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Abstract. We continue our study of point distributionsDN of N points in the
n-dimensional unit cube [0, 1)n with the minimal order of the L2-discrepancy

L2[DN ] < Cn(log N)
1
2 (n−1), where the constant Cn depends only on the di-

mension n. In particular, we show that orthogonality is a common thread
linking some earlier probabilistic proofs of the existence of such point dis-

tributions and the more recent work on explicit constructions of such point
distributions, and also leads to a substantial simplification in one major as-

pect ot the latter. Another consequence of this better understanding is an

improvement of the constant Cn.

1. Introduction

Suppose that AN is a distribution of N > 1 points, not necessarily distinct,
in the n-dimensional unit cube Un = [0, 1)n, where n ≥ 2. We consider the L2-
discrepancy

L2[AN ] =
(∫

Un
|L[AN ;Y ]|2 dY

)1/2

,

where for every Y = (y1, . . . , yn) ∈ Un, the local discrepancy L[AN ;Y ] is given by

L[AN ;Y ] = #(AN ∩BY )−N volBY .

Here
BY = [0, y1)× . . .× [0, yn) ⊆ Un

is a rectangular box of volume volBY = y1 . . . yn, and #(S) denotes the number of
points of a set S, counted with multiplicity.

Roth [12, 13] established a lower bound for the L2-discrepancy in any given
dimension n ≥ 2, as well as a corresponding upper bound. More precisely, for every
distribution AN of N points in the unit cube Un, we have

L2[AN ] > cn(logN)
1
2 (n−1),

where the positive constant cn depends only on the dimension n. Furthermore,
there exist distributions BN of N points in the unit cube Un such that

L2[BN ] < Cn(logN)
1
2 (n−1), (1)

where the positive constant Cn again depends only on the dimension n.
However, Roth’s upper bound technique involves a probabilistic argument, as are

the subsequent arguments of Chen [1, 2], Frolov [7], Dobrovol’skǐı [4] and Skriganov
[15, 16], and no explicit distribution BN is given in any of these papers.

The first explicit constructions of such distributions in any dimension n ≥ 2 can
be found in a recent paper of Chen and Skriganov [3], where it is shown that for
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every integer N > 1, a distribution DN of N points in the unit cube Un can be
constructed explicitly to satisfy the inequality

L2[DN ] < 2n+1p2n

(
logN
log p

+ 2n+ 1
) 1

2 (n−1)

, (2)

where p ≥ 2n2 is a prime. An important concept of the approach in [3] is the
use of suitably generalized Walsh functions which form an orthonormal basis of
the space L2(Un). One then shows that under suitable conditions, a collection of
functions that arise as coefficients of the Fourier-Walsh series of approximations to
the characteristic functions of rectangular boxes BY is quasi-orthonormal .

In this paper, we shall make use of the fact that under suitable conditions,
many relevant subcollections of these functions are in fact orthogonal, as has been
observed by Skriganov [18] in his recent work on Lq-discrepancy. This enables us to
substantially simplify a major aspect of the proof in [3]. We establish the following
improvement of the inequality (2).

Theorem 1. Let p ≥ 2n2 be a prime. Then for every N > 1, a distribution DN of
N points in the unit cube Un can be constructed explicitly to satisfy the inequality

L2[DN ] < 21−np2n

(
logN
log p

+ 2n+ 1
) 1

2 (n−1)

. (3)

Note that the constant in the inequality (3) is not best possible, but it represents
a savings of a factor 4n from that in the inequality (2) nevertheless. We remark
that it is not the main purpose of our work here to improve such constants.

Upper bounds of the form (1) have been given in Roth [13] or in Chen [2] with
the constants Cn given implicitly or inductively. In particular, this is achieved in [2]
by the use of digit shifts. Here we shall show that digit shifts are in fact intimately
related to the orthogonality property mentioned above. We establish the following
existence result with explicitly given values for Cn, again not sharp.

Theorem 2. Let p ≥ n − 1 be a prime. Then for every N > 1, there exists a
distribution DN of N points in the unit cube Un which satisfies the inequality

L2[DN ] < 21−npn+ 1
2

(
logN
log p

+ 2
) 1

2 (n−1)

. (4)

Throughout, the letter p denotes a prime number. We shall be concerned with
point sets that possess the structure of vector spaces over the finite field

Fp = {0, 1, . . . , p− 1}

of residues modulo p. We shall discuss these point sets in Section 2, together with
an inner product and two special metrics central to our argument. In particular, we
shall state a number of results concerning these point sets, which we shall combine
in Section 3 with crucial results from our work in [3] to establish Theorem 1. We
then deduce Theorem 2 in Section 4, where we need a crucial result of Faure [5].

The remainder of the paper is devoted to the establishment of all the results
stated in Section 2, and is organized as follows. In Section 5, we recall necessary
facts on generalized Walsh functions. In Section 6, we extend the two special
metrics introduced in Section 2 to n-tuples of non-negative integers in order to
cement the intimate relationship between our point sets and the generalized Walsh
functions. In Section 7, we consider a suitable approximation of the discrepancy
function which can be described by a suitably truncated Fourier-Walsh series. By
making use of the roles played by orthogonality and digit shifts, we establish an
expression for certain mean squares of this approximation in terms of integrals



IRREGULARITIES OF POINT DISTRIBUTION 3

over Fourier-Walsh coefficients. Finally, we deduce Theorem 5 in Section 8 and
Theorems 3 and 4 in Section 9.

For convenience, N denotes the set of all positive integers, N0 denotes the set of
all non-negative integers, Z denotes the set of all integers, Q denotes the set of all
rational numbers, and C denotes the set of all complex numbers. If z ∈ C, then
z ∈ C denotes its complex conjugate. Finally, if S is a finite set, then #(S) denotes
the number of elements of S.

The research of the second author has been supported by RFFI Project No.
02-01-00086 and INTAS Grant No. 00-429.

2. Linear Distributions

We shall be concerned with a class of sets D ⊂ Un which possess the structure
of vector spaces over the finite field Fp. For any s ∈ N0, let

Q(ps) = {mp−s : m = 0, 1, . . . , ps − 1}.
Observe that any x ∈ Q(ps) can be represented uniquely in the form

x =
s∑
i=1

ηi(x)p−i,

where the coefficients ηi(x) ∈ Fp for every i = 1, . . . , s.
For any two vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) in Qn(ps) and any

two scalars α, β ∈ Fp, we write

αX ⊕ βY = (αx1 ⊕ βy1, . . . , αxn ⊕ βyn) ∈ Qn(ps) (5)

by setting
ηi(αxj ⊕ βyj) = αηi(xj) + βηi(yj) (mod p)

for every i = 1, . . . , s and j = 1, . . . , n. It is easy to see that with respect to the
arithmetic operations (5), the set Qn(ps) forms a vector space of dimension ns over
the finite field Fp.

We say that a subset D ⊂ Qn(ps) is a linear distribution (in base p) if D is a
subspace of the vector space Qn(ps).

Suppose now that s ∈ N0 is chosen and fixed. Then any x ∈ Q(ps) can also be
represented in the form

x =
s∑
i=1

ξi(x)pi−s−1, (6)

where ξi(x) = ηs+1−i(x) ∈ Fp for every i = 1, . . . , s. Using this representation, we
can define an inner product on the space Qn(ps) as follows. For every x, y ∈ Q(ps),
we let

〈x, y〉 = 〈y, x〉 =
s∑
i=1

ξi(x)ξs+1−i(y).

For vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) in Qn(ps), we write

〈X,Y 〉 = 〈Y,X〉 =
n∑
j=1

〈xj , yj〉.

For any linear distribution D ⊆ Qn(ps), where s ∈ N0, we now define the dual
distribution D⊥ ⊆ Qn(ps) by

D⊥ = {X ∈ Qn(ps) : 〈X,Y 〉 = 0 for every Y ∈ D}.
It is easy to check that D⊥ is a subspace of Qn(ps), and is therefore also a linear
distribution. Furthermore, we have (D⊥)⊥ = D, so that D and D⊥ are mutually
dual subspaces of Qn(ps).
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Following [3] and [17], we next introduce two metrics on the vector space Qn(ps).
For any x ∈ Q(ps), the Hamming weight κ(x) is the number of non-zero coefficients
ξi(x) in the representation (6), while the Rosenbloom-Tsfasman weight is defined
by

ρ(x) =
{

0 if x = 0,
max{i = 1, . . . , s : ξi(x) 6= 0} if x 6= 0;

see [11]. For X = (x1, . . . , xn) ∈ Qn(ps), we now let

κ(X) =
n∑
j=1

κ(xj) and ρ(X) =
n∑
j=1

ρ(xj).

It is easy to check that κ(X) = ρ(X) = 0 if and only if X = 0. One can also
easily check the triangle inequalities for both weights. These give rise to metrics
(or distances) on the vector space Qn(ps).

If a linear distribution D ⊆ Qn(ps) contains at least two points, then we can
consider the Hamming weight

κ(D) = min{κ(X) : X ∈ D \ {0}},

and the Rosenbloom-Tsfasman weight

ρ(D) = min{ρ(X) : X ∈ D \ {0}}.

We shall establish the following improvements of Lemma 2D of [3].

Theorem 3. Suppose that p ≥ 2n2 is a prime, and that D ⊂ Qn(ps) is a linear
distribution of ps points, with dual linear distribution D⊥ ⊂ Qn(ps) that satisfies
κ(D⊥) ≥ 2n+ 1 and ρ(D⊥) ≥ s+ 1. Then

L2[D] < 21−npn(s+ 1)
1
2 (n−1). (7)

Theorem 4. Suppose that p ≥ 2n2 is a prime, and that D ⊂ Qn(ps) is a linear
distribution of ps points, with dual linear distribution D⊥ ⊂ Qn(ps) that satisfies
κ(D⊥) ≥ 2n+ 1 and ρ(D⊥) ≥ s+ 1. Then there exists an approximation M[D;Y ]
of the discrepancy function L[D;Y ], with error

|L[D;Y ]−M[D;Y ]| ≤ n for every Y ∈ Un, (8)

such that the quantity

M2[D] =
(∫

Un
|M[D;Y ]|2 dY

)1/2

(9)

can be evaluated precisely. Furthermore, we have∣∣∣(L2[D])2 − (M2[D])2
∣∣∣ ≤ 2nM2[D] + 3n2. (10)

The approximation M[D;Y ] will be given explicitly in Section 7.
For any linear distribution D ⊆ Qn(ps), we can consider cosets of the form

D ⊕ T = {X ⊕ T : X ∈ D}, (11)

obtained by applying the same digit shift T ∈ Qn(ps) to every point of D.

Theorem 5. Suppose that p ≥ n− 1 is a prime, and that D ⊂ Qn(ps) is a linear
distribution of ps points, with dual linear distribution D⊥ ⊂ Qn(ps) that satisfies
ρ(D⊥) ≥ s+ 1. Then there exists a digit shift T ∈ Qn(ps) such that

L2[D ⊕ T ] < 21−npn(s+ 1)
1
2 (n−1). (12)
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The restrictions imposed on the prime p in terms of the dimension n in all our
results here can be relaxed if we work with linear distributions with deficiencies.
More precisely, for each prime p, including p = 2, we can explicitly construct linear
distributions D ⊂ Qn(ps) of ps points with corresponding dual linear distributions
D⊥ ⊂ Qn(ps) satisfying ρ(D⊥) ≥ s + 1 − δ, where the deficiency δ is a non-
negative integer which depends only on the dimension n and satisfies the bound
δ = O(n log n). This approach will lead only to a renormalization of the constants
in our bounds (7) and (12), but will not necessarily improve the estimates, and
so appears to be not worth persuing. However, the benefit of this approach is
that with the choice p = 2, it is possible to obtain very precise information on the
discrepancy of linear distributions in terms of the distribution of the Rosenbloom-
Tsfasman weight within the dual linear distributions; see the paragraph after the
proof of Lemma 7.5. This leads in turn to very accurate estimates for the mean
squares discrepancy of such linear distributions.

3. Deduction of Theorem 1

We shall proceed along the lines of [3], but shall omit some of the details by
summarizing lengthy steps as lemmas and giving references where appropriate. Let
g = 2n, and let p ≥ gn = 2n2 be a prime. Given any natural number N > 1, we
choose σ ∈ N such that

pg(σ−1) < N ≤ pgσ, (13)

and consider first of all a linear distribution of pgσ points in Un.
The following result is essentially Lemma 2E of [3].

Lemma 3.1. Suppose that p ≥ gn is a prime, where g = 2n. Then for every
σ ∈ N, a linear distribution D(g, σ) ⊂ Qn(pgσ) of pgσ points can be constructed
explicitly, with dual linear distribution (D(g, σ))⊥ ⊂ Qn(pgσ) satisfying

κ((D(g, σ))⊥) ≥ g + 1 and ρ((D(g, σ))⊥) ≥ gσ + 1.

Clearly the hypotheses of Theorem 3 are satisfied with g = 2n and s = gσ, and
so it follows immediately that

L2[D(g, σ)] < 21−npn(gσ + 1)
1
2 (n−1).

Our next task is to select a subset of D(g, σ) and rescale. Consider the subset

D∗N (g) = D(g, σ) ∩ ([0, Np−gσ)× Un−1) ⊆ D(g, σ).

To guarantee that D∗N (g) contains exactly N points, we need the following special
case of Lemma 2C of [3] or Theorem 4.2 of [17]. It relates the uniform distribution
of the points of a linear distribution D and the spacing of the points of the dual
linear distribution D⊥ with respect to the Rosenbloom-Tsfasman metric ρ.

Lemma 3.2. Suppose that D ⊂ Qn(ps) is a linear distribution of ps points, with
dual linear distribution D⊥ ⊂ Qn(ps). Then the following statements are equiva-
lent:

(i) The Rosenbloom-Tsfasman weight ρ(D⊥) ≥ s+ 1.
(ii) Every rectangular box of the type

n∏
j=1

[mjp
−sj , (mj + 1)p−sj ) ⊂ Un,

where m1, . . . ,mn, s1, . . . , sn ∈ N0 satisfy s1 + . . . + sn = s, contains pre-
cisely one point of the linear distribution D.



6 W.W.L. CHEN AND M.M. SKRIGANOV

To see that D∗N (g) contains exactly N points, we observe simply that every
rectangular box of the form [mp−gσ, (m + 1)p−gσ) × Un−1 ⊂ Un, where m ∈ N0,
contains exactly one point of D(g, σ).

We next rescale D∗N (g) to obtain

DN = DN (g) = {(N−1pgσx1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ D∗N (g)}.

Then in view of (13) and noting that g = 2n, we have∫
Un
|L[DN ;Y ]|2 dY = N−1pgσ

∫
[0,Np−gσ)×Un−1

|L[D(g, σ);Y ]|2 dY

≤ N−1pgσ
∫
Un
|L[D(g, σ);Y ]|2 dY < 41−nN−1pgσp2n(gσ + 1)n−1

< 41−npgp2n

(
logN
log p

+ g + 1
)n−1

= 41−np4n

(
logN
log p

+ 2n+ 1
)n−1

.

The inequality (3) now follows on taking square roots.

4. Deduction of Theorem 2

Let p ≥ n − 1 be a prime. Given any natural number N > 1, we choose s ∈ N
such that

ps−1 < N ≤ ps, (14)

and consider first of all a linear distribution of ps points in Un.
The following result is due to Faure [5]. We remark that the condition p ≥ n− 1

cannot be relaxed, as observed by Chen [2].

Lemma 4.1. Suppose that p ≥ n − 1 is a prime. Then for every s ∈ N, a
linear distribution D ⊂ Qn(ps) of ps points can be constructed explicitly such that
condition (ii) of Lemma 3.2 is satisfied, so that the dual linear distribution D⊥ ⊂
Qn(ps) has Rosenbloom-Tsfasman weight ρ(D⊥) ≥ s+ 1.

It follows from Theorem 5 that there exists a digit shift T ∈ Qn(ps) such that
the inequality (12) holds. Next, observe that condition (ii) of Lemma 3.2 remains
valid if we replace the linear distribution D by its coset D ⊕ T , and so the subset

D∗N = (D ⊕ T ) ∩ ([0, Np−s)× Un−1) ⊆ D ⊕ T

contains exactly N points. We now rescale D∗N to obtain

DN = {(N−1psx1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ D∗N}.

Then in view of (14), we have∫
Un
|L[DN ;Y ]|2 dY = N−1ps

∫
[0,Np−s)×Un−1

|L[D ⊕ T ;Y ]|2 dY

≤ N−1ps
∫
Un
|L[D ⊕ T ;Y ]|2 dY < 41−nN−1psp2n(s+ 1)n−1

< 41−np2n+1

(
logN
log p

+ 2
)n−1

.

The inequality (4) now follows on taking square roots.
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5. Walsh Functions

Every ` ∈ N0 can be written uniquely in the form

` =
∞∑
i=1

λi(`)pi−1, (15)

where the coefficients λi(`) ∈ Fp for every i ∈ N.
For any two vectors L = (`1, . . . , `n) and K = (k1, . . . , kn) in Nn

0 and any two
scalars α, β ∈ Fp, we write

αL⊕ βK = (α`1 ⊕ βk1, . . . , α`n ⊕ βkn) ∈ Nn
0 (16)

by setting
λi(α`j ⊕ βkj) = αλi(`j) + βλi(kj) (mod p)

for every i ∈ N and j = 1, . . . , n. It is easy to see that with respect to the arithmetic
operations (16), the set Nn

0 forms a vector space over the finite field Fp.
On the other hand, every x ∈ U can be represented in the form

x =
∞∑
i=1

ηi(x)p−i, (17)

where the coefficients ηi(x) ∈ Fp for every i ∈ N, and this representation is unique
if we agree that the series in (17) is finite if

x ∈ Q(p∞) =
∞⋃
s=0

Q(ps).

In this case, for any two vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) in
Qn(p∞) and any two scalars α, β ∈ Fp, we can extend (5) to

αX ⊕ βY = (αx1 ⊕ βy1, . . . , αxn ⊕ βyn) ∈ Qn(p∞) (18)

by setting
ηi(αxj ⊕ βyj) = αηi(xj) + βηi(yj) (mod p)

for every i ∈ N and j = 1, . . . , n. It is easy to see that with respect to the arithmetic
operations (18), the set Qn(p∞) forms a vector space over the finite field Fp.

For every ` ∈ N0 and every x ∈ U , we let

w`(x) = ep

( ∞∑
i=1

λi(`)ηi(x)

)
, (19)

where ep(z) = e2πiz/p for every real number z, and where the coefficients λi(`) and
ηi(x) are given by (15) and (17) respectively. The functions w` are known as the
Walsh functions if p = 2 and the Chrestenson or Chrestenson-Levy functions if
p > 2. For simplicity, we refer to them all as Walsh functions here. A detailed
study of such functions can be found in [8] or [14]. Here it suffices to mention that
while w0(x) = 1 for every x ∈ U , we have∫

U

w`(x) dx = 0 for every ` ∈ N. (20)

For every L = (`1, . . . , `n) ∈ Nn
0 and every X = (x1, . . . , xn) ∈ Un, we let

WL(X) =
n∏
j=1

w`j (xj). (21)

It is well known that

WL⊕K(X) = WL(X)WK(X) for every X ∈ Un and L,K ∈ Nn
0 , (22)
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and that

WL(X ⊕ Y ) = WL(X)WL(Y ) for every X,Y ∈ Qn(p∞) and L ∈ Nn
0 . (23)

Furthermore, for every K,L ∈ Nn
0 , we have∫

Un
WK(X)WL(X) dX =

∫
Un

WK	L(X) dX =
{

1 if K = L,
0 if K 6= L.

Indeed, the Walsh functions form an orthonormal basis of the Hilbert space L2(Un)
of square-integrable functions on the n-dimensional unit cube Un. For each f ∈
L2(Un), we have the Fourier-Walsh expansion

f(X) '
∑
L∈Nn

0

f̃LWL(X),

where the symbol ' denotes that the series converges in the L2-norm, and where
the Fourier-Walsh coefficients are given by

f̃L =
∫
Un

WL(X)f(X) dX.

Known results on characters of abelian groups (cf. [9]) can often be restated in
terms of Walsh functions. Here we need the following result. Let

Nn
0 (ps) = {L = (`1, . . . , `n) ∈ Nn

0 : 0 ≤ `j < ps for every j = 1, . . . , n}.

The mapping

θ : Qn(ps)→ Nn
0 (ps) : (x1, . . . , xn) 7→ (psx1, . . . , p

sxn) (24)

is clearly an isomorphism of vector spaces.

Lemma 5.1. For every linear distribution D ⊆ Qn(ps) and every L ∈ Nn
0 (ps), we

have ∑
X∈D

WL(X) =
{

#(D) if L ∈ θ(D⊥),
0 if L 6∈ θ(D⊥),

where θ(D⊥) = {θ(Y ) : Y ∈ D⊥} denotes the image under the mapping (24) of the
dual linear distribution D⊥ ⊆ Qn(ps).

A special case of this is the useful orthogonality result below.

Lemma 5.2. For every L′, L′′ ∈ Nn
0 (ps), we have∑

T∈Qn(ps)

WL′(T ) WL′′(T ) =
{
pns if L′ = L′′,
0 otherwise. (25)

6. More Weights and Metrics

In Section 2, we consider Hamming and Rosenbloom-Tsfasman weights defined
on elements in Qn(ps). The purpose of this section is to consider their analogues
on Nn

0 .
For any ` ∈ N0, the Hamming weight κ(`) denotes the number of non-zero

coefficients λi(`) in the representation (15), while the Rosenbloom-Tsfasman weight
is defined by

ρ(`) =
{

0 if ` = 0,
max{i ∈ N : λi(`) 6= 0} if ` ∈ N.

Note that for every ` ∈ N, we have

pρ(`)−1 ≤ ` < pρ(`).
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For L = (`1, . . . , `n) ∈ Nn
0 , we now let

κ(L) =
n∑
j=1

κ(`j) and ρ(L) =
n∑
j=1

ρ(`j). (26)

It is easy to check that κ(L) = ρ(L) = 0 if and only if L = 0. One can also
easily check the triangle inequalities for both weights. These give rise to metrics
(or distances) on the vector space N0.

These metrics are intimately related to those defined in Section 2 on elements
in Qn(ps). It is not difficult to see that the mapping (24) is an isomorphism that
preserves the metrics κ and ρ. More precisely, for every X ∈ Qn(ps), we have

κ(X) = κ(θ(X)) and ρ(X) = ρ(θ(X)). (27)

7. Approximation of the Discrepancy Function

For any Y = (y1, . . . , yn) ∈ Un, we consider the characteristic function χ(Y,X)
of the rectangular box BY = [0, y1)× . . .× [0, yn), so that

χ(Y,X) =
{

1 if X ∈ BY ,
0 if X 6∈ BY .

It is clear that if X = (x1, . . . , xn), then

χ(Y,X) =
n∏
j=1

χ(yj , xj),

where for every j = 1, . . . , n,

χ(yj , xj) =
{

1 if xj ∈ [0, yj),
0 if xj 6∈ [0, yj).

For any linear distribution D ⊂ Qn(ps) of ps points, we have

L[D;Y ] =
∑
X∈D

χ(Y,X)− psy1 . . . yn.

The function χ(y, x) has a Fourier-Walsh expansion of the form

χ(y, x) '
∞∑
`=0

χ̃`(y)w`(x),

where for every ` ∈ N0, the Fourier-Walsh coefficients are defined by

χ̃`(y) =
∫ y

0

w`(x) dx.

In particular, we have χ̃0(y) = y.
Following [3], for given s ∈ N0, we approximate χ(y, x) by the truncated series

χs(y, x) =
ps−1∑
`=0

χ̃`(y)w`(x), (28)

the characteristic function χ(Y,X) by the product

χs(Y,X) =
n∏
j=1

χs(yj , xj), (29)

and the discrepancy function L[D;Y ] by

M[D;Y ] =
∑
X∈D

χs(Y,X)− psy1 . . . yn. (30)
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The following estimate, essentially Lemma 6A of [3], gives a bound for the error of
this approximation process.

Lemma 7.1. Suppose that D ⊂ Qn(ps) is a linear distribution of ps points, with
dual linear distribution D⊥ ⊂ Qn(ps) satisfying ρ(D⊥) ≥ s + 1. Then for every
Y ∈ Un, we have |L[D;Y ]−M[D;Y ]| ≤ n.

For every L = (`1, . . . , `n) ∈ Nn
0 and Y = (y1, . . . , yn) ∈ Un, write

χ̃L(Y ) = χ̃`1(y1) . . . χ̃`n(yn). (31)

In view of (28)–(31), (21) and Lemma 5.1, we have

M[D;Y ] =
∑
X∈D

∑
L∈Nn

0 (ps)

χ̃L(Y ) WL(X)− psχ̃0(y1) . . . χ̃0(yn)

=
∑

L∈Nn
0 (ps)

(∑
X∈D

WL(X)

)
χ̃L(Y )− psχ̃0(Y )

= ps
∑

L∈θ(D⊥)\{0}

χ̃L(Y ). (32)

The result below follows immediately.

Lemma 7.2. Suppose that D ⊂ Qn(ps) is a linear distribution of ps points. Sup-
pose further that for any distinct L′, L′′ ∈ θ(D⊥) \ {0}, the functions χ̃L′ and χ̃L′′
are orthogonal to each other. Then

∫
Un
|M[D;Y ]|2 dY = p2s

∑
L∈θ(D⊥)\{0}

∫
Un
|χ̃L(Y )|2 dY. (33)

Next, we consider digit shifts.

Lemma 7.3. Suppose that D ⊂ Qn(ps) is a linear distribution of ps points. Then

1
pns

∑
T∈Qn(ps)

∫
Un
|M[D ⊕ T ;Y ]|2 dY = p2s

∑
L∈θ(D⊥)\{0}

∫
Un
|χ̃L(Y )|2 dY. (34)

Proof. For every fixed T ∈ Qn(ps), the coset D⊕T , obtained by applying the same
digit shift to every point of D and given by (11), satisfies

M[D ⊕ T ;Y ] =
∑
X∈D

∑
L∈Nn

0 (ps)

χ̃L(Y ) WL(X ⊕ T )− psχ̃0(y1) . . . χ̃0(yn)

=
∑

L∈Nn
0 (ps)

WL(T )

(∑
X∈D

WL(X)

)
χ̃L(Y )− psχ̃0(Y )

= ps
∑

L∈θ(D⊥)\{0}

WL(T ) χ̃L(Y ),
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in view of (23). It follows that∑
T∈Qn(ps)

|M[D ⊕ T ;Y ]|2

= p2s
∑

T∈Qn(ps)

∣∣∣∣∣∣
∑

L∈θ(D⊥)\{0}

WL(T ) χ̃L(Y )

∣∣∣∣∣∣
2

= p2s
∑

T∈Qn(ps)

∑
L′,L′′∈θ(D⊥)\{0}

WL′(T ) WL′′(T ) χ̃L′(Y ) χ̃L′′(Y )

= p2s
∑

L′,L′′∈θ(D⊥)\{0}

 ∑
T∈Qn(ps)

WL′(T ) WL′′(T )

 χ̃L′(Y ) χ̃L′′(Y )

= pnsp2s
∑

L∈θ(D⊥)\{0}

|χ̃L(Y )|2,

in view of Lemma 5.2. The identity (34) then follows immediately on integrating
over Y ∈ Un. �

Note that the right hand sides of (33) and (34) are identical. The former is a
consequence of the orthogonality of the Fourier-Walsh coefficients, while the latter
is a consequence of the orthogonality condition (25) brought into play by the digit
shifts. Noting (31), we see that to progress further, we clearly need to study the
integral ∫

Un
|χ̃L(Y )|2 dY =

n∏
j=1

∫
U

|χ̃`j (yj)|2 dyj . (35)

Lemma 7.4. We have∫
U

|χ̃0(y)|2 dy =
1
4

+
1

4(p2 − 1)

p−1∑
j=1

csc2 πj

p
. (36)

Furthermore, for every ` ∈ N, we have∫
U

|χ̃`(y)|2 dy = p−2ρ(`)

1
2

csc2 πλ(`)
p
− 1

4
+

1
4(p2 − 1)

p−1∑
j=1

csc2 πj

p

 , (37)

where λ(`) = λρ(`)(`) denotes the leading coefficient in the p-ary expansion (15) of
`.

Proof. We have the Fine-Price formula, that for every ` ∈ N0,

χ̃`(y) = p−ρ(`)u`(y), (38)

where

u0(y) =
1
2
w0(y) +

∞∑
i=1

p−i
p−1∑
j=1

ζj(1− ζj)−1wjpi−1(y), (39)

and where for every ` ∈ N,

u`(y) = (1− ζλ(`))−1wτ(`)(y) +
(

1
2
− (1− ζλ(`))−1

)
w`(y)

+
∞∑
i=1

p−i
p−1∑
j=1

ζj(1− ζj)−1w`+jpρ(`)+i−1(y). (40)
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Here τ(`) = ` − λ(`)pρ(`)−1, and ζ = e2πi/p is a primitive p-th root of unity.
For details, see Fine [6] and Price [10]. The right hand side of (40) is a linear
combination of distinct Walsh functions. It follows that for every ` ∈ N, we have∫

U

|u`(y)|2 dy =
1

(1− ζλ(`))(1− ζ−λ(`))
+
(

1
2
− 1

1− ζλ(`)

)(
1
2
− 1

1− ζ−λ(`)

)
+
∞∑
i=1

p−2i

p−1∑
j=1

|1− ζj |−2

= 2|1− ζλ(`)|−2 − 1
4

+
1

p2 − 1

p−1∑
j=1

|1− ζj |−2. (41)

The identity (37) follows on combining (38) and (41) with the observation

|1− ζj |2 =
(

1− cos
2πj
p

)2

+ sin2 2πj
p

= 4 sin2 πj

p
. (42)

Similarly, we have∫
U

|u0(y)|2 dy =
1
4

+
∞∑
i=1

p−2i

p−1∑
j=1

|1− ζj |−2 =
1
4

+
1

p2 − 1

p−1∑
j=1

|1− ζj |−2. (43)

The identity (36) follows on combining (38), (42) and (43). �

Lemma 7.5. For every L ∈ Nn
0 , we have∫

Un
|χ̃L(Y )|2 dY ≤ p2n−2ρ(L)

4n
.

Proof. In view of (35), it suffices to show that for every ` ∈ N0, we have∫
U

|χ̃`(y)|2 dy ≤ p2−2ρ(`)

4
.

Suppose first of all that ` 6= 0. Then using the inequality that

csc2 πj

p
≤ p2

4
for every j = 1, . . . , p− 1,

we see from (37) that∫
U

|χ̃`(y)|2 dy ≤ p−2ρ(`)

(
p2

8
+

1
4

+
p2(p− 1)
16(p2 − 1)

)
≤ p2−2ρ(`)

4
.

On the other hand, it follows similarly from (36) that∫
U

|χ̃0(y)|2 dy ≤ 1
4

+
p2(p− 1)
16(p2 − 1)

≤ p2

4
=
p2−2ρ(0)

4
. �

Here we take a digression and make a brief comment on the case p = 2, where it
is easy to show that ∫

Un
|χ̃L(Y )|2 dY =

4−ρ(L)

3n
.

Suppose that D is a linear distribution of 2s points. Then it follows immediately
from Lemma 7.3 that

1
2ns

∑
T∈Qn(2s)

∫
Un
|M[D ⊕ T ;Y ]|2 dY =

4s

3n
∑

L∈θ(D⊥)\{0}

4−ρ(L).
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Furthermore, it follows immediately from Lemma 7.2 that∫
Un
|M[D;Y ]|2 dY =

4s

3n
∑

L∈θ(D⊥)\{0}

4−ρ(L), (44)

provided that the functions χ̃L′ and χ̃L′′ , where L′, L′′ ∈ θ(D⊥)\{0}, are orthogonal
to each other. The formula (44) shows that the L2-norm of the approximation
M [D;Y ] coincides with a Rosenbloom-Tsfasman enumerator for the subspace D⊥.

We now return to our main discussion. The following estimate is given by Lemma
6D of [3].

Lemma 7.6. Suppose that D ⊂ Qn(ps) is a linear distribution of ps points, with
dual linear distribution D⊥ ⊂ Qn(ps) satisfying ρ(D⊥) ≥ s+ 1. Then∑

L∈θ(D⊥)\{0}

p2s−2ρ(L) < (s+ 1)n−1.

Combining Lemmas 7.5 and 7.6, we conclude that

p2s
∑

L∈θ(D⊥)\{0}

∫
Un
|χ̃L(Y )|2 dY ≤ p2n

4n
(s+ 1)n−1. (45)

8. Deduction of Theorem 5

Suppose that p ≥ n− 1 is a prime. Suppose further that D ⊂ Qn(ps) is a linear
distribution of ps points, with dual linear distribution D⊥ ⊂ Qn(ps) that satisfies
ρ(D⊥) ≥ s+ 1. Combining Lemma 7.3 and the inequality (45), we conclude that

1
pns

∑
T∈Qn(ps)

∫
Un
|M[D ⊕ T ;Y ]|2 dY ≤ p2n

4n
(s+ 1)n−1.

It follows that there exists a digit shift T ∈ Qn(ps) such that∫
Un
|M[D ⊕ T ;Y ]|2 dY ≤ p2n

4n
(s+ 1)n−1.

It is not too difficult to check that the conclusion of Lemma 7.1 remains valid for
this coset D ⊕ T , so that∫

Un
|L[D ⊕ T ;Y ]|2 dY ≤ 2

∫
Un
|M[D ⊕ T ;Y ]|2 dY + 2n2

≤ 2p2n

4n
(s+ 1)n−1 + 2n2 ≤ 4p2n

4n
(s+ 1)n−1, (46)

where the last inequality is valid with the possible exception of the cases
s = 0,
s = 1, p = 2, n = 2,
s = 1, p = 2, n = 3,
s = 2, p = 2, n = 2.

(47)

The inequality (12) follows immediately from the inequality (46) on taking square
roots. On the other hand, the inequality (12) holds trivially for each of the first
three exceptional cases in (47). For the remaining case, we simply note that the
uniformity of the linear distribution D implies that |L[D ⊕ T ;Y ]| ≤ 3 for every
Y ∈ U2, so that the inequality (12) follows again. This completes the proof of
Theorem 5.
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9. Deduction of Theorems 3 and 4

The following crucial orthogonality relationship arises from the very recent work
of Skriganov [18] on Lq-discrepancy.

Lemma 9.1. Suppose that D ⊂ Qn(ps) is a linear distribution of ps points, with
dual linear distribution D⊥ ⊂ Qn(ps) satisfying κ(D⊥) ≥ 2n + 1. Then for any
distinct L′, L′′ ∈ θ(D⊥) \ {0}, the functions χ̃L′ and χ̃L′′ are orthogonal to each
other.

Suppose that p ≥ 2n2 is a prime. Suppose further that D ⊂ Qn(ps) is a linear
distribution of ps points, with dual linear distribution D⊥ ⊂ Qn(ps) that satisfies

κ(D⊥) ≥ 2n+ 1 and ρ(D⊥) ≥ s+ 1.

The assertions (8) and (9) of Theorem 4 follow immediately from Lemmas 7.1, 7.2,
9.1 and 7.4, together with the identity (35). The assertion (10) of Theorem 4 follows
as a simple consequence of the inequality (8).

Furthermore, combining Lemmas 9.1 and 7.2 with the inequality (45), we have∫
Un
|M[D;Y ]|2 dY ≤ p2n

4n
(s+ 1)n−1.

It then follows from Lemma 7.1 that∫
Un
|L[D;Y ]|2 dY ≤ 2

∫
Un
|M[D;Y ]|2 dY + 2n2

≤ 2p2n

4n
(s+ 1)n−1 + 2n2 ≤ 4p2n

4n
(s+ 1)n−1.

The inequality (7) follows immediately on taking square roots. This completes the
proof of Theorem 3.

We complete this paper by giving the very short proof of Lemma 9.1. Note first
that a consequence of (31) is the identity∫

Un
χ̃L′(Y ) χ̃L′′(Y ) dY =

n∏
j=1

∫
U

χ̃`′j (yj) χ̃`′′j (yj) dyj .

On the other hand, the condition κ(D⊥) ≥ 2n+ 1 and the relationship (27) imply
that for any distinct L′, L′′ ∈ θ(D⊥) \ {0}, we must have κ(L′ 	 L′′) ≥ 2n + 1.
It follows from (26) and the pigeonhole principle that κ(`′j 	 `′′j ) ≥ 3 for some
j = 1, . . . , k. Hence Lemma 9.1 is an immediate consequence of the following one-
dimensional result.

Lemma 9.2. Suppose that `′, `′′ ∈ N0 and κ(`′ 	 `′′) ≥ 3. Then χ̃`′ and χ̃`′′ are
orthogonal to each other.

Proof. The Fine-Price formula (38)–(40) can be rewritten in the following form.
For every ` ∈ N0, we have

χ̃`(y) = p−ρ(`)w`(y)v`(y), (48)

where

v0(y) =
1
2
w0(y) +

∞∑
i=1

p−i
p−1∑
j=1

ζj(1− ζj)−1wjpi−1(y), (49)
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and where for every ` ∈ N,

v`(y) = (1− ζλ(`))−1wλ(`)pρ(`)−1(y) +
(

1
2
− (1− ζλ(`))−1

)
w0(y)

+
∞∑
i=1

p−i
p−1∑
j=1

ζj(1− ζj)−1wjpρ(`)+i−1(y). (50)

Note first of all from (49) and (50) that for every ` ∈ N0, there exists a set K = K(`)
of non-negative integers, depending only on `, such that

v`(y) =
∑
k∈K

ckwk(y),

where for every k ∈ K, the p-ary expansion of k has at most one non-zero coefficient.
Suppose now that `′, `′′ ∈ N0 are distinct. Then there exist two sets K′ = K′(`′)
and K′′ = K′′(`′′) of non-negative integers such that

v`′(y) v`′′(y) =
∑
k′∈K′

∑
k′′∈K′′

ck′ck′′wk′	k′′(y),

where for every k′ ∈ K′ and k′′ ∈ K′′, the p-ary expansion of k′ 	 k′′ has at most
two non-zero coefficients. Combining this with (48), we conclude that

χ̃`′(y) χ̃`′′(y) = p−ρ(`
′)−ρ(`′′)w`′	`′′(y)

∑
k′∈K′

∑
k′′∈K′′

ck′ck′′wk′	k′′(y)

= p−ρ(`
′)−ρ(`′′)

∑
k′∈K′

∑
k′′∈K′′

ck′ck′′w`′	`′′⊕k′	k′′(y). (51)

On the other hand, the condition κ(`′ 	 `′′) ≥ 3 ensures that the p-ary expansion
of `′ 	 `′′ has at least three non-zero coefficients. It follows that for every k′ ∈ K′
and k′′ ∈ K′′, the p-ary expansion of `′ 	 `′′ ⊕ k′ 	 k′′ has at least one non-zero
coefficient, so that `′ 	 `′′ ⊕ k′ 	 k′′ is non-zero. It follows from (51) and (20) that∫

U

χ̃`′(y) χ̃`′′(y) dy

= p−ρ(`
′)−ρ(`′′)

∑
k′∈K′

∑
k′′∈K′′

ck′ck′′

∫
U

w`′	`′′⊕k′	k′′(y) dy = 0. �
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