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Abstract

By the use of two examples, we discuss the techniques of Fourier
analysis in the study of problems in irregularities of point distribution.
Such techniques include classical Fourier series and transforms, as well
as Fourier-Walsh analysis and wavelet analysis. We show also that often
the Fourier analysis can be combined with ideas and techniques in number
theory, geometry, probability theory, group theory, characters and duality.

1 Introduction

Suppose that P is a distribution of N points in the unit square [0, 1]2. For every
X = (xl,xg) S [O, 1]2, let

Z[P; B(x)] = [P N B(x)|

denote the number of points of the distribution P that fall into the rectangle
B(x) =[0,21) X [0,z2), and consider the corresponding discrepancy function

D[P;B(x)] = Z[P; B(x)] — Nzixs.
Theorem 1.

(i) There exists a positive absolute constant ¢y such that for every positive
integer N and every distribution P of N points in the unit square [0,1]2,
we have

/[ . |D[P; B(x)]|*dx > ¢; log N.
0,1



(i) There ezists a positive absolute constant Cy such that for every integer
N > 2, there exists a distribution P of N points in the unit square [0,1]?
such that

/ |D[P; B(x)]|? dx < C; log N.
[0,1]2

The lower bound was established by Roth [20] in 1954, while the upper
bound was established by Davenport [12] in 1956.

Indeed, the lower bound of Theorem 1 can be extended to point distributions
in the k-dimensional unit cube for arbitrary k£ > 2 without any extra difficulty, as
shown in Roth [20] with lower bound ¢ (k)(log N)*~1. However, ideas different
from those of Davenport are necessary to extend the upper bound of Theorem 1
to the k-dimensional unit cube for arbitrary & > 2. Some of these ideas will be
discussed in this article.

Suppose that Q is a distribution of N points in the unit square [—%, %]2 For
real numbers 7 > 0 and 6 € [0, 27], let A(r,0) denote the square [—r, r]? rotated
anticlockwise by an angle §. Furthermore, for every vector x € R2, let

A(r,0,x) ={x+y:y € A(r,0)}
denote the image of A(r,#) under translation by x, let
Z[Q; A(r, 0,x)] = |Q N A(r, 0, %)

denote the number of points of the distribution @ that fall into the similar
square A(r,0,x), and consider the corresponding discrepancy function

D[Q; A(r,0,x)] = Z]Q; A(r,0,%x)] — Nu(A(r,0,x) N [—%, %]2),
where p denotes the usual Lebesgue area measure on R2.

Theorem 2.

(i) There exists a positive absolute constant co such that for every positive
integer N and every distribution Q of N points in the unit square [—%, 1]?

—32y21 >
we have

1/4 p2m
/ / / ID[Q: A(r, 0,%)]| dxdddr > ¢, N'/2.
0 0 R?2

(i) There exists a positive absolute constant Co such that for every positive
integer N, there exists a distribution Q of N points in the unit square

[—1,3]% such that

1/4 p2rw
/ / / D[Q; A(r, 6, %) dxdfdr < CoN'/2.
0 0 R?2



The lower bound was established by Beck [1] in 1987, while the corresponding
upper bound was established by Beck and Chen [2] in 1990, both as special cases
of more general results in arbitrary dimensions k > 2.

The purpose of this article is to discuss the ideas behind some of the proofs of
Theorems 1 and 2, paying special attention to the Fourier techniques involved.
Such Fourier techniques include classical Fourier series and transforms, as well
as Fourier-Walsh analysis and wavelet analysis. We show also that often the
Fourier analysis can be combined with ideas and techniques in number theory,
geometry, probability theory, group theory, characters and duality.

The paper is organized as follows. In Sections 2 — 3, we shall use Fourier
transform techniques to establish Theorem 2. The basic techniques and the
lower bound will be discussed in Section 2, while the upper bound will be dis-
cussed in Section 3. In Sections 4 — 6, we study the upper bound of Theorem 1.
We briefly discuss Davenport’s ideas in Section 4, together with a different ap-
proach by Beck and Chen [3]. In Section 5, we make use of the periodicity
property of some point sets and study the same problem using classical Fourier
series. Then in Section 6, we make use of the group structure of the same point
sets and revisit the problem using Fourier-Walsh techniques. We then turn our
attention to the lower bound of Theorem 1. We briefly discuss Roth’s ideas in
Section 7, and demonstrate a wavelet approach by Pollington [18] in Section 8.

Notation. Asusual, Z, N, Q and R denote respectively the set of all integers,
the set of all positive integers, the set of all rational numbers and the set of all
real numbers. For the sake of convenience, we shall use N to denote the set of
all non-negative integers. Suppose that z € R. We denote by [z] the integer part
of x, so that [z] is equal to the unique integer n € Z satisfying n < x < n+1. We
denote by {z} = x — [z] the fractional part of x. Furthermore, 1(z) denotes the
sawtooth function, defined by ¢(z) = x — [¢] — 1/2 when 2 € Z and by ¢¥(z) =0
when x € Z. Throughout, for any functions f and h and any non-negative
real valued function g, we use f = O(g) to denote the existence of a positive
constant ¢ such that |f| < ¢g, and f = h + O(g) to denote the existence of a
positive constant ¢ such that |f —h| < ¢g. The constant ¢ may depend on some
parameters in the argument, but will never depend on the number of points
of the distribution under discussion. Finally, we shall also use the Vinogradov
notation f < ¢ to represent the inequality f = O(g), and the notation f =< g
to indicate that f = O(g) and g = O(f) both hold.

2 Beck’s Fourier Transform Approach

Suppose that Q is a distribution of N points in the unit square [—%, %]2 We

introduce two measures. The discrete measure Zj is the counting measure of
the distribution Q, so that for every set B C R?,

Zo(B) :/BdZQ(X) :/R2 XB(X)dZO(X) = IQﬂBl



denotes the number of points of Q that fall into B. Here xyp denotes the

characteristic function of the set B. We also let uy denote the Lebesgue area

measure ;1 in R?, restricted to the square [—3, 2], so that for every measurable

202
set B C R?,

po(B) = [ dnalo) = | n) o) = (B 01 (=447,

With these two measures, it is then appropriate to consider the discrepancy
measure Dy = Zy — Ny of the point set Q, so that for every measurable set
B C R?,

Do(B) = Zo(B) = Nuo(B) = |Q N B| = Nu(B N [~3, 5]%)

represents the discrepancy of the part of B which lies in [—3, 1]2

For real numbers r» > 0 and 6 € [0,27], let x, ¢ denote the characteristic
function of the rotated square A(r,d). Consider the function

Fro = Xro * (dZo — Ndpuo), (1)

where f % g denotes the convolution of the functions f and g, so that for every
x € R?,

Fro() = [ xnox=y)(AZ0(y) = No(y).

Note that the rotated square A(r,#) is symmetric across the origin, and so
x—y€Arfd) & y—-xcA(rfd) & yecAlrbx).

It follows that

| xalox = ¥)(aZaly) = Npo(y)
= |Q N A(Tv 07 X)| - N“(A(Tv 97 X) N [_%7 %]2)’
and therefore

F,g(x) = Zo(A(r,0,%x)) — Nuo(A(r,0,x)) = Do(A(r, 0, %)) (2)
represents the discrepancy of the part of A(r,6,x) in the unit square [f%, %}2
We now appeal to the theory of Fourier transforms. Let Li(R?) denote the
set of all measurable complex valued functions f that are absolutely integrable
over R2, with Fourier transform f defined for every t € R? by
F6) = 5 [ seax
o 2T R2 ’
It is well known that for any two functions f, g € L;(R?), we have fxg € L;(R?)
and the Fourier transforms f and g satisfy

Fxg=T3. (3)



Let Lo(R?) denote the set of all measurable complex valued functions f that are
square integrable over R2. Then the Parseval-Plancherel theorem states that
for every function f € Li(R?)N Ly(R?), the Fourier transform f € Ly(R?) and
satisfies
| rePax= [ IfoPae ()
R2 R?

For every t € R?, we write

1

T o

b(t) /R ) e >t dDy(x) = % /R ] e > (dZy(x) — Nduo(x)).  (5)

Then it follows from (1) and (3)—(5) that

<2 dx = P 2 94 _ % 2 2 4¢.
| FoelRax= [ FawmPa= [ owPe0Pa 6

Note that the measure Dy = Zy — N g, and hence the function ¢, is determined
by the point distribution @ and has nothing to do with the rotated squares
A(r,0). On the other hand, the characteristic function x,. ¢ is determined by the
rotated square A(r,#) and has nothing to do with the point distribution Q. In
other words, the identity (6) represents a separation of measure and geometry
as a result and at the expense of passing over to the corresponding Fourier
transforms.

In lower bound proofs, the point distributions Q are arbitrary, so we have
very little control over the measure Dy = Zy — N uo. However, we need only the
following estimate on the trivial error arising from the gaps between successive
integers.

Lemma 2.1. Suppose that a measurable set B C [—3, 3]* satisfies

) 1-—

— < B) <
0<N_u( ) <

for some real number § > 0. Then
/ |Zo(B + x) — Nuo(B + x)|? dx > 6°.
R2

Here B+x = {x+y : y € B} represents the image of the set B under translation
by the vector x.
Proof. Suppose first of all that Zo(B + x) > 1. Then

Zo(B+X) —N‘LL()(B‘FX) 2 Zo(B+X) — N,[L(B)
Z Zo(B—f—X)‘f'(S— 1 Z 6Z0(B+X),

so that
|Zo(B +x) — Nuo(B +x)| > 0Zo(B + x).



Note that this last inequality is trivial if Zy(B 4+ x) = 0. It follows that on
writing p — B ={p—y :y € B} and xp_p for its characteristic function, we
have

/|Zo(B+X)—Nuo(B+X)|2dXZ(52/ Z3(B +x) dx
R? R?

> (52/ Zo(B +x) dx = §2 Z / Xp-pB(x)dx
R? peo /R
=6 up—B)=6NuB) >
pEQ

as required.
O

The main part of the proof is therefore to study the characteristic functions
Xr.0 and their Fourier transforms X, . Ideally, we would like an inequality of
the type

|§(\r,9 (t)|2
|5<\s,0(t)‘2

However, this makes use of only one rotated square A(r, ), with no extra rota-
tion or contraction. For any parameter ¢ > 0, we consider instead an average

r
> -
s

1[4 /4 R )
=2 [ [ Rl avar. ™
q q/2J—m/4

We have the following amplification result which we shall use to blow up the
trivial error obtained in Lemma 2.1.

Lemma 2.2. Suppose that 0 < p < q. Then uniformly for all t € R?, we have

wp(t) p
We shall split the proof of Lemma 2.2 into a number of steps. Throughout,
we suppose that r > 0 and —7w/4 < 6 < 7/4.
First of all, it is easy to show that for every t = (¢1,t2) € R?, we have

Xr.0(t) = Xr(t1 cos 0 + tasin @, —t1 sin 6 + t2 cos 6), (9)

where X, denotes the characteristic function of the square A(r) = A(r,0) =
[—r,7]%. Furthermore, for every u = (uy,u2) € R?, we have

~ 2sin(ruq) sin(rusg)

Xr(w) = : (10)

TUL UL

Lemma 2.2 follows easily from the result below.



Lemma 2.3. Uniformly for all non-zero t € R?, we have
wg(t) =< min { ¢*, N (11)
! ]

Proof. Note that in view of the integration over ¢ in the definition of w,(t), it
suffices to show that uniformly for all t = (t1,t2) € R? satisfying ¢; > 0 and

to = 0, we have
wq(t1,0) < min {q4, t%} .
1

Using (9) and (10), we have

J(11,0) / / sin? rt14cos 6) sin”(rt; sin 0) d0dr.
a/2J—n/a t} cos? fsinZ 0

Since —7/4 < 6 < 7/4, we have sinf =< 6 and cosf =< 1, and so

(11,0) / / sin?(rt; cos 92 s;n %(rty sin6) d0dr.
a/2J—n/a t50

We consider two cases. If t; < 4/7q, then for all » and 6 satisfying ¢/2 < r < ¢
and —7/4 < 6 < 7/4, we have sin(rty cos@) < gt1 and sin(rt; sind) < gt16.

Hence
™4 (qt)2(qt10
¢(t1,0) / / q14q1)d0drﬁq = min q4,qd .
a/2J—n/4 t16? ty

On the other hand, if ¢; > 4/mq, we then split the interval [—m/4,7/4] into
three intervals at the points § = +1/gt;. Clearly, we have the crude estimate

sin?(rt; cos #) sin?(rt; sin @)
2 dé
1/qt:1<|0|<w/4 1

< / o 2 (qt 4)
- Tdp2 A 1—— -
ati<lo|<n/a 1102 ] p

On the other hand, if —1/gt; <60 < 1/qt;, then we have

1 q
sin(rt; sind) < qt10 and f/ sin?(rt; cos @) dr < 1.
a/2

For the inequalities on the right hand side, the upper bound is obvious. For
the lower bound, note that as r runs through the interval [¢/2, ¢, the quantity
rt1 cos 6 runs through an interval of length

qty cos 6 - 2 T
——— > —cos —.
2 T 4



It now follows that

1/qt1 2
q 1 4 q . 4
w t1,0)x/ d9+0((qt1—>)xxmm{q,
q( —1/qty t% til ™ t?

This completes the proof.

b

She

O

We now make the choice p = %N*% and ¢ = i. Note that for every r and 6
satisfying p/2 <r < p and —7/4 < 6 < 7/4, we have

LN < W(A(r,0)) < 5

Nej
>~

Using Lemma 2.1 with § = é, we have
/ | Zo(A(r,0,%x)) — Nuo(A(r,0,%x))[* dx > 1.
R?2
It follows from (2), (6) and (7) that

[ n@lowPacs 1
R2

Using Lemma 2.2, we conclude that
/ w®)o®)?dt > L > Nt
R2 p

Combining this with (2), (6) and (7), we conclude that

1/4 pm/4
/ | Zo(A(r,0,%)) — Nuo(A(r,0,x))|* dxdfdr > Nz,
1/8 J—n/4 JR2

The lower bound of Theorem 2 follows immediately.

3 Upper Bounds via Fourier Transforms

In upper bound proofs, we work with specific point distributions Q, and so have
very good control over the measure Dy = Zy — Npg. Here we shall illustrate
this point by sketching a proof of the upper bound of Theorem 2 in the special
case when the number of points of the distribution is equal to an odd square
N = (2M +1)2

Note from (5) that



It is easy to see that

v b1 t2

. . Sin S11 5

—ix-t _ —ixt gy _ 2 2

/ e ™ dpug(x) —/ e M hdx = — T
R2 [(—1/2,1/2)? 2 2

Furthermore, if we take

miq mo
= : -M, ... e, M 12
Q {(2M+172M+1> mlamQE{ ) a07 ) }}a ( )

then simple calculation gives

in L in L2
Z oiat __ Sg sin &2
- . 1 A s

=) SIN ooy S 3EM D

It follows that for the point distribution Q given by (12), we have

1 sinZ sin 22 sin st S0 st
o) =5 —— —, 1— - - . (13)
TSI oenry S gparT) 2CMT1) 2CM+1)

Combining (2), (6) and (7), and in view of symmetry of the set Q, we have

q 27
) AP
/q/z/o /R |Z0(A(r, 8,%)) — Npuo(A(r, 8,%))[* dxdfd
—4q [ w0l at "

Note that the major contribution to the integral on the right hand side comes
from those points in R? close to points of the form t = 2(2M + 1)7k, where
k = (k1,k2) € Z? is non-zero. Accordingly, we partition the plane into a union

R’= | J S(),

keZz?

where for every k = (k1,ko) € Z?2, the aligned square S(k) is centred at the
point 2(2M + 1)wk and has side length 2(2M + 1)7w. Then

Joen®loPa= 3 [ wwipwl (15)

keZ?

Next, note from Lemma 2.3 that for all ¢ € (0, 1), we have

) 1
wq(t) < min {1, |t3} .



Suppose that k € Z? is non-zero. Then simple calculation gives

1 sin® & sin? &2

%wwwﬁh</ LI S L ST
/S(k) S(k) [t]% sin? 2(2176/}+1) sin” 2(2Jtvﬁ+1)

< 1 / sin? % sin? %2 gt dt
: : 1dt2
(2M +1)3|k[3 J5qc) sin® 2(2]6}“) sin? 5 L2

1 sin? & sin? &2
- 30113 -2 t2 -2 t2 dt,dty
(2M +1)%[K[* Js(o) sin SIIVESY)

2M +1 N2
IR R

< (16)

On the other hand, using the identity (13), one can show that the integral
| w®lomP ae=oq). (17)
5(0)

Combining (14)—(17), we obtain

q 2
/ / / | Zo(A(r,0,%)) — Npuo(A(r,0,x))|? dxdodr < gN*'/2.
q/2J0 R2

The upper bound of Theorem 2 follows immediately.

Note that by the separation of geometry and measure, the information con-
cerning the geometric objects, namely the squares in this case, is contained in
the Fourier transform X, ¢(t) of the characteristic functions x,¢(x), and that
Lemma 2.3 gives information about the decay of this Fourier transform in some
average sense. Indeed, one can calculate the decay of the Fourier transform of a
number of geometric objects, and use such information to obtain good bounds
for discrepancy problems. For more detailed discussion on such problems, the
reader is referred to the paper of Brandolini, Colzani and Travaglini [4], the pa-
per of Brandolini, Rigoli and Travaglini [6], as well as the paper of Brandolini,
Tosevich and Travaglini [5].

We conclude this section by discussing a probabilistic technique to provide
some comparison to our Fourier techniques, and establish stronger results than
the upper bound of Theorem 2, under the assumption that the number of points
of the distribution is equal to an odd square N = (2M + 1)2, and that the unit
square [—3, £]% is treated as a torus.

Consider a random point set Q as follows: First we split the unit square
into N = (2M + 1)? small squares of area 1/N in the usual way. In each small
square we place a random point, uniformly distributed in the small square and
independently of the distribution of all the other random points in the other
small squares.

Suppose that A = A(r,0,x) is a square in [—3, 2]2. Let A denote the set of
all small squares that intersect the boundary 0A of A. Then it is easy to see

10



that | A| = O(M). For each square S € A, let pg denote the random point in S,

write
€ = 1 if pg € A,
ST 1 0 otherwise,

and let ng = £¢ — E€s. Then it is easy to see that |ns| < 1 and Ens = 0.
Furthermore,

DIQ; Al = ns.

SeA

We now want to estimate E(|D[Q; A]|") from above, where W is an even
positive integer. Note first that

IDIGAIY = > 0> ns, s

Si1eA SweA

and so

E(DIQAI™) = > ... > E(nsy---nsw)- (18)

S1eA SweA

The random variables ng, where S € A, are independent because the distribu-
tion of the random points are independent of each other. If one of S4,...,Sw,
say 9;, is different from all of the others, then

E(Usl oo WSW) = E(USi)E(nsl <o M8 MSipr - - nsw) = 0.

It follows that the only non-zero contribution to the sum (18) comes from those
terms where each of Sy, ..., Sy appear more than once. The major contribution
comes when they occur in pairs, of which there are

N e —

such pairs. Here the subscript W denotes that the implicit constants in the
inequalities may depend on the parameter W. Bounding each of such terms
E(ns, - ..7nsy, ) trivially by O(1), we obtain the estimate

E(IDIQ; A(r 0.3)]|") = Ow (N'/1),
The special case W = 2 leads to the upper bound of Theorem 2 on integrating
trivially with respect to the variables r, 6 and x.
4 Davenport’s Ideas

In 1956, Davenport studied the upper bound aspects of Theorem 1. To construct
a distribution of N points, consider a lattice A on the plane generated by the two
vectors (1,0) and (f, N~!), where @ is an irrational number. We are interested

11



in the set P* which contains precisely the IV points of A that fall into the square
[0,1)2. Tt is easy to see that

P*={({fn},N"'n): 0<n < N}.
Then it can be shown that for every x = (z1,22) € [0,1]2, we have
D[P*; B(x)] = Z[P*; B(x)] — Nx1x2
= Y (@(On—a1)—¢(On) +O(1) (19)

0§7L<N$2

for all but a finite number of values of z; in the interval [0,1]. One can then
show that the Fourier expansion of D[P*; B(x)], apart from an error of the form
O(1), can be written in the form

D[P*;B(x)]wZ(l_e(_xlm)) 3 e(onm) |, (20)

2mim
m#0 0<n<Nzx2

where e(3) = e*™# for every 3 € R. However, this does not allow one to
use Parseval’s theorem by integrating with respect to the variable x; over the
interval [0, 1]. Furthermore, it is clear that the difficulty is caused by the fact
that the term ¥ (6n) in (19) does not depend on the variable ;.

This Fourier approach suggests an extra lattice to enable us to replace the
term ¢ (6n) in (19) by something that depends on the variable ;. Consequently,
we consider an extra lattice A’ on the plane generated by the two vectors (1,0)
and (—6, N~1). More precisely, we see that the set

P* ={({-6n},N"'n): 0 <n < N}

is also a set of N points in the square [0,1]%. Hence the set P = P* U P**
contains 2N points in [0, 1]?, with the convention that points are counted with
multiplicity, and

D[P;B(x)] = Z[P; B(x)] — 2Nz1x2
= Y (@On—a1) —(On+x1)) +O(1)
0<n< Nz

for all but a finite number of values of z; in the interval [0, 1]. Then the Fourier
expansion of D[P; B(x)|, apart from an error of the form O(1), is now of the
form

Dip: o) ~ 3 (L) (5 gy

2mim
m#Q 0<n<Nz2

We can therefore square this expression and integrate with respect to the vari-
able x1 over the interval [0,1]. By Parseval’s theorem, we have

2

/0 |DIP; B(x)]|* dzy < Z % Z e(fnm)

0<n<Nza

12



To estimate the sum on the right hand side, we need to make some assump-
tions on the number #. Suppose that 6 has a continued fraction expansion with
bounded partial quotients. Appealing to the theory of diophantine approxima-
tion, we know that there is a constant ¢ = ¢(), depending only on 6, such
that m|/m@|| > ¢ > 0 for every natural number m € N, where || - || denotes the
distance to the nearest integer. For such a badly approximable number 6, we
have the estimate

2

— 1
ZW Z e(nm)| < log(2Nx2).
m=1 0<n<Nzx2

Using this and integrating trivially with respect to the variable xo over the
interval [0, 1], we obtain the desired upper bound of Theorem 1.

The attempt (20) to obtain a Fourier series also suggests the possibility of
studying the problem via a Fourier series in terms of a new variable. This was
achieved by Roth [21], who introduced a probabilistic approach to the problem
in 1979. The idea is to consider a translation variable ¢ € R, and consider
translated copies

ti+A={ti+v:veA}

where i = (1,0), of the original lattice A. In other words, one studies point sets
of the form
P(t) = {({t+6n}, N"'n) : 0 < n < N}.

Then for every x = (21, 22) € [0,1]%, we have

DIP(t);B(x)] = Y ((t+6n—a1) = (i +6n))+O(1)

0<n<Nzx2

for all but a finite number of values of x; in the interval [0,1]. Furthermore,
the Fourier expansion of D[P(t); B(x)], apart from an error of the form O(1),
is now of the form

D[P(t); B(x)] ~ Z (1_6(%) Z e(Onm) | e(tm).

2mim
m#0 0<n<Nz2

We can now square this expression and integrate with respect to the translation
variable ¢ over the interval [0, 1]. By Parseval’s theorem, we have

2

/O|D[73(t);B(x)}|2dt<<Z% > e(tnm)

0<n<Nza

Integrating trivially with respect to the variables x; and xzo over the interval
[0, 1], and using the earlier assumption concerning the number 6, we obtain an
existence proof of the upper bound of Theorem 1.

13



An approach using the lattice Z? in the spirit of Davenport and Roth was
made by Beck and Chen [3] in connection with their work on discrepancy rel-
ative to convex polygons. This uses a result of Davenport [13] on diophantine
approximation which shows the existence of real numbers « such that both tan «
and tan(« + 7/2) are finite and badly approximable. The idea is to rotate the
lattice Z? anticlockwise by such an angle o to obtain a rotated lattice A, and
then normalize A, to obtain a square lattice N~1/2A, = {N‘1/2u cu € Ayt
with an average of N points per unit area. Now let P = N~/2A,N[0,1)2. The
study of the integral

|DIP; B(x)]|* dx
[0,1]
is hindered by a difficulty which is similar in nature to the one that Davenport
encountered with the Fourier expansion (20). However, the Roth technique
enables one to introduce a probabilistic variable w which runs over all the values
of a fundamental region S of the normalized lattice N~'/2A,, and consider
translated sets of the form

Pw)=(w+N"12A)N[0,1)2={w+u:ue N 2A,} n[0,1).

Then integrating first with respect to the variable w over the set S, and then
integrating trivially with respect to the variables x; and x9 over the interval
[0, 1], we obtain again an existence proof of the upper bound of Theorem 1.

5 Further Use of Fourier Series

Much work in connection with the upper bound of Theorem 1 involves the van
der Corput point sets and their generalizations. Every non-negative integer n
has a unique representation of the form

oo
n= Zaﬂi*l, a; € {0,1},
i=1
noting that the series has only finitely many non-zero terms. The sequence
o
x(n) = Zaﬂ_’, n=0,1,2,...,
i=1

is the well known van der Corput sequence, giving rise to the van der Corput
point set
V ={(z(n),n) :n € Ng}.

The van der Corput sequence possesses a very nice periodicity property, un-
derpinned by the fact that for any non-negative integers s and m satisfying
0 < m < 2%, the set

{n € Ng:z(n) € [m27% (m+1)27°)}
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is precisely the set of all non-negative integers in a residue class modulo 2°. This
nice periodicity property invites the use of Fourier series.
Let us truncate and normalize the van der Corput point set )V to obtain the
set
P2") = {(z(n),27"n): 0 < n < 2"} (21)

of N = 2" points in the unit square [0, 1]2. Then
/ |D[P(2"); B(x)]|> dx = 27°h? + O(h), (22)
(0,1]2

as shown by Halton and Zaremba [15], and so this does not give a proof of the
upper bound of Theorem 1.

This difficulty was studied in detail by Chen and Skriganov [8]. Denote by
x = (x1,22) the top right vertex of the rectangle B(x). Suppose that z; # 1.
Then it can be shown that there exists a finite set Z(z1) C {1,...,h} such that

DP@B]= 3 (e v (Z52) ) + o

SEL(z1

One therefore needs to study sums of the form

P T (o () (55)

s'€Z(x1) s €L (x1)

Using Fourier analysis and integrating with respect to the variable x5 over the
interval [0, 1], one can show that each of the summands above gives rise to an

integral

1

X9 + Zg! T2 —|— Zglt
S/ - ’ 8” - f d
o e (55) ) (o0 (555 )
22 min{s’,s"’}

— Cg/Cg’ + O <2S’+S” .

Unfortunately, the difficulty of handling the sum

§ E Cg/ Cgtt

s'€Z(x1) 8" €L (1)

is similar to the difficulty facing Davenport in (20).

There are a number of ways of overcoming this difficulty. In Roth [22], one
uses a translation variable ¢ and translates the point set P(2") vertically mod-
ulo 1 to obtain the point set P(2";¢) and a corresponding discrepancy function

pipetssel = Y (v (55 ) v () +ow.

SEL(x1)
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where zo and ws are constants that depend on z5. Squaring and integrating
with respect to the variable ¢ over the interval [0, 1], we now handle integrals of

the form
1 2min{s’,s""}
zgr +1 Zsr + 1 2
[o () (55 -0 ()

In Chen [7], one uses digit translations to modify the point set 7P(2") horizontally
to obtain the point set P(2";x) and a corresponding discrepancy function

DIPE ;B = 3 (cst0+v (23509)) +oq)

s€Z(x1

Squaring and integrating with respect to the variable x5 over the interval [0, 1]
and being economical with the truth, we now essentially handle integrals of the

form

1

T2 + 25 (X) T2 + 257 (X)
/ (Cs’ (x)+¢ (25/,})> (Cs”(X> +¢ (25”’1 dxo
0
922 min{s’,s”}

= co(X)esr (x) + O T oos'+s” |

Furthermore, over a large collection of digit translations y, the sum
> 2 e
s'€Z(x1) 8" €L (x1)

has a small average.

6 Groups and Fourier-Walsh Series

The van der Corput point sets also possess nice group structure. To see this, note
that the van der Corput point set P(2") defined by (21) can also be represented
by
P2") = {(0.a1...an,0.ap ...a1) : a1, ...,a € {0,1}},
where we have used digit expansion base 2 on the right hand side. Clearly P(2")
forms a group under coordinatewise and digitwise addition modulo 2, and is
isomorphic to the direct product Z%. This observation immediately invites the
use of Fourier-Walsh functions and series.
Any z € [0,1) can be represented in the form

r = Zni(x)Q_ia ﬁi(ﬂﬁ) € {07 1}? (23)
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uniquely if we agree that the series above is finite whenever z is a binary rational
number. If one looks at the subset B of all binary rational numbers in [0, 1),
and defines the sum = @ y € B of any two elements x,y € B by setting

nl(‘%’@y):nl(‘r)+nl<y)7 i:1’273)"'7

where addition of the digits 7;(z) and 7;(y) is performed modulo 2, then it is
easy to see that B forms an infinite abelian group. The characters of B are the
Walsh functions.

For any ¢ € Ny, the Walsh function wy(z), where

(= i (027 N(0) € {0,1},

is defined for every real number z € [0, 1) of the form (23) by

§ X (D)mi(z)

Tt is well known that the collection {wy : £ € No} of Walsh functions gives rise
to an orthonormal basis of the Hilbert space L?([0,1]), and so there is a theory
of Fourier-Walsh series. In particular, for any fixed = € [0,1), the characteristic
function xjo,)(y) of the interval [0, ) has Fourier-Walsh expansion

oo

X[O,x)(y) ~ Zyi(x)wl(y)v (24)

£=0

where the Fourier-Walsh coefficients are given by

1 xT
Rel) = / X0 (9)we(y) dy = / wily)dy, €=0,1,2,....
0

0

Note that Xo(z) = . Furthermore, Fine [14] has shown that for every ¢ € N,
we have

o

~ 1__, _;
Xe(z) = 12 ® Wygovo) (T) — Z 27 wygavr+s () | (25)
j=1

where v(¢) € Nj denotes the unique integer satisfying 2¥() < ¢ < 2¥(O+1 and
where for every ¢,m € Ny, the sum ¢ & m is obtained by digitwise addition
modulo 2 of the dyadic expansions of £ and m.

The Fourier-Walsh expansion of the characteristic function in turn leads to
the Fourier-Walsh expansion of the discrepancy function

D[P2");B(x)] = Y. x5e[®) - 2h/ XB(x) (¥) dy,

peP(2") (0,12
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where for every x = (z1,72) and y = (y1,%2) in [0,1]2,

XB(x) (y)= X[O,xl)(yl)X[O,xz)(y2)'

To understand the estimate (22) and why we fail to establish the upper bound
of Theorem 1, we observe that the term Xo(r) = x in the Fourier-Walsh ex-
pansion (24) corresponding to ¢ = 0 is the expectation of the characteristic
function xo,)(y). The remaining Fourier-Walsh coefficients, unfortunately, do
not all have zero mean over the interval [0,1]. To see this, note simply that
when ¢ = 2¢, where i € Ny, we have ¢ @ 2*() = 0. This lack of symmetry can
be overcome by averaging techniques.

The discussion in this section so far and in Section 5 can be conducted in
general in base p, where p is a fixed prime. In other words, we consider the
generalization of the classical van der Corput point sets P(2") to sets of the
form

P") ={(0.a1...an,0.a,...a1) : a1,...,an € {0,1,...,p—1}},

where we now use digit expansion base p on the right hand side. Clearly P(p")
forms a group of p* elements under coordinatewise and digitwise addition mod-
ulo p, and is isomorphic to the direct product Z’;. This suggests the use of
Fourier-Walsh functions and series base p.

Any x € [0,1) can be represented in the form

mzzni(x)piia 771(5”) € {Oal’“'ap*l}v (26)

uniquely if we agree that the series above is finite whenever x is a p-ary rational
number. If one looks at the subset B, of all p-ary rational numbers in [0, 1),
and defines the sum x @ y € B, of any two elements x,y € B, by setting

where addition of the digits 7;(z) and 7;(y) is performed modulo p, then it is
easy to see that B, forms an infinite abelian group. The characters of B, are
known as the Chrestenson-Levy functions if p > 2. We shall refer to them here
as Walsh functions.

For any ¢ € Ny, the Walsh function w¢(x), where

C=Y"NOpTh N0 €{0,1,...,p—1},
i=1

is defined for every real number 2 € [0, 1) of the form (26) by

we(w) = e (Z Az‘(@ﬁi@")) )

1=1
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where e,(z) = e*™#/P for every real number z. As in the case p = 2, the
collection {wy : £ € Ny} of Walsh functions gives rise to an orthonormal basis
of the Hilbert space L%([0,1]), and so there is a theory of Fourier-Walsh series
base p. In particular, for any fixed 2 € [0, 1), the characteristic function (o »)(y)
of the interval [0, z) has Fourier-Walsh expansion

Xio.0) () ~ Y Xe(@)we(y),
=0

where Yo(z) = = and the analogues of (25) are given by Price [19]. Using
this and the abbreviation P for the point set P(p”), one can show that the
discrepancy function

DIP:BG0) = 3 Xo®) 2" [ i )y

pEP [0,

has Fourier-Walsh expansion

D[P7B(X)] ~ Z Z Z 5251 (1'1)5542(1‘2)71]@1 (p1)wz2(p2),

pG’P 51:0 52:0
(€1,£2)#(0,0)

which can be approximated by the finite series

ph—1ph—1
Z Z Z 5&1(‘%1)5&2(1‘2)“&1(pl)wfz(pQ)
PEP £1=0 -0
(£1,£2)#(0,0)
p"—1p"—1
Z Z wal(pl)wfz(pQ) %fl(xl)ifz(a’é)'

51:0 62:0 pGP
(£1,£2)#(0,0)

Dy[P; B(x)]

Recall that the Walsh functions are characters of the group P, so that we have
the orthogonality relationship

A (0, 0) € PL,
> un(unm) = { 5 B0

otherwise,
pPeEP

where P+ C N2 is the orthogonal dual to the group P; see, for example, Lidl
and Niederreiter [16]. Hence

D}L[P’B(X)] ph Z %[1 (1‘1)%(2(3:2)'
(€1,2)€PL\{(0,0)}

One would like to square this expression and then integrate with respect to
x = (r1,22) over the unit square [0,1]2. Unfortunately, the Fourier-Walsh
coefficients

Xe (21)Xe (w2), (01, €2) € PH\{(0,0)}, (27)
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are not orthogonal in L2(]0,1]?) in general.

In Chen and Skriganov [9], it is shown that as long as the prime p is chosen
large enough, there exist groups P of p” elements in the square [0, 1], in the
spirit of van der Corput, such that the Fourier-Walsh coefficients (27) are quasi-
orthonormal in L*([0,1]?). Indeed, they are able to establish Theorem 1(ii) for
arbitrary dimensions with explicitly constructed point sets. More recently, Chen
and Skriganov [10] have shown that in fact, as long as the prime p is chosen large
enough, there exist groups P of p” elements in the square [0,1]2, in the spirit
of van der Corput, such that the Fourier-Walsh coefficients (27) are orthogonal
in L%([0,1]?), so that

/[O e |Dh[P7B(X)]|2 dX:p2h Z \/[0 » ‘iﬁl(xl)%@(mQ)‘Q dx.
’ 3710

(41,£2)eP+\{(0,0

7 Roth’s Orthogonal Function Method

In this section, we sketch Roth’s proof of Theorem 1(i). Corresponding to every
distribution P of N points in the unit square [0, 1]?, Roth creates an auxiliary
function F(x) = F[P;x] such that, writing D(x) for D[P; B(x)], we have the
inequalities

/ F(x)D(x) dx > log N (28)
[0.1)2

and
/ |F(x)|? dx < log N. (29)
[0,1]2

These, together with Schwarz’s inequality

2 2
< ( JLC] dx) ( I dx>7

/ ID(x)[2 dx > log .
0.11°

F(x)D(x)dx

[0,1]?

give the desired inequality

In particular, the idea of Roth is to construct an auxiliary function F(x) of the
form

F(x) = filx), (30)
i=0
where the non-negative integer n satisfies the condition
2"l < 2N <27, (31)

and where the functions f;(x) are orthogonal to each other, in the sense that

/[ . fir(x)fir(x)dx =0 whenever ¢’ #i". (32)
0,1
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For each integer i satisfying 0 < i < n, we partition the square [0,1)? into a
union of 2™ rectangles with horizontal side length 27 and vertical side length
2'7"_ so that each such rectangle has area 27" and is of the form

Bi(myi,ma) = [m127% (mq +1)27%) x [me2™", (mg +1)2077),  (33)

where my,mo € Z. In the terminology of classical Walsh functions, we now
define the function f;(x) for every x = (x1,22) € B;(m1, ma) by writing

] o 0 1fBZ(m1,m2)ﬂP7§@,
Fi) = e (1) wgn—i(s)  if Bi(my,ma) P = 0,

so that f;(x) is either identically zero or equal to £1 in the rectangle B;(m1, ms).
Furthermore, if one partitions the rectangle B;(mi,msg) into a union of four
smaller rectangles with horizontal side length 27~ and vertical side length
2i=7=1 then f;(x) is constant in each such smaller rectangle. It is not difficult
to see that (32) holds for every ’,i” € {0,1,...,n}, so it follows from (30) that

/ |F(X)\2dx:2/ fA(x)dx <n+1.
[0,1)2 /0,12

In view of (31), this establishes the inequality (29).

The functions f;(x) are designed to blow up the trivial error. To see this,
consider a rectangle B;(mi,m2) of the form (33). Suppose first of all that
B;(m1,m2) NP # 0. Then f;(x) =0 for every x € B;(m1,ms), and so

/ fi(x)D(x)dx = 0.
Bi(mi,m2)
Suppose next that B;(my, me) NP = 0. We shall consider the rectangle

Bi(mi,mz) = [mi27", (mq + 3)27°) x [me27", (ma + 3)2'7").

For every x € Bl(m1,ms), consider a rectangle of horizontal side length 271
and vertical side length 2¢="~! with bottom left vertex x. Let x* be the top
right vertex, and let x’ and x” be the other two vertices. Then it can be shown
that

/ fi(x)D(x)dx = 7/ (D(x) — D(x") — D(x") + D(x")) dx,
B;(m1,m2) B} (m1,mz2)

where D(x)—D(x")— D(x")+ D(x*) represents the discrepancy of this rectangle
with bottom left vertex x. Since BN P = (), we must have the trivial error

D(x) — D(x') — D(x") + D(x*) = —N27 "2

On the other hand, the rectangle B!(my,ms) has area 27"~2. Hence

/ fi(x)D(x) dx = N272"~4,
Bi(m1,mz2)
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Observe now that in view of (31), there are at least 2" — N > 2"~ ! rectangles
B;(mq,mg) of the type (33) where B;(my,m2) NP = . It follows that

| neDEaxz N2 s
[0,1]2

The inequality (28) follows immediately, in view of (30) and (31).

8 A Haar Wavelet Approach

Let ¢(x) denote the characteristic function of the interval [0, 1), so that

@] 1 ifose<,
P9 0 otherwise.

Let 9(x) = ¢(22) — ¢(2x — 1) for every x € R, so that

1 if0<z<1/2
) = -1 if1/2<z<1,
0 otherwise.

For every n,k € Z and x € R, write
Oni(@) =2"20(2"c — k) and 0, x(x) = 27292 — k).

Note that for every n € Ny and k= 0,1,2,...,2" — 1, the function p(2"x — k)
denotes the characteristic function of the interval [27"k,27™(k+1)) C [0,1). Tt
is well known that an orthonormal basis for the space L2([0,1]) is given by the
collection of functions

Upi(z), meNgand k=0,1,2,...,2" —1,

together with the function ¢(z). This is known as the wavelet basis for L%([0, 1]);
see, for example, Daubechies [11] or Meyer[17].

Let us now extend this to two dimensions. For every n = (nq,n2) and
k = (k1, ko) in Z2 and every x = (z1,22) in R2, write

Onx(X) = Oy iy (1), 1, (22).
Then an orthonormal basis for L?([0,1]2) is given by the collection of functions
Onk(x), MENZ k1 =0,1,2,...,2" —land ky =0,1,2,...,2"2 — 1,
together with the two collections of functions

©(21)0ng ky (2), m2 € Ng and ke =0,1,2,...,2" — 1,
Dy ky (X1)0(x2), n1 € Ng and k; =0,1,2 ,2m 1,

PRI

and the function ¢(z1)¢(x2). This is usually known as the rectangular wavelet
basis for L?([0,1]?).
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We now give an alternative proof of Theorem 1(i), due to Pollington [18].
First of all, note that the discrepancy function D(x) = D[P; B(x)] can be
written in the form D(x) = Z(x) — Nx1x2, where

Z(X) = Z X[O,xl)(pl)X[O,xg)(pQ) = Z X(pl,l)(xl)X(pg,l)(xZ)v
pPEP pPEP

where xg(z) denotes the characteristic function of the set S. We now make use
of the rectangular wavelet basis for L2([0,1]?). For every n = (ny,ns) € N2 and
every k = (k1, k2), where k; = 0,1,2,...,2" — 1 and ko = 0,1,2,...,2"2 — 1,
consider the wavelet coeflicients

(nx = Nz122Onk(x)dx and bpx = / Z(x)On k(x) dx.
[0.1]2 [0,1]2

It is easy to see that

1 1
anx =N (/ 2190, 1y (21) d:cl) (/ ZoUn, k, (T2) d172> .
0 0

Simple calculation gives

1 P 27" (k+1) 1
20, 1 (2)de =27 / 292" — k)dr = ———————.
| st py PR = Ry

It follows that writing |n| = ny + ny, we have

B N
Ink = SnTagml/2”

On the other hand, we have

1 1
bak = (/0 X(pl,l)(wl)i‘}nl,kl(wl)dwl) (/0 X(p2,1)($2)19n2,k2($2)dmz)

pEP
1 1
= Z ( anl,kl (:cl)dm1> ( 19n2)k2(l‘2) d.’L‘g) .
pEP p1 P2

Note that the only non-zero contributions to by x come from those p € By k, the
support of ©n k. If p € By, then 27" k; < p; < 27" (k; + 1), or [27ip;] = k;,
for both ¢ = 1,2. Simple calculation now shows that if 27"k <p < 27"(k + 1),
so that 2"p — k = {2"p}, then

1 27" (k+1)
/ Uy i (7) dz = 2"/2/ 9(2"r — k) dz
p p

on/2 1 on/2
=5 [, Y=l
"p
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where for every 8 € R, {8} and ||3|| denote respectively the fractional part of 3
and the distance of 8 to the nearest integer. It follows that

1
bk = iz > l2mp[2"pell.

PEDBL

Combining the above, we then have the wavelet coefficients

Cnk = D(x)On k(x) dx
[0,1]
1 N
_ ny n2 _
_2‘n|/2 pezB: ”2 p1||||2 pZH 9In[+4
n,k

Note in particular that the functions Oy, k form a subcollection of the rectangular
basis for L%([0,1]?). Tt follows from Parseval’s identity that

[ b0l ax
[0,1]2
2"1—12"2—-1

DD IE1 S O (D S - EDAE

n1=0n2=0 k1=0 ko=0 PEBn

To complete the proof, we now choose n so that 2N < 2™ < 4N. Then for every
fixed n satisfying |n| = n, at least 2"~ of the rectangles By do not contain
any point of P, so that

> v pli2pall = 0.
PEDBL
It follows that

o0 o0 1 o N 2
/[01]2 DE)Pdx> Y 2 (2n+4> >n+1> logN.

n1:0 TL2:0
|Inj=n
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