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Abstract

By the use of two examples, we discuss the techniques of Fourier
analysis in the study of problems in irregularities of point distribution.
Such techniques include classical Fourier series and transforms, as well
as Fourier-Walsh analysis and wavelet analysis. We show also that often
the Fourier analysis can be combined with ideas and techniques in number
theory, geometry, probability theory, group theory, characters and duality.

1 Introduction

Suppose that P is a distribution of N points in the unit square [0, 1]2. For every
x = (x1, x2) ∈ [0, 1]2, let

Z[P;B(x)] = |P ∩B(x)|

denote the number of points of the distribution P that fall into the rectangle
B(x) = [0, x1)× [0, x2), and consider the corresponding discrepancy function

D[P;B(x)] = Z[P;B(x)]−Nx1x2.

Theorem 1.

(i) There exists a positive absolute constant c1 such that for every positive
integer N and every distribution P of N points in the unit square [0, 1]2,
we have ∫

[0,1]2
|D[P;B(x)]|2 dx > c1 logN.
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(ii) There exists a positive absolute constant C1 such that for every integer
N ≥ 2, there exists a distribution P of N points in the unit square [0, 1]2

such that ∫
[0,1]2

|D[P;B(x)]|2 dx < C1 logN.

The lower bound was established by Roth [20] in 1954, while the upper
bound was established by Davenport [12] in 1956.

Indeed, the lower bound of Theorem 1 can be extended to point distributions
in the k-dimensional unit cube for arbitrary k ≥ 2 without any extra difficulty, as
shown in Roth [20] with lower bound c1(k)(logN)k−1. However, ideas different
from those of Davenport are necessary to extend the upper bound of Theorem 1
to the k-dimensional unit cube for arbitrary k ≥ 2. Some of these ideas will be
discussed in this article.

Suppose that Q is a distribution of N points in the unit square [− 1
2 ,

1
2 ]2. For

real numbers r ≥ 0 and θ ∈ [0, 2π], let A(r, θ) denote the square [−r, r]2 rotated
anticlockwise by an angle θ. Furthermore, for every vector x ∈ R2, let

A(r, θ,x) = {x + y : y ∈ A(r, θ)}

denote the image of A(r, θ) under translation by x, let

Z[Q;A(r, θ,x)] = |Q ∩A(r, θ,x)|

denote the number of points of the distribution Q that fall into the similar
square A(r, θ,x), and consider the corresponding discrepancy function

D[Q;A(r, θ,x)] = Z[Q;A(r, θ,x)]−Nµ(A(r, θ,x) ∩ [− 1
2 ,

1
2 ]2),

where µ denotes the usual Lebesgue area measure on R2.

Theorem 2.

(i) There exists a positive absolute constant c2 such that for every positive
integer N and every distribution Q of N points in the unit square [− 1

2 ,
1
2 ]2,

we have ∫ 1/4

0

∫ 2π

0

∫
R2
|D[Q;A(r, θ,x)]|2 dxdθdr > c2N

1/2.

(ii) There exists a positive absolute constant C2 such that for every positive
integer N , there exists a distribution Q of N points in the unit square
[− 1

2 ,
1
2 ]2 such that∫ 1/4

0

∫ 2π

0

∫
R2
|D[Q;A(r, θ,x)]|2 dxdθdr < C2N

1/2.
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The lower bound was established by Beck [1] in 1987, while the corresponding
upper bound was established by Beck and Chen [2] in 1990, both as special cases
of more general results in arbitrary dimensions k ≥ 2.

The purpose of this article is to discuss the ideas behind some of the proofs of
Theorems 1 and 2, paying special attention to the Fourier techniques involved.
Such Fourier techniques include classical Fourier series and transforms, as well
as Fourier-Walsh analysis and wavelet analysis. We show also that often the
Fourier analysis can be combined with ideas and techniques in number theory,
geometry, probability theory, group theory, characters and duality.

The paper is organized as follows. In Sections 2 – 3, we shall use Fourier
transform techniques to establish Theorem 2. The basic techniques and the
lower bound will be discussed in Section 2, while the upper bound will be dis-
cussed in Section 3. In Sections 4 – 6, we study the upper bound of Theorem 1.
We briefly discuss Davenport’s ideas in Section 4, together with a different ap-
proach by Beck and Chen [3]. In Section 5, we make use of the periodicity
property of some point sets and study the same problem using classical Fourier
series. Then in Section 6, we make use of the group structure of the same point
sets and revisit the problem using Fourier-Walsh techniques. We then turn our
attention to the lower bound of Theorem 1. We briefly discuss Roth’s ideas in
Section 7, and demonstrate a wavelet approach by Pollington [18] in Section 8.

Notation. As usual, Z, N, Q and R denote respectively the set of all integers,
the set of all positive integers, the set of all rational numbers and the set of all
real numbers. For the sake of convenience, we shall use N0 to denote the set of
all non-negative integers. Suppose that x ∈ R. We denote by [x] the integer part
of x, so that [x] is equal to the unique integer n ∈ Z satisfying n ≤ x < n+1. We
denote by {x} = x− [x] the fractional part of x. Furthermore, ψ(x) denotes the
sawtooth function, defined by ψ(x) = x− [x]−1/2 when x 6∈ Z and by ψ(x) = 0
when x ∈ Z. Throughout, for any functions f and h and any non-negative
real valued function g, we use f = O(g) to denote the existence of a positive
constant c such that |f | ≤ cg, and f = h + O(g) to denote the existence of a
positive constant c such that |f −h| ≤ cg. The constant c may depend on some
parameters in the argument, but will never depend on the number of points
of the distribution under discussion. Finally, we shall also use the Vinogradov
notation f � g to represent the inequality f = O(g), and the notation f � g
to indicate that f = O(g) and g = O(f) both hold.

2 Beck’s Fourier Transform Approach

Suppose that Q is a distribution of N points in the unit square [− 1
2 ,

1
2 ]2. We

introduce two measures. The discrete measure Z0 is the counting measure of
the distribution Q, so that for every set B ⊆ R2,

Z0(B) =
∫
B

dZ0(x) =
∫
R2
χB(x) dZ0(x) = |Q ∩B|
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denotes the number of points of Q that fall into B. Here χB denotes the
characteristic function of the set B. We also let µ0 denote the Lebesgue area
measure µ in R2, restricted to the square [− 1

2 ,
1
2 ]2, so that for every measurable

set B ⊆ R2,

µ0(B) =
∫
B

dµ0(x) =
∫
R2
χB(x) dµ0(x) = µ(B ∩ [− 1

2 ,
1
2 ]2).

With these two measures, it is then appropriate to consider the discrepancy
measure D0 = Z0 − Nµ0 of the point set Q, so that for every measurable set
B ⊆ R2,

D0(B) = Z0(B)−Nµ0(B) = |Q ∩B| −Nµ(B ∩ [− 1
2 ,

1
2 ]2)

represents the discrepancy of the part of B which lies in [− 1
2 ,

1
2 ]2.

For real numbers r ≥ 0 and θ ∈ [0, 2π], let χr,θ denote the characteristic
function of the rotated square A(r, θ). Consider the function

Fr,θ = χr,θ ∗ (dZ0 −Ndµ0), (1)

where f ∗ g denotes the convolution of the functions f and g, so that for every
x ∈ R2,

Fr,θ(x) =
∫
R2
χr,θ(x− y)(dZ0(y)−Ndµ0(y)).

Note that the rotated square A(r, θ) is symmetric across the origin, and so

x− y ∈ A(r, θ) ⇔ y − x ∈ A(r, θ) ⇔ y ∈ A(r, θ,x).

It follows that ∫
R2
χr,θ(x− y)(dZ0(y)−Ndµ0(y))

= |Q ∩A(r, θ,x)| −Nµ(A(r, θ,x) ∩ [− 1
2 ,

1
2 ]2),

and therefore

Fr,θ(x) = Z0(A(r, θ,x))−Nµ0(A(r, θ,x)) = D0(A(r, θ,x)) (2)

represents the discrepancy of the part of A(r, θ,x) in the unit square [− 1
2 ,

1
2 ]2.

We now appeal to the theory of Fourier transforms. Let L1(R2) denote the
set of all measurable complex valued functions f that are absolutely integrable
over R2, with Fourier transform f̂ defined for every t ∈ R2 by

f̂(t) =
1

2π

∫
R2
f(x)e−ix·t dx.

It is well known that for any two functions f, g ∈ L1(R2), we have f ∗g ∈ L1(R2)
and the Fourier transforms f̂ and ĝ satisfy

f̂ ∗g = f̂ ĝ. (3)
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Let L2(R2) denote the set of all measurable complex valued functions f that are
square integrable over R2. Then the Parseval-Plancherel theorem states that
for every function f ∈ L1(R2)∩L2(R2), the Fourier transform f̂ ∈ L2(R2) and
satisfies ∫

R2
|f(x)|2 dx =

∫
R2
|f̂(t)|2 dt. (4)

For every t ∈ R2, we write

φ(t) =
1

2π

∫
R2

e−ix·t dD0(x) =
1

2π

∫
R2

e−ix·t(dZ0(x)−Ndµ0(x)). (5)

Then it follows from (1) and (3)–(5) that∫
R2
|Fr,θ(x)|2 dx =

∫
R2
|F̂r,θ(t)|2 dt =

∫
R2
|χ̂r,θ(t)|2|φ(t)|2 dt. (6)

Note that the measure D0 = Z0−Nµ0, and hence the function φ, is determined
by the point distribution Q and has nothing to do with the rotated squares
A(r, θ). On the other hand, the characteristic function χr,θ is determined by the
rotated square A(r, θ) and has nothing to do with the point distribution Q. In
other words, the identity (6) represents a separation of measure and geometry
as a result and at the expense of passing over to the corresponding Fourier
transforms.

In lower bound proofs, the point distributions Q are arbitrary, so we have
very little control over the measure D0 = Z0−Nµ0. However, we need only the
following estimate on the trivial error arising from the gaps between successive
integers.

Lemma 2.1. Suppose that a measurable set B ⊆ [− 1
2 ,

1
2 ]2 satisfies

0 <
δ

N
≤ µ(B) ≤ 1− δ

N

for some real number δ > 0. Then∫
R2
|Z0(B + x)−Nµ0(B + x)|2 dx ≥ δ3.

Here B+x = {x+y : y ∈ B} represents the image of the set B under translation
by the vector x.

Proof. Suppose first of all that Z0(B + x) ≥ 1. Then

Z0(B + x)−Nµ0(B + x) ≥ Z0(B + x)−Nµ(B)
≥ Z0(B + x) + δ − 1 ≥ δZ0(B + x),

so that
|Z0(B + x)−Nµ0(B + x)| ≥ δZ0(B + x).
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Note that this last inequality is trivial if Z0(B + x) = 0. It follows that on
writing p − B = {p − y : y ∈ B} and χp−B for its characteristic function, we
have ∫

R2
|Z0(B + x)−Nµ0(B + x)|2 dx ≥ δ2

∫
R2
Z2

0 (B + x) dx

≥ δ2
∫
R2
Z0(B + x) dx = δ2

∑
p∈Q

∫
R2
χp−B(x) dx

= δ2
∑
p∈Q

µ(p−B) = δ2Nµ(B) ≥ δ3

as required.

The main part of the proof is therefore to study the characteristic functions
χr,θ and their Fourier transforms χ̂r,θ. Ideally, we would like an inequality of
the type

|χ̂r,θ(t)|2

|χ̂s,θ(t)|2
� r

s
.

However, this makes use of only one rotated square A(r, θ), with no extra rota-
tion or contraction. For any parameter q > 0, we consider instead an average

ωq(t) =
1
q

∫ q

q/2

∫ π/4

−π/4
|χ̂r,θ(t)|2 dθdr. (7)

We have the following amplification result which we shall use to blow up the
trivial error obtained in Lemma 2.1.

Lemma 2.2. Suppose that 0 < p < q. Then uniformly for all t ∈ R2, we have

ωq(t)
ωp(t)

� q

p
. (8)

We shall split the proof of Lemma 2.2 into a number of steps. Throughout,
we suppose that r > 0 and −π/4 ≤ θ ≤ π/4.

First of all, it is easy to show that for every t = (t1, t2) ∈ R2, we have

χ̂r,θ(t) = χ̂r(t1 cos θ + t2 sin θ,−t1 sin θ + t2 cos θ), (9)

where χr denotes the characteristic function of the square A(r) = A(r, 0) =
[−r, r]2. Furthermore, for every u = (u1, u2) ∈ R2, we have

χ̂r(u) =
2 sin(ru1) sin(ru2)

πu1u2
. (10)

Lemma 2.2 follows easily from the result below.
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Lemma 2.3. Uniformly for all non-zero t ∈ R2, we have

ωq(t) � min
{
q4,

q

|t|3

}
. (11)

Proof. Note that in view of the integration over θ in the definition of ωq(t), it
suffices to show that uniformly for all t = (t1, t2) ∈ R2 satisfying t1 > 0 and
t2 = 0, we have

ωq(t1, 0) � min
{
q4,

q

t31

}
.

Using (9) and (10), we have

ωq(t1, 0) � 1
q

∫ q

q/2

∫ π/4

−π/4

sin2(rt1 cos θ) sin2(rt1 sin θ)
t41 cos2 θ sin2 θ

dθdr.

Since −π/4 ≤ θ ≤ π/4, we have sin θ � θ and cos θ � 1, and so

ωq(t1, 0) � 1
q

∫ q

q/2

∫ π/4

−π/4

sin2(rt1 cos θ) sin2(rt1 sin θ)
t41θ

2
dθdr.

We consider two cases. If t1 ≤ 4/πq, then for all r and θ satisfying q/2 ≤ r ≤ q
and −π/4 ≤ θ ≤ π/4, we have sin(rt1 cos θ) � qt1 and sin(rt1 sin θ) � qt1θ.
Hence

ωq(t1, 0) � 1
q

∫ q

q/2

∫ π/4

−π/4

(qt1)2(qt1θ)2

t41θ
2

dθdr � q4 � min
{
q4,

q

t31

}
.

On the other hand, if t1 > 4/πq, we then split the interval [−π/4, π/4] into
three intervals at the points θ = ±1/qt1. Clearly, we have the crude estimate∫

1/qt1≤|θ|≤π/4

sin2(rt1 cos θ) sin2(rt1 sin θ)
t41θ

2
dθ

≤
∫

1/qt1≤|θ|≤π/4

dθ
t41θ

2
=

2
t41

(
qt1 −

4
π

)
.

On the other hand, if −1/qt1 ≤ θ ≤ 1/qt1, then we have

sin(rt1 sin θ) � qt1θ and
1
q

∫ q

q/2

sin2(rt1 cos θ) dr � 1.

For the inequalities on the right hand side, the upper bound is obvious. For
the lower bound, note that as r runs through the interval [q/2, q], the quantity
rt1 cos θ runs through an interval of length

qt1 cos θ
2

>
2
π

cos
π

4
.
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It now follows that

ωq(t1, 0) �
∫ 1/qt1

−1/qt1

q2

t21
dθ +O

(
1
t41

(
qt1 −

4
π

))
� q

t31
� min

{
q4,

q

t31

}
.

This completes the proof.

We now make the choice p = 1
3N
− 1

2 and q = 1
4 . Note that for every r and θ

satisfying p/2 ≤ r ≤ p and −π/4 ≤ θ ≤ π/4, we have

1
9N
≤ µ(A(r, θ)) ≤ 4

9N
.

Using Lemma 2.1 with δ = 1
9 , we have∫

R2
|Z0(A(r, θ,x))−Nµ0(A(r, θ,x))|2 dx� 1.

It follows from (2), (6) and (7) that∫
R2
ωp(t)|φ(t)|2 dt� 1.

Using Lemma 2.2, we conclude that∫
R2
ωq(t)|φ(t)|2 dt� q

p
� N

1
2 .

Combining this with (2), (6) and (7), we conclude that∫ 1/4

1/8

∫ π/4

−π/4

∫
R2
|Z0(A(r, θ,x))−Nµ0(A(r, θ,x))|2 dxdθdr � N

1
2 .

The lower bound of Theorem 2 follows immediately.

3 Upper Bounds via Fourier Transforms

In upper bound proofs, we work with specific point distributions Q, and so have
very good control over the measure D0 = Z0 − Nµ0. Here we shall illustrate
this point by sketching a proof of the upper bound of Theorem 2 in the special
case when the number of points of the distribution is equal to an odd square
N = (2M + 1)2.

Note from (5) that

φ(t) =
1

2π

∑
q∈Q

e−iq·t −N
∫
R2

e−ix·tdµ0(x)

 .
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It is easy to see that∫
R2

e−ix·tdµ0(x) =
∫

[−1/2,1/2]2
e−ix·tdx =

sin t1
2

t1
2

sin t2
2

t2
2

.

Furthermore, if we take

Q =
{(

m1

2M + 1
,

m2

2M + 1

)
: m1,m2 ∈ {−M, . . . , 0, . . . ,M}

}
, (12)

then simple calculation gives

∑
q∈Q

e−iq·t =
sin t1

2

sin t1
2(2M+1)

sin t2
2

sin t2
2(2M+1)

.

It follows that for the point distribution Q given by (12), we have

φ(t) =
1

2π
sin t1

2

sin t1
2(2M+1)

sin t2
2

sin t2
2(2M+1)

(
1−

sin t1
2(2M+1)

t1
2(2M+1)

sin t2
2(2M+1)

t2
2(2M+1)

)
. (13)

Combining (2), (6) and (7), and in view of symmetry of the set Q, we have∫ q

q/2

∫ 2π

0

∫
R2
|Z0(A(r, θ,x))−Nµ0(A(r, θ,x))|2 dxdθdr

= 4q
∫
R2
ωq(t)|φ(t)|2 dt. (14)

Note that the major contribution to the integral on the right hand side comes
from those points in R2 close to points of the form t = 2(2M + 1)πk, where
k = (k1, k2) ∈ Z2 is non-zero. Accordingly, we partition the plane into a union

R2 =
⋃

k∈Z2

S(k),

where for every k = (k1, k2) ∈ Z2, the aligned square S(k) is centred at the
point 2(2M + 1)πk and has side length 2(2M + 1)π. Then∫

R2
ωq(t)|φ(t)|2 dt =

∑
k∈Z2

∫
S(k)

ωq(t)|φ(t)|2 dt. (15)

Next, note from Lemma 2.3 that for all q ∈ (0, 1), we have

ωq(t)� min
{

1,
1
|t|3

}
.
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Suppose that k ∈ Z2 is non-zero. Then simple calculation gives∫
S(k)

ωq(t)|φ(t)|2 dt�
∫
S(k)

1
|t|3

sin2 t1
2

sin2 t1
2(2M+1)

sin2 t2
2

sin2 t2
2(2M+1)

dt1dt2

� 1
(2M + 1)3|k|3

∫
S(k)

sin2 t1
2

sin2 t1
2(2M+1)

sin2 t2
2

sin2 t2
2(2M+1)

dt1dt2

=
1

(2M + 1)3|k|3

∫
S(0)

sin2 t1
2

sin2 t1
2(2M+1)

sin2 t2
2

sin2 t2
2(2M+1)

dt1dt2

� 2M + 1
|k|3

=
N1/2

|k|3
. (16)

On the other hand, using the identity (13), one can show that the integral∫
S(0)

ωq(t)|φ(t)|2 dt = O(1). (17)

Combining (14)–(17), we obtain∫ q

q/2

∫ 2π

0

∫
R2
|Z0(A(r, θ,x))−Nµ0(A(r, θ,x))|2 dxdθdr � qN1/2.

The upper bound of Theorem 2 follows immediately.
Note that by the separation of geometry and measure, the information con-

cerning the geometric objects, namely the squares in this case, is contained in
the Fourier transform χ̂r,θ(t) of the characteristic functions χr,θ(x), and that
Lemma 2.3 gives information about the decay of this Fourier transform in some
average sense. Indeed, one can calculate the decay of the Fourier transform of a
number of geometric objects, and use such information to obtain good bounds
for discrepancy problems. For more detailed discussion on such problems, the
reader is referred to the paper of Brandolini, Colzani and Travaglini [4], the pa-
per of Brandolini, Rigoli and Travaglini [6], as well as the paper of Brandolini,
Iosevich and Travaglini [5].

We conclude this section by discussing a probabilistic technique to provide
some comparison to our Fourier techniques, and establish stronger results than
the upper bound of Theorem 2, under the assumption that the number of points
of the distribution is equal to an odd square N = (2M + 1)2, and that the unit
square [− 1

2 ,
1
2 ]2 is treated as a torus.

Consider a random point set Q̃ as follows: First we split the unit square
into N = (2M + 1)2 small squares of area 1/N in the usual way. In each small
square we place a random point, uniformly distributed in the small square and
independently of the distribution of all the other random points in the other
small squares.

Suppose that A = A(r, θ,x) is a square in [− 1
2 ,

1
2 ]2. Let A denote the set of

all small squares that intersect the boundary ∂A of A. Then it is easy to see
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that |A| = O(M). For each square S ∈ A, let p̃S denote the random point in S,
write

ξS =
{

1 if p̃S ∈ A,
0 otherwise,

and let ηS = ξS − EξS . Then it is easy to see that |ηS | ≤ 1 and EηS = 0.
Furthermore,

D[Q̃;A] =
∑
S∈A

ηS .

We now want to estimate E(|D[Q̃;A]|W ) from above, where W is an even
positive integer. Note first that

|D[Q̃;A]|W =
∑
S1∈A

. . .
∑
SW∈A

ηS1 . . . ηSW ,

and so
E(|D[Q̃;A]|W ) =

∑
S1∈A

. . .
∑
SW∈A

E(ηS1 . . . ηSW ). (18)

The random variables ηS , where S ∈ A, are independent because the distribu-
tion of the random points are independent of each other. If one of S1, . . . , SW ,
say Si, is different from all of the others, then

E(ηS1 . . . ηSW ) = E(ηSi)E(ηS1 . . . ηSi−1ηSi+1 . . . ηSW ) = 0.

It follows that the only non-zero contribution to the sum (18) comes from those
terms where each of S1, . . . , SW appear more than once. The major contribution
comes when they occur in pairs, of which there are

OW

((
|A|
W/2

))
= OW

(
|A|W/2

)
= OW (MW/2) = OW (NW/4)

such pairs. Here the subscript W denotes that the implicit constants in the
inequalities may depend on the parameter W . Bounding each of such terms
E(ηS1 . . . ηSW ) trivially by O(1), we obtain the estimate

E(|D[Q̃;A(r, θ,x)]|W ) = OW (NW/4).

The special case W = 2 leads to the upper bound of Theorem 2 on integrating
trivially with respect to the variables r, θ and x.

4 Davenport’s Ideas

In 1956, Davenport studied the upper bound aspects of Theorem 1. To construct
a distribution of N points, consider a lattice Λ on the plane generated by the two
vectors (1, 0) and (θ,N−1), where θ is an irrational number. We are interested
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in the set P∗ which contains precisely the N points of Λ that fall into the square
[0, 1)2. It is easy to see that

P∗ = {({θn}, N−1n) : 0 ≤ n < N}.

Then it can be shown that for every x = (x1, x2) ∈ [0, 1]2, we have

D[P∗;B(x)] = Z[P∗;B(x)]−Nx1x2

=
∑

0≤n<Nx2

(ψ(θn− x1)− ψ(θn)) +O(1) (19)

for all but a finite number of values of x1 in the interval [0, 1]. One can then
show that the Fourier expansion of D[P∗;B(x)], apart from an error of the form
O(1), can be written in the form

D[P∗;B(x)] ∼
∑
m 6=0

(
1− e(−x1m)

2πim

) ∑
0≤n<Nx2

e(θnm)

 , (20)

where e(β) = e2πiβ for every β ∈ R. However, this does not allow one to
use Parseval’s theorem by integrating with respect to the variable x1 over the
interval [0, 1]. Furthermore, it is clear that the difficulty is caused by the fact
that the term ψ(θn) in (19) does not depend on the variable x1.

This Fourier approach suggests an extra lattice to enable us to replace the
term ψ(θn) in (19) by something that depends on the variable x1. Consequently,
we consider an extra lattice Λ′ on the plane generated by the two vectors (1, 0)
and (−θ,N−1). More precisely, we see that the set

P∗∗ = {({−θn}, N−1n) : 0 ≤ n < N}

is also a set of N points in the square [0, 1]2. Hence the set P = P∗ ∪ P∗∗
contains 2N points in [0, 1]2, with the convention that points are counted with
multiplicity, and

D[P;B(x)] = Z[P;B(x)]− 2Nx1x2

=
∑

0≤n<Nx2

(ψ(θn− x1)− ψ(θn+ x1)) +O(1)

for all but a finite number of values of x1 in the interval [0, 1]. Then the Fourier
expansion of D[P;B(x)], apart from an error of the form O(1), is now of the
form

D[P;B(x)] ∼
∑
m 6=0

(
e(x1m)− e(−x1m)

2πim

) ∑
0≤n<Nx2

e(θnm)

 .

We can therefore square this expression and integrate with respect to the vari-
able x1 over the interval [0, 1]. By Parseval’s theorem, we have∫ 1

0

|D[P;B(x)]|2 dx1 �
∞∑
m=1

1
m2

∣∣∣∣∣∣
∑

0≤n<Nx2

e(θnm)

∣∣∣∣∣∣
2

.
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To estimate the sum on the right hand side, we need to make some assump-
tions on the number θ. Suppose that θ has a continued fraction expansion with
bounded partial quotients. Appealing to the theory of diophantine approxima-
tion, we know that there is a constant c = c(θ), depending only on θ, such
that m‖mθ‖ > c > 0 for every natural number m ∈ N, where ‖ · ‖ denotes the
distance to the nearest integer. For such a badly approximable number θ, we
have the estimate

∞∑
m=1

1
m2

∣∣∣∣∣∣
∑

0≤n<Nx2

e(θnm)

∣∣∣∣∣∣
2

� log(2Nx2).

Using this and integrating trivially with respect to the variable x2 over the
interval [0, 1], we obtain the desired upper bound of Theorem 1.

The attempt (20) to obtain a Fourier series also suggests the possibility of
studying the problem via a Fourier series in terms of a new variable. This was
achieved by Roth [21], who introduced a probabilistic approach to the problem
in 1979. The idea is to consider a translation variable t ∈ R, and consider
translated copies

ti + Λ = {ti + v : v ∈ Λ},

where i = (1, 0), of the original lattice Λ. In other words, one studies point sets
of the form

P(t) = {({t+ θn}, N−1n) : 0 ≤ n < N}.

Then for every x = (x1, x2) ∈ [0, 1]2, we have

D[P(t);B(x)] =
∑

0≤n<Nx2

(ψ(t+ θn− x1)− ψ(t+ θn)) +O(1)

for all but a finite number of values of x1 in the interval [0, 1]. Furthermore,
the Fourier expansion of D[P(t);B(x)], apart from an error of the form O(1),
is now of the form

D[P(t);B(x)] ∼
∑
m6=0

(
1− e(−x1m)

2πim

) ∑
0≤n<Nx2

e(θnm)

 e(tm).

We can now square this expression and integrate with respect to the translation
variable t over the interval [0, 1]. By Parseval’s theorem, we have

∫ 1

0

|D[P(t);B(x)]|2 dt�
∞∑
m=1

1
m2

∣∣∣∣∣∣
∑

0≤n<Nx2

e(θnm)

∣∣∣∣∣∣
2

.

Integrating trivially with respect to the variables x1 and x2 over the interval
[0, 1], and using the earlier assumption concerning the number θ, we obtain an
existence proof of the upper bound of Theorem 1.
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An approach using the lattice Z2 in the spirit of Davenport and Roth was
made by Beck and Chen [3] in connection with their work on discrepancy rel-
ative to convex polygons. This uses a result of Davenport [13] on diophantine
approximation which shows the existence of real numbers α such that both tanα
and tan(α + π/2) are finite and badly approximable. The idea is to rotate the
lattice Z2 anticlockwise by such an angle α to obtain a rotated lattice Λα, and
then normalize Λα to obtain a square lattice N−1/2Λα = {N−1/2u : u ∈ Λα},
with an average of N points per unit area. Now let P = N−1/2Λα∩ [0, 1)2. The
study of the integral ∫

[0,1]2
|D[P;B(x)]|2 dx

is hindered by a difficulty which is similar in nature to the one that Davenport
encountered with the Fourier expansion (20). However, the Roth technique
enables one to introduce a probabilistic variable w which runs over all the values
of a fundamental region S of the normalized lattice N−1/2Λα, and consider
translated sets of the form

P(w) = (w +N−1/2Λα) ∩ [0, 1)2 = {w + u : u ∈ N−1/2Λα} ∩ [0, 1)2.

Then integrating first with respect to the variable w over the set S, and then
integrating trivially with respect to the variables x1 and x2 over the interval
[0, 1], we obtain again an existence proof of the upper bound of Theorem 1.

5 Further Use of Fourier Series

Much work in connection with the upper bound of Theorem 1 involves the van
der Corput point sets and their generalizations. Every non-negative integer n
has a unique representation of the form

n =
∞∑
i=1

ai2i−1, ai ∈ {0, 1},

noting that the series has only finitely many non-zero terms. The sequence

x(n) =
∞∑
i=1

ai2−i, n = 0, 1, 2, . . . ,

is the well known van der Corput sequence, giving rise to the van der Corput
point set

V = {(x(n), n) : n ∈ N0}.

The van der Corput sequence possesses a very nice periodicity property, un-
derpinned by the fact that for any non-negative integers s and m satisfying
0 ≤ m < 2s, the set

{n ∈ N0 : x(n) ∈ [m2−s, (m+ 1)2−s)}

14



is precisely the set of all non-negative integers in a residue class modulo 2s. This
nice periodicity property invites the use of Fourier series.

Let us truncate and normalize the van der Corput point set V to obtain the
set

P(2h) = {(x(n), 2−hn) : 0 ≤ n < 2h} (21)

of N = 2h points in the unit square [0, 1]2. Then∫
[0,1]2

|D[P(2h);B(x)]|2 dx = 2−6h2 +O(h), (22)

as shown by Halton and Zaremba [15], and so this does not give a proof of the
upper bound of Theorem 1.

This difficulty was studied in detail by Chen and Skriganov [8]. Denote by
x = (x1, x2) the top right vertex of the rectangle B(x). Suppose that x1 6= 1.
Then it can be shown that there exists a finite set I(x1) ⊆ {1, . . . , h} such that

D[P(2h);B(x)] =
∑

s∈I(x1)

(
cs − ψ

(
x2 + zs

2s−h

))
+O(1).

One therefore needs to study sums of the form∑
s′∈I(x1)

∑
s′′∈I(x1)

(
cs′ − ψ

(
x2 + zs′

2s′−h

))(
cs′′ − ψ

(
x2 + zs′′

2s′′−h

))
.

Using Fourier analysis and integrating with respect to the variable x2 over the
interval [0, 1], one can show that each of the summands above gives rise to an
integral ∫ 1

0

(
cs′ − ψ

(
x2 + zs′

2s′−h

))(
cs′′ − ψ

(
x2 + zs′′

2s′′−h

))
dx2

= cs′cs′′ +O

(
22 min{s′,s′′}

2s′+s′′

)
.

Unfortunately, the difficulty of handling the sum∑
s′∈I(x1)

∑
s′′∈I(x1)

cs′cs′′

is similar to the difficulty facing Davenport in (20).
There are a number of ways of overcoming this difficulty. In Roth [22], one

uses a translation variable t and translates the point set P(2h) vertically mod-
ulo 1 to obtain the point set P(2h; t) and a corresponding discrepancy function

D[P(2h; t);B(x)] =
∑

s∈I(x1)

(
ψ

(
zs + t

2s−h

)
− ψ

(
ws + t

2s−h

))
+O(1),
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where z2 and w2 are constants that depend on x2. Squaring and integrating
with respect to the variable t over the interval [0, 1], we now handle integrals of
the form ∫ 1

0

ψ

(
zs′ + t

2s′−h

)
ψ

(
zs′′ + t

2s′′−h

)
dt = O

(
22 min{s′,s′′}

2s′+s′′

)
.

In Chen [7], one uses digit translations to modify the point set P(2h) horizontally
to obtain the point set P(2h;χ) and a corresponding discrepancy function

D[P(2h;χ);B(x)] =
∑

s∈I(x1)

(
cs(χ) + ψ

(
x2 + zs(χ)

2s−h

))
+O(1).

Squaring and integrating with respect to the variable x2 over the interval [0, 1]
and being economical with the truth, we now essentially handle integrals of the
form ∫ 1

0

(
cs′(χ) + ψ

(
x2 + zs′(χ)

2s′−h

))(
cs′′(χ) + ψ

(
x2 + zs′′(χ)

2s′′−h

))
dx2

= cs′(χ)cs′′(χ) +O

(
22 min{s′,s′′}

2s′+s′′

)
.

Furthermore, over a large collection of digit translations χ, the sum∑
s′∈I(x1)

∑
s′′∈I(x1)

cs′(χ)cs′′(χ)

has a small average.

6 Groups and Fourier-Walsh Series

The van der Corput point sets also possess nice group structure. To see this, note
that the van der Corput point set P(2h) defined by (21) can also be represented
by

P(2h) = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1}},

where we have used digit expansion base 2 on the right hand side. Clearly P(2h)
forms a group under coordinatewise and digitwise addition modulo 2, and is
isomorphic to the direct product Zh2 . This observation immediately invites the
use of Fourier-Walsh functions and series.

Any x ∈ [0, 1) can be represented in the form

x =
∞∑
i=1

ηi(x)2−i, ηi(x) ∈ {0, 1}, (23)
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uniquely if we agree that the series above is finite whenever x is a binary rational
number. If one looks at the subset B of all binary rational numbers in [0, 1),
and defines the sum x⊕ y ∈ B of any two elements x, y ∈ B by setting

ηi(x⊕ y) = ηi(x) + ηi(y), i = 1, 2, 3, . . . ,

where addition of the digits ηi(x) and ηi(y) is performed modulo 2, then it is
easy to see that B forms an infinite abelian group. The characters of B are the
Walsh functions.

For any ` ∈ N0, the Walsh function w`(x), where

` =
∞∑
i=1

λi(`)2i−1, λi(`) ∈ {0, 1},

is defined for every real number x ∈ [0, 1) of the form (23) by

w`(x) = (−1)
∞P
i=1

λi(`)ηi(x)
.

It is well known that the collection {w` : ` ∈ N0} of Walsh functions gives rise
to an orthonormal basis of the Hilbert space L2([0, 1]), and so there is a theory
of Fourier-Walsh series. In particular, for any fixed x ∈ [0, 1), the characteristic
function χ[0,x)(y) of the interval [0, x) has Fourier-Walsh expansion

χ[0,x)(y) ∼
∞∑
`=0

χ̃`(x)w`(y), (24)

where the Fourier-Walsh coefficients are given by

χ̃`(x) =
∫ 1

0

χ[0,x)(y)w`(y) dy =
∫ x

0

w`(y) dy, ` = 0, 1, 2, . . . .

Note that χ̃0(x) = x. Furthermore, Fine [14] has shown that for every ` ∈ N,
we have

χ̃`(x) =
1
4

2−ν(`)

w`⊕2ν(`)(x)−
∞∑
j=1

2−jw`⊕2ν(`)+j (x)

 , (25)

where ν(`) ∈ N0 denotes the unique integer satisfying 2ν(`) ≤ ` < 2ν(`)+1, and
where for every `,m ∈ N0, the sum ` ⊕ m is obtained by digitwise addition
modulo 2 of the dyadic expansions of ` and m.

The Fourier-Walsh expansion of the characteristic function in turn leads to
the Fourier-Walsh expansion of the discrepancy function

D[P(2h);B(x)] =
∑

p∈P(2h)

χB(x)(p)− 2h
∫

[0,1]2
χB(x)(y) dy,
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where for every x = (x1, x2) and y = (y1, y2) in [0, 1]2,

χB(x)(y) = χ[0,x1)(y1)χ[0,x2)(y2).

To understand the estimate (22) and why we fail to establish the upper bound
of Theorem 1, we observe that the term χ̃0(x) = x in the Fourier-Walsh ex-
pansion (24) corresponding to ` = 0 is the expectation of the characteristic
function χ[0,x)(y). The remaining Fourier-Walsh coefficients, unfortunately, do
not all have zero mean over the interval [0, 1]. To see this, note simply that
when ` = 2i, where i ∈ N0, we have ` ⊕ 2ν(`) = 0. This lack of symmetry can
be overcome by averaging techniques.

The discussion in this section so far and in Section 5 can be conducted in
general in base p, where p is a fixed prime. In other words, we consider the
generalization of the classical van der Corput point sets P(2h) to sets of the
form

P(ph) = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1, . . . , p− 1}},

where we now use digit expansion base p on the right hand side. Clearly P(ph)
forms a group of ph elements under coordinatewise and digitwise addition mod-
ulo p, and is isomorphic to the direct product Zhp . This suggests the use of
Fourier-Walsh functions and series base p.

Any x ∈ [0, 1) can be represented in the form

x =
∞∑
i=1

ηi(x)p−i, ηi(x) ∈ {0, 1, . . . , p− 1}, (26)

uniquely if we agree that the series above is finite whenever x is a p-ary rational
number. If one looks at the subset Bp of all p-ary rational numbers in [0, 1),
and defines the sum x⊕ y ∈ Bp of any two elements x, y ∈ Bp by setting

ηi(x⊕ y) = ηi(x) + ηi(y), i = 1, 2, 3, . . . ,

where addition of the digits ηi(x) and ηi(y) is performed modulo p, then it is
easy to see that Bp forms an infinite abelian group. The characters of Bp are
known as the Chrestenson-Levy functions if p > 2. We shall refer to them here
as Walsh functions.

For any ` ∈ N0, the Walsh function w`(x), where

` =
∞∑
i=1

λi(`)pi−1, λi(`) ∈ {0, 1, . . . , p− 1},

is defined for every real number x ∈ [0, 1) of the form (26) by

w`(x) = ep

( ∞∑
i=1

λi(`)ηi(x)

)
,
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where ep(z) = e2πiz/p for every real number z. As in the case p = 2, the
collection {w` : ` ∈ N0} of Walsh functions gives rise to an orthonormal basis
of the Hilbert space L2([0, 1]), and so there is a theory of Fourier-Walsh series
base p. In particular, for any fixed x ∈ [0, 1), the characteristic function χ[0,x)(y)
of the interval [0, x) has Fourier-Walsh expansion

χ[0,x)(y) ∼
∞∑
`=0

χ̃`(x)w`(y),

where χ̃0(x) = x and the analogues of (25) are given by Price [19]. Using
this and the abbreviation P for the point set P(ph), one can show that the
discrepancy function

D[P;B(x)] =
∑
p∈P

χB(x)(p)− ph
∫

[0,1]2
χB(x)(y) dy

has Fourier-Walsh expansion

D[P;B(x)] ∼
∑
p∈P

∞∑
`1=0

∞∑
`2=0

(`1,`2)6=(0,0)

χ̃`1(x1)χ̃`2(x2)w`1(p1)w`2(p2),

which can be approximated by the finite series

Dh[P;B(x)] =
∑
p∈P

ph−1∑
`1=0

ph−1∑
`2=0

(`1,`2) 6=(0,0)

χ̃`1(x1)χ̃`2(x2)w`1(p1)w`2(p2)

=
ph−1∑
`1=0

ph−1∑
`2=0

(`1,`2) 6=(0,0)

∑
p∈P

w`1(p1)w`2(p2)

 χ̃`1(x1)χ̃`2(x2).

Recall that the Walsh functions are characters of the group P, so that we have
the orthogonality relationship∑

p∈P
w`1(p1)w`2(p2) =

{
ph if (`1, `2) ∈ P⊥,
0 otherwise,

where P⊥ ⊆ N2
0 is the orthogonal dual to the group P; see, for example, Lidl

and Niederreiter [16]. Hence

Dh[P;B(x)] = ph
∑

(`1,`2)∈P⊥\{(0,0)}

χ̃`1(x1)χ̃`2(x2).

One would like to square this expression and then integrate with respect to
x = (x1, x2) over the unit square [0, 1]2. Unfortunately, the Fourier-Walsh
coefficients

χ̃`1(x1)χ̃`2(x2), (`1, `2) ∈ P⊥ \ {(0, 0)}, (27)
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are not orthogonal in L2([0, 1]2) in general.
In Chen and Skriganov [9], it is shown that as long as the prime p is chosen

large enough, there exist groups P of ph elements in the square [0, 1]2, in the
spirit of van der Corput, such that the Fourier-Walsh coefficients (27) are quasi-
orthonormal in L2([0, 1]2). Indeed, they are able to establish Theorem 1(ii) for
arbitrary dimensions with explicitly constructed point sets. More recently, Chen
and Skriganov [10] have shown that in fact, as long as the prime p is chosen large
enough, there exist groups P of ph elements in the square [0, 1]2, in the spirit
of van der Corput, such that the Fourier-Walsh coefficients (27) are orthogonal
in L2([0, 1]2), so that∫

[0,1]2
|Dh[P;B(x)]|2 dx = p2h

∑
(`1,`2)∈P⊥\{(0,0)}

∫
[0,1]2

|χ̃`1(x1)χ̃`2(x2)|2 dx.

7 Roth’s Orthogonal Function Method

In this section, we sketch Roth’s proof of Theorem 1(i). Corresponding to every
distribution P of N points in the unit square [0, 1]2, Roth creates an auxiliary
function F (x) = F [P; x] such that, writing D(x) for D[P;B(x)], we have the
inequalities ∫

[0,1]2
F (x)D(x) dx� logN (28)

and ∫
[0,1]2

|F (x)|2 dx� logN. (29)

These, together with Schwarz’s inequality∣∣∣∣∣
∫

[0,1]2
F (x)D(x) dx

∣∣∣∣∣
2

≤

(∫
[0,1]2

|F (x)|2 dx

)(∫
[0,1]2

|D(x)|2 dx

)
,

give the desired inequality∫
[0,1]2

|D(x)|2 dx� logN.

In particular, the idea of Roth is to construct an auxiliary function F (x) of the
form

F (x) =
n∑
i=0

fi(x), (30)

where the non-negative integer n satisfies the condition

2n−1 < 2N ≤ 2n, (31)

and where the functions fi(x) are orthogonal to each other, in the sense that∫
[0,1]2

fi′(x)fi′′(x) dx = 0 whenever i′ 6= i′′. (32)
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For each integer i satisfying 0 ≤ i ≤ n, we partition the square [0, 1)2 into a
union of 2n rectangles with horizontal side length 2−i and vertical side length
2i−n, so that each such rectangle has area 2−n and is of the form

Bi(m1,m2) = [m12−i, (m1 + 1)2−i)× [m22i−n, (m2 + 1)2i−n), (33)

where m1,m2 ∈ Z. In the terminology of classical Walsh functions, we now
define the function fi(x) for every x = (x1, x2) ∈ Bi(m1,m2) by writing

fi(x) =
{

0 if Bi(m1,m2) ∩ P 6= ∅,
−w2i(x1)w2n−i(x2) if Bi(m1,m2) ∩ P = ∅,

so that fi(x) is either identically zero or equal to ±1 in the rectangle Bi(m1,m2).
Furthermore, if one partitions the rectangle Bi(m1,m2) into a union of four
smaller rectangles with horizontal side length 2−i−1 and vertical side length
2i−n−1, then fi(x) is constant in each such smaller rectangle. It is not difficult
to see that (32) holds for every i′, i′′ ∈ {0, 1, . . . , n}, so it follows from (30) that∫

[0,1]2
|F (x)|2 dx =

n∑
i=0

∫
[0,1]2

f2
i (x) dx ≤ n+ 1.

In view of (31), this establishes the inequality (29).
The functions fi(x) are designed to blow up the trivial error. To see this,

consider a rectangle Bi(m1,m2) of the form (33). Suppose first of all that
Bi(m1,m2) ∩ P 6= ∅. Then fi(x) = 0 for every x ∈ Bi(m1,m2), and so∫

Bi(m1,m2)

fi(x)D(x) dx = 0.

Suppose next that Bi(m1,m2) ∩ P = ∅. We shall consider the rectangle

B′i(m1,m2) = [m12−i, (m1 + 1
2 )2−i)× [m22i−n, (m2 + 1

2 )2i−n).

For every x ∈ B′i(m1,m2), consider a rectangle of horizontal side length 2−i−1

and vertical side length 2i−n−1, with bottom left vertex x. Let x∗ be the top
right vertex, and let x′ and x′′ be the other two vertices. Then it can be shown
that∫
Bi(m1,m2)

fi(x)D(x) dx = −
∫
B′i(m1,m2)

(D(x)−D(x′)−D(x′′) +D(x∗)) dx,

where D(x)−D(x′)−D(x′′)+D(x∗) represents the discrepancy of this rectangle
with bottom left vertex x. Since B ∩ P = ∅, we must have the trivial error

D(x)−D(x′)−D(x′′) +D(x∗) = −N2−n−2.

On the other hand, the rectangle B′i(m1,m2) has area 2−n−2. Hence∫
Bi(m1,m2)

fi(x)D(x) dx = N2−2n−4.
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Observe now that in view of (31), there are at least 2n −N ≥ 2n−1 rectangles
Bi(m1,m2) of the type (33) where Bi(m1,m2) ∩ P = ∅. It follows that∫

[0,1]2
fi(x)D(x) dx ≥ N2−2n−42n−1 � 1.

The inequality (28) follows immediately, in view of (30) and (31).

8 A Haar Wavelet Approach

Let ϕ(x) denote the characteristic function of the interval [0, 1), so that

ϕ(x) =
{

1 if 0 ≤ x < 1,
0 otherwise.

Let ϑ(x) = ϕ(2x)− ϕ(2x− 1) for every x ∈ R, so that

ϑ(x) =

 1 if 0 ≤ x < 1/2,
−1 if 1/2 ≤ x < 1,
0 otherwise.

For every n, k ∈ Z and x ∈ R, write

ϕn,k(x) = 2n/2ϕ(2nx− k) and ϑn,k(x) = 2n/2ϑ(2nx− k).

Note that for every n ∈ N0 and k = 0, 1, 2, . . . , 2n − 1, the function ϕ(2nx− k)
denotes the characteristic function of the interval [2−nk, 2−n(k+ 1)) ⊆ [0, 1). It
is well known that an orthonormal basis for the space L2([0, 1]) is given by the
collection of functions

ϑn,k(x), n ∈ N0 and k = 0, 1, 2, . . . , 2n − 1,

together with the function ϕ(x). This is known as the wavelet basis for L2([0, 1]);
see, for example, Daubechies [11] or Meyer[17].

Let us now extend this to two dimensions. For every n = (n1, n2) and
k = (k1, k2) in Z2 and every x = (x1, x2) in R2, write

Θn,k(x) = ϑn1,k1(x1)ϑn2,k2(x2).

Then an orthonormal basis for L2([0, 1]2) is given by the collection of functions

Θn,k(x), n ∈ N2
0, k1 = 0, 1, 2, . . . , 2n1 − 1 and k2 = 0, 1, 2, . . . , 2n2 − 1,

together with the two collections of functions{
ϕ(x1)ϑn2,k2(x2), n2 ∈ N0 and k2 = 0, 1, 2, . . . , 2n2 − 1,
ϑn1,k1(x1)ϕ(x2), n1 ∈ N0 and k1 = 0, 1, 2, . . . , 2n1 − 1,

and the function ϕ(x1)ϕ(x2). This is usually known as the rectangular wavelet
basis for L2([0, 1]2).
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We now give an alternative proof of Theorem 1(i), due to Pollington [18].
First of all, note that the discrepancy function D(x) = D[P;B(x)] can be
written in the form D(x) = Z(x)−Nx1x2, where

Z(x) =
∑
p∈P

χ[0,x1)(p1)χ[0,x2)(p2) =
∑
p∈P

χ(p1,1)(x1)χ(p2,1)(x2),

where χS(x) denotes the characteristic function of the set S. We now make use
of the rectangular wavelet basis for L2([0, 1]2). For every n = (n1, n2) ∈ N2

0 and
every k = (k1, k2), where k1 = 0, 1, 2, . . . , 2n1 − 1 and k2 = 0, 1, 2, . . . , 2n2 − 1,
consider the wavelet coefficients

an,k =
∫

[0,1]2
Nx1x2Θn,k(x) dx and bn,k =

∫
[0,1]2

Z(x)Θn,k(x) dx.

It is easy to see that

an,k = N

(∫ 1

0

x1ϑn1,k1(x1) dx1

)(∫ 1

0

x2ϑn2,k2(x2) dx2

)
.

Simple calculation gives∫ 1

0

xϑn,k(x) dx = 2n/2
∫ 2−n(k+1)

2−nk

xϑ(2nx− k) dx =
1

2n2n/2(−4)
.

It follows that writing |n| = n1 + n2, we have

an,k =
N

2|n|+42|n|/2
.

On the other hand, we have

bn,k =
∑
p∈P

(∫ 1

0

χ(p1,1)(x1)ϑn1,k1(x1) dx1

)(∫ 1

0

χ(p2,1)(x2)ϑn2,k2(x2) dx2

)

=
∑
p∈P

(∫ 1

p1

ϑn1,k1(x1) dx1

)(∫ 1

p2

ϑn2,k2(x2) dx2

)
.

Note that the only non-zero contributions to bn,k come from those p ∈ Bn,k, the
support of Θn,k. If p ∈ Bn,k, then 2−niki ≤ pi < 2−ni(ki + 1), or [2nipi] = ki,
for both i = 1, 2. Simple calculation now shows that if 2−nk ≤ p < 2−n(k + 1),
so that 2np− k = {2np}, then∫ 1

p

ϑn,k(x) dx = 2n/2
∫ 2−n(k+1)

p

ϑ(2nx− k) dx

=
2n/2

2n

∫ 1

{2np}
ϑ(y) dy = −2n/2

2n
‖2np‖,
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where for every β ∈ R, {β} and ‖β‖ denote respectively the fractional part of β
and the distance of β to the nearest integer. It follows that

bn,k =
1

2|n|/2
∑

p∈Bn,k

‖2n1p1‖‖2n2p2‖.

Combining the above, we then have the wavelet coefficients

cn,k =
∫

[0,1]2
D(x)Θn,k(x) dx

=
1

2|n|/2

 ∑
p∈Bn,k

‖2n1p1‖‖2n2p2‖ −
N

2|n|+4

 .

Note in particular that the functions Θn,k form a subcollection of the rectangular
basis for L2([0, 1]2). It follows from Parseval’s identity that∫

[0,1]2
|D(x)|2 dx

≥
∞∑

n1=0

∞∑
n2=0

1
2|n|

2n1−1∑
k1=0

2n2−1∑
k2=0

 ∑
p∈Bn,k

‖2n1p1‖‖2n2p2‖ −
N

2|n|+4

2

.

To complete the proof, we now choose n so that 2N ≤ 2n < 4N . Then for every
fixed n satisfying |n| = n, at least 2n−1 of the rectangles Bn,k do not contain
any point of P, so that ∑

p∈Bn,k

‖2n1p1‖‖2n2p2‖ = 0.

It follows that∫
[0,1]2

|D(x)|2 dx ≥
∞∑

n1=0

∞∑
n2=0

|n|=n

1
2n

2n−1

(
N

2n+4

)2

� n+ 1� logN.
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