20, 24, 25, 27, 28] on the distribution of sequences of
natural numbers in arithmetic progressions and related subjects. They were motivated by the
following fundamental result established in 1927.
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THEOREM (van der Waerden (135)). If the natural numbers are partitioned into any finite
number of classes, then at least one of the classes must contain arbitrarily long arithmetic
progressions.

In particular, he was fascinated by the following conjecture made in 1936.

CONJECTURE (Erdds and Turan (38)). If a strictly increasing sequence of natural numbers
has positive upper density, then it contains arbitrarily long arithmetic progressions.

The solution of this conjecture in 1975 is one of the cornerstones of combinatorics.
THEOREM (Szemerédi (120)). Let ri(N) denote the greatest number of natural numbers
that can be selected from 1,...,N to form a set that does not contain any arithmetic

progression of length k. Then ri,(N) = o, (N) as N — oc.

Roth’s interest in this area was primarily analytic in nature. He solved the special case k = 3
first [8] in 1952, and then showed [10] in 1953 that

N~'r3(N) < (loglog N)™! (7.1)
as N — oco. The method involved is the famous Hardy-Littlewood method, but applied in a
very unusual and novel way. Let S be a largest set of natural numbers selected from 1,..., N

with no arithmetic progression of length 3. If S is ‘dense’, then it has considerable regularity of
distribution, both in position and among residue classes to any modulus. These regularity fea-
tures prove enough to make the Hardy-Littlewood method work. It was the first instance that
additive properties of an unknown sequence were studied using the Hardy—Littlewood method
which was first developed with specific sequences such as the primes or the kth powers in mind.

In 1954, Roth [11] considered a generalization to systems of linear equations. Let A = (a,,,)
be an £ x n matrix with integer entries. A set U of natural numbers is called an A-set if there

are no distinct integers x1,...,x, € U such that
n
Zawxyzo, pw=1...¢ (7.2)
v=1

Denote by A(N) the greatest number of natural numbers that can be selected from 1,..., N
to form an A-set. Under the following conditions on the matrix A, Roth could prove that
A(N) =0(N) as N — c.

(i) The columns of A add up to form the zero column, i.e.

iawzo, p=1...,¢
v=1

(ii) A has /¢ linearly independent columns. Furthermore, if one of these ¢ linearly independent
columns of A is omitted from A, then the remaining n — 1 columns of A can be divided
into two sets so that there are /¢ linearly independent columns in each of these two sets.

It is quite easy to understand the motivation behind this study. For the special case
A= (1 -2 1) ,

clearly A(N) = r3(N). However, the requirement that n > 2¢ unfortunately excludes the case

1 -2 10
A:(o 1 -2 1)’ (7.3)

which would have led to a solution for A(N) = r4(N). Roth would return to this case later.
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In 1964, Roth [20] continued his study and considered irregularities of distribution of integer
sequences, and showed that a sequence neither very thin nor very dense could not be well
distributed simultaneously among and within all congruence classes. More precisely, let . be
a subset of the set {1,..., N} of natural numbers, and let n = N~!|.#| denote the proportion
of these natural numbers that are in .%. Since . is neither very thin nor very dense, 7 is close
to neither 0 nor 1, thus n(1 — 7) is not too small. For any arithmetic progression

o ={n,n+gq,...,n+ (L —1)q}
of length ¢, where 1 <n <n+ (£ —1)g < N, a suitable discrepancy function is defined by
DI o) = | Nd| - n,

where ¢n is the expectation for the cardinality of the set . N .o/. Here Roth showed that for
any such subset ., one could find an arithmetic progression & such that

\D[.7; )| > (n(1 —n))/2NV4,

This result is often affectionately known as Roth’s 1/4-theorem. The technique used to establish
it is an exponential sums method which can be interpreted as a Fourier transform argument.
This observation inspired Beck to develop his Fourier transform approach to problems in
irregularities of point distribution, leading to many spectacular results.

It is worthwhile to note that Roth’s 1/4-theorem is sharp, as shown by Matousek and
Spencer (79).

On the other hand, one-sided discrepancy problems, seeking to establish the existence of
an arithmetic progression &7 for which D[.¥; <] is large and non-negative, is of particular
interest. Although this was not discussed in his paper in 1964, Roth [40] commented in a
survey written in 2000 that the following was equivalent to the conjecture of Erdés and Turén,
nowadays known as Szemerédi’s theorem.

PROPOSITION. Let ¢ € (0,1/2) be given. Then there exists ¢ > 0 such that for all sufficiently
large ¢ and N, given any subset . of the set {1,..., N} satisfying c < N7'|.%| < 1 — ¢, there
exists an arithmetic progression &/ of length { such that D[.5; /] > €.

The conjecture of Erdés and Turdn motivated Roth [24, 25] to study irregularities of
distribution of integer sequences in arithmetic progressions. Let ¢ be a fixed large natural
number. Suppose that s1,...,sy is a sequence of real numbers, with sum L and average value
LN~ For natural numbers n and ¢ satisfying the conditions

I<n<n+{—-1)g< N, (7.4)

consider the arithmetic progression n,n+gq,...,n+ (£ —1)g of indices. For any such index
n + vq, the quantity s,4,, — LN ' represents the difference of the term s,,;,, with the average
value. Consider now the cumulative difference

-1

Z(S7l+uq - LN_l)v

v=0
taken over the /-term arithmetic progression of indices. Here a simplification can be made
through the observation that we can take L = 0 without loss of generality, for we can simply
replace each s,, by s, — LN~!. Thus we consider the sum

{—1
an+uq~ (75)

v=0
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Using the exponential sums method of his 1964 paper, Roth [24] showed that for sufficiently
large N in terms of the length ¢, one could find natural numbers n and ¢ satisfying (7.4) such
that the sum (7.5) would be large in absolute value. However, to obtain any result relevant
to the conjecture of Erdés and Turédn, it would be necessary to establish one-sided estimates
such as a lower bound for the sum (7.5), and this proved considerably more difficult and would
also require the assumption that L = 0, as well as the existence of a fixed number A such that
1< |sj| < Aforevery j =1,...,N. Roth [24, 25] made a detailed study of this question, and
obtained bounds in terms of the length ¢. Much later, Sdrkozy (102) showed that much better
one-sided estimates could be obtained in terms of the upper bound @ of the moduli g.

Motivated by Szemerédi’s solution (119) of the conjecture of Erdds and Turdn in the case
k = 4, Roth proceeded to develop a new method, embodying a number of Szemerédi’s ideas but
nevertheless analytic in nature, for proving the same result and certain generalizations of it.
In two papers [27, 28] in 1970 and 1972, he considered again £ x n integer matrices A = (a,.)
and the solvability of the system (7.2) of linear equations, first studied in 1954. He was able to
relax the earlier condition n > 2¢ to include the case n = 2¢, thus including the matrix (7.3),
leading to a solution for A(N) = r4(N). He remarked that the method could be adopted to
give quantitative results regarding the rate at which N~!r4(N) would tend to 0 as N — oo,
but the proofs would then become complicated and the resulting estimates would be poor.
Indeed, Szemerédi’s eventual proof in 1975 of the conjecture of Erdés and Turan for arbitrary
k left open the problem of quantitative results that were not ‘hopelessly weak’ regarding the
rate at which N~1r;(N) would tend to 0 as N — oo.

On the other hand, for k = 3, Roth’s original exponential sums method in 1953 gave a
reasonable bound (7.1), and subsequent improvements to this by Heath-Brown (67) and by
Szemerédi (121), with the bound

N~'r3(N) < (logN)~¢, (7.6)

for some positive absolute constant ¢, also used exponential sums. The strongest result in this
direction currently in the literature, due to Bloom (14), replaces the right hand side of (7.6)
by (log N)~!(loglog N)*.

There remained the question of whether Roth’s technique could be extended to achieve
reasonable bounds for N~1ry(N) for k > 4.

A major breakthrough was achieved by Gowers (48, 49) who showed the existence of positive
constants ¢(k), depending only on k, such that

N~'r(N) <. (loglog N)’C(k),

first in 1998 for £ = 4 and then in 2001 for arbitrary k. More recently, stronger bounds were
obtained for the special case k = 4 by Green and Tao (52, 53), first in 2009 with the estimate

N7, (N) < exp(—c(loglog N)'/?),

for some positive absolute constant ¢, again using Roth’s ideas, and later with a bound of the
same strength as (7.6) in a recent paper.
We close this section with a quote from Tao on the impact of Roth’s pioneering result.
First of all, we state Roth’s original theorem in an alternative form.

THEOREM. Let o/ be a set of natural numbers of positive upper density, so that

o N{l,....N
limsup| L. }‘>

0.
N—o0 N

Then &/ contains infinitely many arithmetic progressions of three distinct terms.
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‘At the heart of Roth’s elegant argument was the following (surprising at the time)
dichotomy: if & had some moderately large density within some arithmetic progression
P, either one could use Fourier-analytic methods to detect the presence of an arithmetic
progression of length three inside & N &2, or else one could locate a long subprogression &2’ of
Z on which &/ had increased density. Iterating this dichotomy by an argument now known as
the density increment argument, one eventually obtains Roth’s theorem, no matter which side of
the dichotomy actually holds. This argument (and the many descendants of it), based on various
“dichotomies between structure and randomness”, became essential in many other results of
this type, most famously perhaps in Szemerédi’s proof of his celebrated theorem on arithmetic
progressions that generalized Roth’s theorem to progressions of arbitrary length. More recently,
my recent work on the Chowla and Elliott conjectures that was a crucial component of the
solution of the Erdds discrepancy problem, relies on an entropy decrement argument which
was directly inspired by the density increment argument of Roth.’

8. Irregularities of point distribution

Roth’s work on irregularities of point distribution was motivated by the work of van Aardenne-
Ehrenfest (1, 2) on a conjecture of van der Corput (25, 26), that for any infinite sequence
X1,T2,Z3,... of numbers in the unit interval [0,1] and for any given positive number &, one
could find two subintervals, of equal length, and a natural number n such that among the terms
T1,...,Ty, the number of terms that fell into one subinterval would differ from the number of
terms that fell into the other subinterval by more than k.

Van Aardenne-Ehrenfest (2) gave a quantitative result on this question. Consider a sequence
Z1,...,xn of numbers in [0,1]. For every natural number n satisfying 1 <n < N and any
number a € [0,1], the discrepancy of the subset {x1,...,z,} with respect to the subinterval
[0,a) is denoted by

D(n,a) = {z1,...,2,} N[0,a)| — na.

Then

loglog N

su D(n, > —.
1gnI<)N| (n,a)] log log log N
a€l0,1]

(8.1)

In what he considered part of his best work, Roth [12] reformulated the problem in 1954 by
replacing the discrete parameter n by a continuous one. Consider a finite set & of N points in
the unit square [0,1]2. For any point a = (ay,az) € [0,1]?, the discrepancy of the set & with
respect to the aligned rectangular box B(a) = [0,a1) X [0, a2) is denoted by

D[Z;B(a)] = |2 N B(a)| — Najas.
Then the two quantities

sup |D[#;B(a)]| and  sup |D(n,a)l
a€l0,1]? IST[LSJY
a€c(0,1

share lower bounds, as functions of N, of the same order of magnitude. Furthermore,

sup |D[2; B(a)]| > (log N)/?, (8.2)

a€(0,1]?

vastly superior to the earlier estimate (8.1).
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Indeed, Roth considered the reformulation of the problem in the more general setting of the
unit cube [0,1]* in the k-dimensional euclidean space, with k-dimensional rectangular boxes
B(a) =[0,a1) x --- x [0,ax), where a = (ay,...,ax) € [0,1]*. Consider the L?-norm

1/2
1DL[2]]l2 = (/[0 " |D[Z; B(a)“2 da> (8.3)

and the L°°-norm

[Dk[Z]loc = sup |D[2; B(a)]|. (8.4)

a€0,1]k
Then for every finite set & of N points in the unit cube [0, 1],
ID&[ P12 > (log N)F—D/2, (8.5)
leading also to the estimate
IDk[2] |00 > (log N)F172, (8.6)

the multi-dimensional analogue of the estimate (8.2). On the other hand, Halton (56) showed
that for every integer N > 2, one could find sets & of N points in the unit cube [0,1]* such
that

1D [ 2]l <k (log ). (8.7)
Schmidt (111) showed that the lower bound (8.2) could be improved to
| D2[2]]| s > log N.

In view of Halton’s result (8.7), this is therefore essentially best possible. However, efforts to
bridge the gap between the lower bound (8.6) and upper bound (8.7) when k > 2 has met with
less success, and this is known as the Great open problem in the subject. The current best
improvement to the lower bound (8.6) is due to Bilyk, Lacey and Vagharshakyan (13), with
the estimate

IDk[2] |00 > (log N)FD/2+0(R) (8.8)

for some §(k) € (0,1/2).

To obtain the lower bound (8.5), Roth first tried to find the necessary estimates from those
parts of the unit cube near the discontinuities of the discrepancy function D[Z7; B(a)] at the
points of &2. However, the arbitrary nature of the point set & gave him no precise information
to work on. Instead, he found many subsets of the unit cube devoid of points of & and with
trivial discrepancies. If one partitions the unit cube into a disjoint union of 2N subsets of
roughly equal volume, then since the set & contains only N points, at least half of these
2N subsets must therefore contain no points of &. From among these subsets, one can then
find many subsets of volume N !, say, where « is a very small but fixed positive number.
These subsets contain no points of &, and so trivially must have discrepancy —«, a small
quantity but, crucially, bounded away from zero. Roth then achieved his aim by partitioning
the unit cube dyadically in roughly (log N)*~! different ways and then using a system of
orthogonal Rademacher functions, modified suitably to eschew the contributions from those
parts of the unit cube near the points of &, to pick up these trivial discrepancies, with each
of these (log N)*~! different ways of partition contributing a small positive fixed quantity to
the integral in (8.5).

Much of Roth’s work on upper bounds in the second half of the 1970s is centred on showing
that the estimate (8.5) is essentially best possible, and involves the introduction of deep
probabilistic ideas into the subject. This entails establishing the existence of point sets that
satisfy the required bounds, and there are two main approaches.
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One of these approaches is based on the use of badly approximable numbers, and the idea
goes back to the 1920s in the work of Hardy and Littlewood on counting the number of lattice
points in right angled triangles. Using this, Davenport (28) showed that the estimate (8.5) in the
special case k = 2 was essentially best possible, using lattices and a novel reflection principle.
However, the natural extension of this approach to the special case k = 3 would require the
falsity of the famous conjecture of Littlewood on simultaneous diophantine approximation. In
1979, Roth [36] replaced the reflection principle and devised instead a probabilistic approach
through the introduction of a translation variable and obtained an alternative proof of
Davenport’s result using the same basic construction. Furthermore, by using sheets of lattices
on top to each other and arranged in an ingenious way, he was able to extend the argument
to the special case k = 3, showing that the estimate (8.5) was also essentially best possible.
However, there appears to be no clear way of extending this approach to the cases k& > 3.

A second approach to upper bounds is based on the generalization of dyadic point sets
constructed from the famous van der Corput sequence, first used by Halton to establish the
upper bound (8.7). Although Halton’s proof is remarkably simple, no better upper bound has
ever been established. On the other hand, if one tries to use Halton’s construction without any
modification, then one obtains the estimate

/ \D[2; B(a)][2 da =y (log N)*~2,
0.1]¢

the square of what one desires, as observed by Halton and Zaremba (57). Indeed, this rather
large estimate is caused solely by the requirement that all the rectangular boxes B(a) are
anchored at the origin. Thus one may suspect that some average version of the Halton
construction may lead to a better upper bound. In 1980, Roth [37] devised a variant of his
earlier probabilistic approach, again using a translation variable. As the Halton construction
involves the use of the van der Corput sequence in coprime bases and the Chinese Remainder
Theorem, this translation variable has to be applied in an ingenious way. The translation
variable plays the role of creating some artificial orthogonality. If one takes simply the
Halton construction, then the discrepancy function D[Z?; B(a)] is a sum of roughly (log N)*~1
functions, each bounded by 1 but collectively without orthogonality or quasi-orthogonality.
The corresponding functions modified by the translation variable ¢ each remains bounded by 1
but collectively are now quasi-orthogonal as functions of the parameter ¢. Thus Roth showed
that the lower bound (8.5) was essentially best possible for every k > 2.

A variant of the second approach was introduced by Faure (40) with a different generalization
of point sets constructed from the van der Corput sequence. These do not possess the periodicity
property of the Halton construction, and Roth’s translation technique fails. However, Chen (19)
noted that the effects of the Roth translation technique could be achieved also by a system
of digit shifts, and that this could be applied to the constructions of Halton as well as the
constructions of Faure. Thus he gave an alternative proof that the lower bound (8.5) was
essentially best possible for every k > 2. This digit shift technique led to significant recent
progress which we now describe.

Schmidt (114) extended Roth’s lower bound (8.5) to the L -norm analogous to the L?-norm
(8.3) for every W > 1, and showed that for every finite set & of N points in the unit cube
0,1]",

| D[2]lw >k, (log N)E=1D/2, (8.9)

This was complemented by a result of Chen (18) who showed that for every W > 0 and every
integer N > 2, one could find sets & of N points in the unit cube [0, 1]¥ such that

IDK[2]lw <rw (log N)E=D/2, (8.10)
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For W = 1, Haldsz (55) showed that for every finite set & of N points in the unit cube [0, 1]¥,
|DL[2]||1 >, (log N)Y/2.

Clearly there is a rather large gap between this and the upper bound (8.10) when &k > 2.
Furthermore, no non-trivial lower bound is known for the L"-average for any W satisfying
0 < W < 1. Meanwhile, the lower bound (8.8) of Bilyk, Lacey and Vagharshakyan suggests the
possibility that perhaps for every finite set & of N points in the unit cube [0, 1]¥,

IDi[2)]|oe >, (log N)*/2. (8.11)

In recent quite spectacular work, Skriganov (118) had combined the digit shift technique of
Chen (19) with Khinchin’s inequality and showed that for every finite set &2 of N points in
the unit cube [0, 1]*, one could find a finite collection Ty of dyadic digit shifts, depending only
on N, k and W, and containing a shift t € Ty such that for the shifted set & @ t,

IDK[Z & t]llw >kw (log N)F1D/2,

as well as a finite collection T, of dyadic digit shifts, depending only on N and k, and containing
a shift t € T, such that for the shifted set & @ t,

ID[Z @ t]l|oc >k (log N)*/2.

On the other hand, the estimates (8.9) and (8.10) for || Dy[Z]||w, together with the estimate
(8.8) and the conjectured estimate (8.11) for || Dy[Z#]|, clearly show that the quantities
1Dk [2]|lw and || Dy[2]]| s have different orders of magnitude, leading to questions concerning
norms between these two. In very recent work, Dick, Hinrichs, Markhasin and Pillichshammer
(34) gave sharp lower and upper bounds for the BMO-norm of the discrepancy function.
They also studied the analogous questions in Besov, Sobolev and Triebel-Lizorkin spaces, and
established sharp lower and upper bounds for the discrepancy function.

Roth’s reformulation of van Aardenne-Ehrenfest’s problem to a more geometric setting
opened the subject of irregularities of distribution to many very interesting questions, by
replacing the collection of aligned rectangular boxes in the classical problem by other collections
of geometric objects. This led to a number of very interesting contributions from Schmidt (106,
107, 108, 110, 113). The ultimate challenge here is then to understand how discrepancy is
related to the geometry of these collections, leading to some of Beck’s seminal contributions.

The difficulty here is that the discrepancy function is a somewhat complicated function which
contains information about the geometry, through the characteristic function of the geometric
objects under investigation, as well as the measure, since discrepancy is the difference between
the discrete counting measure of the points of a finite set & and a continuous measure arising
from the volume. To understand this point, consider a set A of finite volume in k-dimensional
euclidean space R¥. Let & be a set of N points in the unit cube [0,1]*. Then an appropriate
discrepancy function for the set A is given by

DI A] = |2 N A| - Nuo(A),

where 19 denotes the usual volume in R” restricted to [0, 1]*. This can be written in the form

DA = [ xal¥)dZaly) - Ndu(y))
-
where Zj denotes the counting measure of the set &. Let us consider the translate A 4+ x of A,
where x € R*. Then

DAty = [

Xaix(¥)(dZo(y) — Nduo(y)) = /

XA (x = y)(dZo(y) — Ndpuo(y)),

if, for simplicity, we make the further assumption that A is symmetric across the origin. In
other words, discrepancy is a convolution of the characteristic function y 4 and the discrepancy
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measure dZy — Ndug. The characteristic function x 4 is purely geometric in nature, depending
only on the set A and not on the finite set &2 at all. On the other hand, the discrepancy
measure dZy — Ndug depends only on the finite set & and not on the set A at all. If we write
D(x) = D[Z; A+ x], then

D = x4 * (dZy — Ndpuy). (8.12)

Recall that Roth’s 1/4-theorem on integer sequences described earlier was established by an
exponential sums technique which could be viewed as a Fourier transform approach. This
observation was the catalyst that propelled Beck to arguably the most fascinating results in
irregularities of distribution. Passing over to the Fourier transform, the convolution (8.12)
becomes

D =i - (dZy — Nduo),

an ordinary product of the Fourier transforms of the geometric part and of the measure part,
permitting them to be studied separately. For lower bounds, since the finite sets & are arbitrary,
we have little useful information on the measure term, so we concentrate on the term ¥ 4 or,
more precisely, certain averages of Y 4 over sets A belonging to some collection & with respect
to some integral geometric measure. For upper bounds, we havgg,gd information on the finite

sets &2, so we have better control over the measure term (dZy — Ndpuy).

Using the Fourier transform technique, Beck was able to establish amongst others the
following two quite remarkable results.

Consider the k-dimensional unit cube [0, 1]*, for convenience treated as a torus. Let A be
a compact and convex set in [0, 1]* satisfying a further mild technical condition, and consider
all similar copies A(\,7,x) obtained from A by contraction A € [0, 1], proper orthogonal
transformation 7 € .7 and translation x € [0,1]*, where .7 denotes the group of all proper
orthogonal transformations in R*, with normalized measure dr so that the total measure is
equal to 1. Let

D[Z; A\, 7, x)] = |2 N A, 7, %) = Npo(A(A, 7,%))
denote the discrepancy of & in A(\, 7,x). Beck (8) established the lower bound

1
/ //|D[<@;A(>\,T,x)]|2d)\d7dx>>ANl_l/k. (8.13)
0,11 J 7 Jo

Furthermore, this lower bound is sharp, as shown by Beck and Chen (10). Thus the order of
the magnitude of the mean squares discrepancy is independent of the geometry of the objects
under consideration.

Next, consider the unit square [0,1]%, for convenience again treated as a torus. Let A be
a compact and convex set in [0,1]? again satisfying a further mild technical condition, and
consider all homothetic copies A(\, x) obtained from A by contraction A € [0, 1] and translation
x € [0,1]°. Let

D[Z; AN, x)] = |2 N AN, x)| = Npo(A(X, %))
denote the discrepancy of & in A(A,x). Beck (9) established the lower bound

1
/[O 1]2/0 |D[22; A(A, x)]|* dAdx >4 max{log N, ¢y (A)}, (8.14)

where £ (A) depends on the boundary curve OA of A. Roughly speaking, the function &y (A)
varies from being a constant, in the case when A is a convex polygon, to being a power of N,
in the case when A is a circular disc. In fact, it is some sort of measure of how well A can be
approximated by an inscribed polygon with not too many sides. Also, the term log NV on the



552 KLAUS FRIEDRICH ROTH

right hand side of (8.14) should be compared to the estimate (8.5) in the classical problem
with k = 2.

Roth also contributed to the subject of irregularities of point distribution by asking a
particular question which led to a number of new ideas as well as very strong and even surprising
results.

Suppose that &2 is a set of N points in Uy, the closed disc of unit area and centred at the
origin. For every real number r € R and every angle 6 satisfying 0 < 6 < 27, let S(r, ) denote
the closed half-plane

S(r,0) ={x € R*:x-e(0) >r}.
Here e(f) = (cos#,sinf) and x -y denotes the scalar product of x and y. Let
D[Z;5(r,0)] = |2 0 S(r,0)| = Nu(S(r,0) N Vo),
where p denotes the usual measure in R?, denote the discrepancy of & in S(r,0). Write

F(N)= inf sup |D[Z; S(r,0)]|.
|Z|=N 0<r<n—1/2
0<0<2m

Roth asked whether F(N) — oo as N — co. Here the supremum is taken over all disc-segments
in Up, and the infimum is taken over all sets &2 of N points in Uy.

This question was resolved by Beck (7), who proved that F(N) > N'/*(log N)~7/2 using
a very clever adaptation of the Fourier transform technique first introduced by Roth in 1964.
Alexander (3) then devised an ingenious integral geometric approach and improved this to
F(N)>» N /4 On the other hand, it can be shown, using large deviation techniques in
probability theory, that F(N) < N'/*(log N)'/2. However, closing the gap between the lower
and upper bounds proved a real challenge, and the eventual solution by Matousek (78), who
showed that F(N) < N'/* remains one of the most remarkable feats in this subject.

Beck and Alexander basically studied the L?-norm of the discrepancy function D[Z%; S(r, 6)].
Then it can be proved that for every set &2 of N points in Uy,

2w o 1/2
/ / |D[2; S(r,0)]|? dr df > N'/2. (8.15)
0 0

It can be shown, using probabilistic techniques, that this estimate is sharp. Subsequently, Beck
and Chen (11) showed that the discrepancy function D[Z?; S(r, )] possessed very surprising
behaviour, in that it could have very large absolute value occasionally but very rarely. More
precisely, they showed that for every integer N > 2, one could find sets & of N points in Uy
such that

T a2
/2 / |D[2; S(r, 0)]| dr df < (log N)”. (8.16)
0 0

Indeed, they applied a variant of Roth’s probabilistic technique which essentially randomized
the origin, with the bonus that the point sets & constructed could be explicitly given. Note
that such sets satisfy (8.15) and (8.16) simultaneously.

9. Heilbronn'’s triangle problem

One day in the 1940s, Heilbronn looked out of his window and saw a group of soldiers. They
were very dispirited and seemed not to be marching in formation. He thus set out to investigate
how badly they could possibly do.

Let

P1,P2,..., PN (91)
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be a distribution of N points in a closed disc of unit area, such that the minimum of the areas
of the triangles p;p;px, taken over 1 < ¢ < j < k < N, assumes its maximum value A = A(N).
Heilbronn conjectured that A(N) < N~2, and Erdés showed that if true, this would be best
possible.

It is almost trivial that A(N) < N~!. The first improvement to this was due to Roth [3]
who proved in 1951 that A(N) < N~ !(loglog N)~'/2. Schmidt (112), using a different method
involving weights, improved this to A(N) < N~'(log N)~'/2. Roth [29, 30], using weights in
a different way, proved in 1972, first that A(N) < N™#T¢ where pu =2 — \/m =1.105...,
and then that A(N) < N~#'*¢ where p/ = (17 — v/65)/8 = 1.117....

Let

D={x=(z,y) eR*: 2 + > <7 '}

denote the closed disc of unit area containing the points (9.1). For any pair 7 = (p;, p;) of
distinct points in (9.1), we write d(7) = |p; — p;| to denote their euclidean distance. If

ycosh —xsinf = a,

where 0 < # < 7, is the line joining these two points, let H; ,, denote the open strip

w ) w
a— — <ycost —xsinh <a+ —
2 2

of width w > 0 about this line.

If o7 is any subset of the plane, let & (x) denote the characteristic function of 7, and let
|27 | denote the number of points of (9.1) in .

The fact that no three points of the set (9.1) form a triangle of area less than A implies that
each pair 7 satisfies [H; 4a/4(r)| = 2, but with the corresponding statistical expectation

N . D(x)H; 4n /d(r)(x) dx,
roughly having the order of magnitude NA/d(T).
Here, and in the sequel, we ignore any complications that can arise in connection with pairs
7 close to the boundary of D, so that some statements may not stand up to closer scrutiny.
Suppose that NA is not too small, contrary to what we wish to prove. Then NA/d(7) is
large if d(7) is very small. Thus for suitable u and w”, Roth established a result of the following
kind.

ASSERTION A. All the strips H, .~ for which d(7) < u are very deficient of points of (9.1).

By a reasonably simple argument, Roth also established, for suitable w’, results of the
following nature.

ASSERTION B. A significant proportion of all those pairs T for which d(7) is appropriately
restricted are such that the strips H, , are not unduly deficient of points of (9.1).

He went on to show that if the restriction on d(7) in Assertion B was taken to be identical to
that in Assertion A, namely d(7) < u, then the respective premises would require that the order
of magnitude of w’ was large compared to that of w”. He subsequently devised a technique for
deducing from Assertion A, on the assumption that VA was not small, that almost all the wider
strips H; .+, with d(7) < u, were deficient of points of (9.1), thus contradicting Assertion B.

Indeed, he used weights to construct a system of quasi-orthogonal functions, and made use
of a generalization of Bessel’s inequality, due to Selberg in the course of investigating the large
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sieve and applicable to quasi-orthogonal systems, that for elements f, ™), ... () of an inner
product space over the complex numbers,

R —1
> 1w @]wr$> < |IfI%, (9.2)

with an inner product of the type

(f.9)= . f(x)g(x) dx.

Observe that for any two strips H., ., and H, .,, the integral

/ Hey oy (%) Hry 0, (%) dx,

if finite, is equal to the area of the parallelogram H., ., N Hr, w,, given by cw;ws, where the
constant ¢ = ¢(71,72) depends only on 71 and 7.
For any w' > w” > 0, write

B (30) = Tz ) Hror () (93)

w/ w/l

Then for any two pairs 7* and 7** of points of (9.1), in view of the observation above, the
integral

d)‘r*,w’,w“ (X)¢T** Jw w' (X) dx =0
R2

whenever it is finite. Note here that this orthogonality is achieved by using suitable weights on
the two functions H. . (x) and H; ., (x) in (9.3), weighted in inverse proportion to the widths
of the strips.

To use Selberg’s inequality (9.2), we must work with functions of finite norms. We may
consider functions derived from ¢, ,~(x) by replacing its value by zero outside the disc D;
in other words, functions of the form

@ wt wr (x) = D(X)¢r,w',w" (x).

Then for any two pairs 7* and 7** of points of (9.1), the integral

/ (PT*JU/_’“)// (X)(I)-,—** Jw’ w!! (X) dx =0
R2

unless the common parallelogram of the two strips H,« ,,» and H,-« ,, intersects the boundary
circle of the disc D. Thus we achieve quasi-orthogonality in some sense.
Now let

N
f(X) = ZDPi(X)7
i=1
where for every i =1,..., N, Dy, is the closed disc with centre p;, radius w” /2 and area
m\ 2
A=x(2) = Dy, (x) dx.
2 R2 ‘

We can think of f(x) as an approximation to a mass distribution of mass A at each point p;
of (9.1), obtained by spreading out this mass A over each small disc D, instead, in order to
reduce the norm. The choice of small radius w”/2 ensures that the total mass falling into a
typical strip of width w” is roughly proportional to the number of points of (9.1) in the strip.
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Ignoring the error arising from the overlap of the discs Dy, we envisage that for each pair T,
the integral

/R D () (x) dx

’UJH 2 |H‘r,’u;’| |H'r,1u”|
2 W w ’

Selberg’s inequality (9.2) is now applied in the form

Z ‘<faq)7'*>2 Z |<(I’T*7(I)T**>

T d(r*)<u T d(r*)<u

is approximately equal to

-1

<11,

where @, denotes the function @, v 7 (X).

It is quite clear from Assertion A that the manner in which the strips H, ., overlap is
relevant to the problem. Some quantitative estimates corresponding to this observation can be
formulated, on the assumption that NA is not too small. These can now be used to estimate,
for each fixed 7*, the sum

Z |<(I)T*7¢)T**> .

T d(r ) <u

Clearly, only those 7** for which orthogonality breaks down contribute to this sum. We thus
obtain a good bound for this sum of NA is not too small. On the other hand, estimating || f||>
presents no difficulties. We thus obtain a good upper bound for the sum

‘H'r.,w’| ‘H‘r,w” ?
Z < o w ) (9.4)

T:d(T)<u

a bound small compared to the expectation of roughly

N>

T:d(T)<u

2 (%)

T:d(T)<u

for the sum

Such an estimate for the sum (9.4) enables us to deduce, from the fact that |H, .~ |/w” is
always small compared to its expected value, that |H, ,/|/w’ is nearly always small compared
to its expected value, contradicting Assertion B.

Heilbronn’s conjecture was disproved by Komlds, Pintz and Szemerédi (72), who used
combinatorial methods to show that A(N)>> N~2log N. Earlier, they (71) had used a
small refinement of Roth’s method to give a better upper bound A(N) < N—#"+¢ where
W =8)7=1.142.. ..
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