
Upper Bounds in Discrepancy Theory

William W.L. Chen

Abstract Through the use of a few examples, we shall illustrate the use of prob-
ability theory, or otherwise, in the study of upper bound questions in the theory
of irregularities of point distribution. Such uses may be Monte Carlo in nature but
the most efficient ones appear to be quasi Monte Carlo in nature. Furthermore, we
shall compare the relative merits of probabilistic and non-probabilistic techniques,
as well as try to understand the actual role that the probability theory plays in some
of these arguments.

1 Introduction

Discrepancy theory concerns the comparison of the discrete, namely an actual point
count, with the continuous, namely the corresponding expectation. Since the former
is always an integer while the latter can take a range of real values, such comparisons
inevitably lead to discrepancies. Lower bound results in discrepancy theory support
the notion that no point set can, in some sense, be too evenly distributed, while upper
bound results give rise to point sets that are as evenly distributed as possible under
such constraints.

Let us look at the problem from a practical viewpoint. Consider an integral∫
[0,1]K

f (x)dx,

where f : [0,1]K → R is a real valued function in K real variables. Of course, this
integral simply represents the average value of the function f in [0,1]K . If we are
unable to evaluate this integral analytically, we may elect to select a large number
of points p1, . . . ,pN ∈ [0,1]K , and use the discrete average
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N

∑
j=1

f (p j)

as an approximation, resulting in an error

1
N

N

∑
j=1

f (p j)−
∫

[0,1]K
f (x)dx.

Suppose next that f = χA, the characteristic function of some measurable set
A⊆ [0,1]K . Then the above error, without the normalization factor N−1, becomes

N

∑
j=1

χA(p j)−N
∫

[0,1]K
χA(x)dx = #(P ∩A)−Nµ(A),

the discrepancy of the set P = {p1, . . . ,pN} in A. Often we consider a collection
A of such measurable sets A ⊆ [0,1]K ; an often considered example of A is the
collection of all aligned rectangular boxes in [0,1]K which are anchored at the ori-
gin. Upper bound problems in discrepancy theory involve finding point sets that are
good, in some sense, with respect to all the sets in A .

Naturally, we try if possible to construct explicitly a good point set. However,
when this is not possible, then the next best alternative is to show nevertheless that
a good point set exists, by the use of probabilistic techniques. Thus, in upper bound
arguments, we may use probability with great abandon, use probability with careful
control, or not use probability at all. These correspond respectively to the three
approaches, namely Monte Carlo, quasi Monte Carlo or deterministic.

There are a number of outcomes and questions associated with a probabilistic
approach. First of all, we may end up with a very poor point distribution or a very
good point distribution. It is almost certain that we lose explicitness. However, it is
important to ask whether the probability is necessary, and if so, what it really does.

This brief survey is organized as follows. In Section 2, we discuss some basic
ideas by considering a large discrepancy example. In Section 3, we take this exam-
ple a little further and compare the merits of the three different approaches. We then
discuss in Section 4 the classical problem, an example of small discrepancy. We con-
tinue with this example in Section 5 to give some insight into what the probability
really does.

Notation. Throughout, P denotes a distribution of N points in [0,1]K . For any mea-
surable subset B⊆ [0,1]K , we let Z[P;B] = #(P ∩B) denote the number of points
of P that fall into B, with corresponding expected point count Nµ(B). We then
denote the discrepancy by D[P;B] = Z[P;B]−Nµ(B).

Also, Q denotes a distribution of points in [0,1)k× [0,∞) with a density of one
point per unit volume. For any measurable subset B ⊆ [0,1)k× [0,∞), we consider
the corresponding discrepancy E[Q;B] = #(Q∩B)−µ(B).

For any real valued function f and non-negative function g, we write f = O(g)
or f � g to indicate that there exists a positive constant c such that | f | < cg. For
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any non-negative functions f and g, we write f � g to indicate that there exists a
positive constant c such that f > cg, and write f � g to denote that f � g and f � g.
The symbols � and � may be endowed with subscripts, and this means that the
implicit constant c may depend on these subscripts.

Remark. The author has taken the liberty of omitting unnecessary details and con-
centrate mainly on the ideas, occasionally at the expense of accuracy. The reader
will therefore find that some definitions and details in this survey will not stand up
to closer scrutiny.

2 A Large Discrepancy Example

Let A denote the collection of all discs in the unit torus [0,1]2 of diameter less
than 1.

A special case of a result of Beck [3] states that for every distribution P of N
points in [0,1]2, we have the lower bound

sup
A∈A
|D[P;A]| � N

1
4 . (1)

This lower bound is almost sharp, since for every natural number N ≥ 2, there exists
a distribution P of N points in [0,1]2 such that

sup
A∈A
|D[P;A]| � N

1
4 (logN)

1
2 , (2)

a special case of an earlier result of Beck [2]. We shall indicate some of the ideas
behind this upper bound.

Let us assume, for simplicity, that N = M2, where M is a natural number, and
partition [0,1]2 into N = M2 little squares in the obvious and natural way to create
the collection S of all the little squares S. We then place one point anywhere in
each little square S ∈S , and let P denote the collection of all these points.

Now take any disc A∈A , and try to bound the term |D[P;A]| from above. Since
discrepancy is additive with respect to disjoint unions, we have

D[P;A] = ∑
S∈S

D[P;S∩A].

It is easy to see that for any little square S ∈S such that S∩A = /0 or S ⊆ A, we
have D[P;S∩A] = 0. Hence

D[P;A] = ∑
S∈S

S∩∂A6= /0

D[P;S∩A],

where ∂A denotes the boundary of A.
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It then follows easily that

|D[P;A]| ≤ ∑
S∈S

S∩∂A 6= /0

|D[P;S∩A]| �M = N
1
2 ,

rather weak in comparison to what we hope to obtain.
In order to improve on this rather trivial upper bound, we next adopt a quasi

Monte Carlo approach.
For every little square S ∈S , let the point pS be uniformly distributed within S,

and independently from those points in the other little squares. In other words, we
have a random point p̃S ∈ S. Furthermore, we introduce the random variable

ξS =
{

1, if p̃S ∈ A,
0, if p̃S 6∈ A,

with discrepancy ηS = ξS−EξS. Clearly P̃ = {p̃S : S ∈S } is a random point set,
{ηS : S ∈S } is a collection of independent random variables, and we have

D[P̃;A] = ∑
S∈S

ηS = ∑
S∈S

S∩∂A 6= /0

ηS. (3)

To obtain the desired result, we now simply invoke a large deviation type result
in probability theory, for instance due to Hoeffding; see Pollard [19, Appendix B].
In summary, the probability theory enables us to obtain the squareroot of the trivial
estimate, as is clear from the upper bound (2). Perhaps, we can think of the extra
factor (logN)

1
2 in (2) as the price of using probability.

In fact, for every distribution P of N points in [0,1]2, the lower bound (1) follows
from the stronger lower bound∫

A
|D[P;A]|2 dA� N

1
2 ,

also due to Beck [3]. We next proceed to show that this bound is best possible.
Let us choose A ∈A and keep it fixed. It then follows from (3) that
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|D[P̃;A]|2 = ∑
S1,S2∈S
S1∩∂A 6= /0
S2∩∂A 6= /0

ηS1ηS2 .

Taking expectation over all N random points, we obtain

E
(
|D[P̃;A]|2

)
= ∑

S1,S2∈S
S1∩∂A6= /0
S2∩∂A6= /0

E(ηS1ηS2). (4)

If S1 6= S2, then ηS1 and ηS2 are independent, and so

E(ηS1ηS2) = E(ηS1)E(ηS2) = 0.

It follows that the only non-zero contributions to the sum in (4) come from those
terms where S1 = S2, and so

E
(
|D[P̃;A]|2

)
≤ ∑

S∈S
S∩∂A 6= /0

1� N
1
2 .

We now integrate over all A ∈A to obtain

E
(∫

A
|D[P̃;A]|2 dA

)
� N

1
2 ,

and the desired result follows immediately.

3 Monte Carlo, Quasi Monte Carlo, or Not

Let A denote the collection of all discs in the unit torus [0,1]2 of diameter equal
to 1

2 . Consider a distribution P of N = M2 points in [0,1]2, with one point in each
little square S ∈ S . We now randomize these points, or otherwise, in one of the
following ways: (i) The point in each S is uniformly distributed in [0,1]2, and in-
dependently of other points. This is the Monte Carlo case. (ii) The point in each S
is uniformly distributed in S, and independently of other points. This is the quasi
Monte Carlo case. (iii) The point in each S is fixed in the centre of S, so that there is
absolutely no probabilistic machinery. This is the deterministic case.

We can take a different viewpoint, and let ν denote a probabilistic measure on
U = [0,1]2. Taking the origin as the reference point for ν , for every S ∈ S , we
let νS denote the translation of ν to the centre of S, and let p̃S denote the random
point associated to νS. Repeating this for every S ∈S , we obtain a random point
set P̃ = {p̃S : S ∈S }. Now write
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D2
ν(N) =

∫
U

. . .
∫

U

(∫
A
|D[P̃;A]|2 dA

)
∏

S∈S
dνS.

We now choose ν in one of the following ways, corresponding to cases above: (i)
We take ν to be the uniform measure supported by [− 1

2 , 1
2 ]2. (ii) We take ν to be the

uniform measure supported by [− 1
2M , 1

2M ]2. (iii) We take ν to be the Dirac measure
δ0 concentrated at the origin.

Since A is the collection of all discs in the unit torus [0,1]2 of diameter equal
to 1

2 , each A ∈A is a translate of any other, and so∫
A

dA is essentially
∫

U
dx

and this enables us to use Fourier transform techniques.
Let χ denote the characteristic function of the disc centred at the origin. Then

one can show that

D2
ν(N) = N ∑

0 6=t∈Z2

|χ̂(t)|2(1−|ν̂(t)|2)+N2
∑

06=t∈Z2

|χ̂(Mt)|2|ν̂(Mt)|2; (5)

see Chen and Travaglini [10].
Consider first the Monte Carlo case, where the probabilistic measure ν is the uni-

form measure supported by [− 1
2 , 1

2 ]2. Then the Fourier transform ν̂ satisfies ν̂(0) = 1
and ν̂(t) = 0 whenever 0 6= t ∈ Z2. In this case, the identity (5) becomes

D2
ν(N) = N ∑

06=t∈Z2

|χ̂(t)|2 � N,

a very poor outcome.
Consider next the quasi Monte Carlo case, where the probabilistic measure ν is

the uniform measure supported by [− 1
2M , 1

2M ]2. Then

ν̂(t) = N
sin(πM−1t1)

πt1

sin(πM−1t2)
πt2

,

so that ν̂(Mt) = 0 whenever 0 6= t ∈ Z2. In this case, the identity (5) becomes

D2
ν(N) = N ∑

06=t∈Z2

|χ̂(t)|2(1−|ν̂(t)|2).

Consider finally the deterministic case, where the probabilistic measure ν is the
Dirac measure concentrated at the origin. Then ν̂(t) = 1 identically. In this case, the
identity (5) becomes

D2
ν(N) = N2

∑
06=t∈Z2

|χ̂(Mt)|2.

Which of these two latter cases is superior?
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To answer this question fully, it is necessary to consider all higher dimensional
analogues of this question. Accordingly, in the K-dimensional unit torus [0,1]K ,
where K ≥ 2, we consider N = MK little cubes, where M is a natural number. All
the definitions in dimension 2 are extended in the natural way to higher dimensions.
In the quasi Monte Carlo case, the probabilistic measure ν is the uniform measure
λ supported by [− 1

2M , 1
2M ]K , whereas in the deterministic case, the probabilistic

measure ν is the Dirac measure δ0 at the origin.
We now compare the quantities D2

δ0
(MK) and D2

λ
(MK), and have the following

intriguing results due to Chen and Travaglini [10]:
◦ For dimension K = 2, D2

δ0
(MK) < D2

λ
(MK) for all sufficiently large natural

numbers M. Hence the deterministic model is superior.
◦ For all sufficiently large dimensions K 6≡ 1 mod 4, D2

λ
(MK) < D2

δ0
(MK) for

all sufficiently large natural numbers M. Hence the quasi Monte Carlo model is
superior.
◦ For all sufficiently large dimensions K ≡ 1 mod 4, D2

λ
(MK) < D2

δ0
(MK) for

infinitely many natural numbers M, and D2
δ0

(MK) < D2
λ
(MK) for infinitely many

natural numbers M. Hence neither model is superior.
We comment here that the last case is due to the unusual nature of lattices with

respect to balls in these dimensions. A closer look at the Bessel functions that arise
from the Fourier transforms of their characteristic functions will ultimately remove
any intrigue.

4 The Classical Problem

The most studied example of small discrepancy concerns the classical problem of
the subject.

Let P be distribution of N points in the unit cube [0,1)K , where the dimension
K ≥ 2 is fixed. For every x = (x1, . . . ,xK) ∈ [0,1]K , we consider the rectangular box
B(x) = [0,x1)× . . .× [0,xK) anchored at the origin, with discrepancy

D[P;B(x)] = Z[P;B(x)]−Nx1 . . .xk.

We are interested in the extreme discrepancy

‖D[P]‖∞ = sup
x∈[0,1]K

|D[P;B(x)]|,

as well as average discrepancies

‖D[P]‖W =
(∫

[0,1]K
|D[P;B(x)]|W dx

) 1
W

,

where W is a positive real number.
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The extreme discrepancy gives rise to the most famous open problem in the sub-
ject. First of all, an upper bound result of Halton [16] says that for every natural
number N ≥ 2, there exists a distribution P of N points in [0,1]K such that

‖D[P]‖∞�K (logN)K−1. (6)

Also, it is well known that for every K ≥ 2, there exists a real number η(K) > 0
such that for every distribution P of N points in [0,1]K , we have the lower bound

‖D[P]‖∞�K (logN)
K−1

2 +η(K). (7)

In dimension K = 2, the inequality (7) holds with η(2) = 1
2 , and this goes back to the

famous result of Schmidt [22]. The case K ≥ 3 is the subject of very recent ground-
breaking work of Bilyk, Lacey and Vagharshakyan [5]. However, the constant η(K)
is subject to the restriction η(K)≤ 1

2 , so there remains a huge gap between the lower
bound (7) and the upper bound (6). This is known as the Great Open Problem. In
particular, there has been no real improvement on the upper bound (6) for over 50
years.

On the other hand, the average discrepancies ‖D[P]‖W are completely resolved
for every real number W > 1 in all dimensions K ≥ 2. The amazing breakthrough
result is due to Roth [20] and says that for every distribution P of N points in
[0,1]K , we have the lower bound

‖D[P]‖2�K (logN)
K−1

2 .

The generalization to the stronger lower bound

‖D[P]‖W �K,W (logN)
K−1

2

for all real numbers W > 1 is due to Schmidt [23], using an extension of Roth’s
technique. These lower bounds are complemented by the upper bound, established
using quasi Monte Carlo techniques, that for every real number W > 0 and every
natural number N ≥ 2, there exists a distribution P of N points such that

‖D[P]‖W �K,W (logN)
K−1

2 . (8)

The case W = 2 is due to Roth [21], the father of probabilistic techniques in the
study of discrepancy theory. The general case is due to Chen [6].

4.1 Two Dimensions

We shall discuss some of the ideas behind the upper bounds (6) and (8) by first
concentrating on the special case when the dimension K = 2.
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The van der Corput set Ph of 2h points must satisfy the following requirement:
Suppose that we partition [0,1]2 in the natural way into 2h congruent rectangles of
size 2−h1 ×2−h2 , where 0≤ h1,h2 ≤ h and h1 +h2 = h. Whatever choice of h1 and
h2 we make, any rectangle that arises from any such partition must contain precisely
one point of Ph. For instance, the van der Corput set P5 has 32 points, one in each
rectangle below.

The 2h points of Ph are best given in dyadic expansion. We have

Ph = {(0.a1 . . .ah,0.ah . . .a1) : a1, . . . ,ah ∈ {0,1}}. (9)

Note that the digits of the second coordinates are in reverse order from the digits
of the first coordinates. For instance, the 32 points of P5 are shown in the picture
below on the left.

Use of van der Corput point sets (from 1980):

• For simplicity, assume that N = 2s for some s ∈ N.

• Consider the set Ps = {(0.x1 . . . xs, 0.xs . . . x1) : x1, . . . , xs ∈ {0, 1}}.

• The set Ps has nice periodic structure.

• The picture below shows P5, containing 32 points.
• If we only show [12 , 5

8 )× [0, 1), of area 1
8 , then there are 32× 1

8 = 4 points
of P5 in this rectangle, with vertical distance 1

4 apart.

• In fact, for any integers m and h satisfying 0 ≤ h ≤ s and 0 ≤ m < 2h,
the rectangle [m2−h, (m+1)2−h)× [0, 1) contains 2s−h points of Ps, with
vertical distance 2h−s apart.

• Any rectangle of the form [0, y1) × [0, y2) is contained in a union of at
most s+1 sets of the form [m2−h, (m+1)2−h)× [0, y2), where 0 ≤ h ≤ s
and 0 ≤ m < 2h. Each such set has discrepancy less than 1, and so the
discrepancy of the set [0, y1) × [0, y2) is at most s + 1 # log N . This
is the trivial estimate, obtained by Lerch in 1904 and is essentially best
possible for the extreme discrepancy!

• (C + Skriganov) For every s ∈ N, the set Ps of 2s points satisfies∫
[0,1]2

|D[Ps;B(y)]|2 dy = 2−6s2 + O(s),

and so does not give desired upper bound.

To describe the periodicity properties of the van der Corput set Ph, we again
look at P5. The picture above on the right shows that for those points with first
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coordinates in the dyadic interval [4× 2−3,5× 2−3), the second coordinates have
period 2−2. Periodicity normally suggests the use of classical Fourier series.

Let us choose a real number x1 ∈ [0,1) and keep it fixed. For simplicity, let us
assume that x1 is an integer multiple of 2−h, so that x1 = 0.a1 . . .ah for some digits
a1, . . . ,ah ∈ {0,1}. Then

[0,x1) =
h⋃

i=1
ai=1

[0.a1 . . .ai−1,0.a1 . . .ai).

Consider now a rectangle of the form B(x1,x2) = [0,x1)× [0,x2). Then one can show
without too much difficulty that

D[Ph;B(x1,x2)] =
h

∑
i=1

ai=1

D[Ph; [0.a1 . . .ai−1,0.a1 . . .ai)× [0,x2)]

=
h

∑
i=1

ai=1

(
αi−ψ

(
x2 +βi

2i−h

))
, (10)

where ψ(z) = z− [z]− 1
2 is the sawtooth function and the numbers αi and βi are

constants. Note that the summand is periodic in the variable x2 with period 2i−h.
Since the summands are bounded, the inequality |D[Ph;B(x1,x2)]| � h follows

immediately, and we can go on to show that ‖D[Ph]‖∞ � h. This is essentially
inequality (6) in the case K = 2 and N = 2h. A little elaboration of the argument will
lead to the inequality (6) in the case K = 2 for all N ≥ 2.

Next, let us investigate ‖D[Ph]‖2. Squaring the expression (10) and expanding,
we see clearly that |D[Ph;B(x1,x2)]|2 contains a term of the form

h

∑
i, j=1

ai=a j=1

αiα j.

This ultimately leads to the estimate∫
[0,1]2
|D[Ph;B(x)]|2 dx = 2−6h2 +O(h),

as first observed by Halton and Zaremba [17]. Thus the van der Corput point sets
Ph will not lead to the estimate (8) in the special case K = W = 2.

The periodicity in the x2-direction suggests a quasi Monte Carlo approach. In
Roth [21], we consider translating the set Ph in the x2-direction modulo 1 by a
quantity t to obtain the translated set Ph(t). Now keep x2 as well as x1 fixed. Then
one can show without too much difficulty that
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D[Ph(t);B(x1,x2)] =
h

∑
i=1

ai=1

(
ψ

(
zi + t
2i−h

)
−ψ

(
wi + t
2i−h

))
, (11)

where the numbers zi and wi are constants. This is a sum of quasi-orthogonal func-
tions in the probabilistic variable t, and one can show that∫ 1

0
|D[Ph(t);B(x1,x2)]|2 dt� h. (12)

Integrating trivially over x = (x1,x2) ∈ [0,1]2, we finally conclude that there exists
t∗ ∈ [0,1] such that ∫

[0,1]2
|D[Ph(t∗);B(x1,x2)]|2 dx� h.

Note that the probabilistic technique eschews the effect of the constants αi in the
expression (10). This leads us to wonder whether we can superimpose another van
der Corput like point set on the set Ph in order to remove the constants αi. If this is
possible, then it will give rise to a non-probabilistic approach and an explicit point
set. Consider the point set

P∗
h = {(p1,1− p2) : (p1, p2) ∈Ph},

obtained from Ph by a reflection across the horizontal line x2 = 1
2 . Then one can

show without too much difficulty that

D[P∗
h ;B(x1,x2)] =

h

∑
i=1

ai=1

(
−αi−ψ

(
x2 + γi

2i−h

))
,

where the numbers γi are constants. Combining this with (11), we conclude that

D[Ph∪P∗
h ;B(x1,x2)] =−

h

∑
i=1

ai=1

(
ψ

(
x2 +βi

2i−h

)
+ψ

(
x2 + γi

2i−h

))
.

This is a sum of quasi-orthogonal functions in the variable x2, and one can show that
for the set Ph∪P∗

h of 2h+1 points in [0,1]2,∫
[0,1]
|D[Ph∪P∗

h ;B(x1,x2)]|2 dx2� h.

This argument is an example of a reflection principle introduced by Davenport [12].
To summarize, if (10) were a sum of quasi-orthogonal functions with respect to

the variable x2, then we would be able to derive the inequality
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[0,1]
|D[Ph;B(x1,x2)]|2 dx2� h. (13)

However, there is no quasi-orthogonality. By introducing the probabilistic variable t,
we are able to replace the expression (10) with the expression (11) which is a sum
of quasi-orthogonal functions in the probabilistic variable t, and this leads to the
inequality (12) which has the same strength as the inequality (13). In other words,
the probability leads to crucial quasi-orthogonality. On the other hand, some crucial
quasi-orthogonality can also be brought in by the Davenport reflection principle.

Remark. The Davenport reflection principle is only valid in dimension K = 2. The
absence of such a principle in higher dimensions contributes greatly to the difficulty
of finding explicit point sets that satisfy the inequality (8), a problem eventually
solved by Chen and Skriganov [9] for the case W = 2 and later by Skriganov [25]
for all positive real numbers W .

4.2 Higher Dimensions

Many new ideas in the study of upper bounds only come in when we consider the
problem in higher dimensions.

Our first task is to generalize the van der Corput sets. To do this, we first rescale
the second coordinate of every point in the van der Corput set Ph given by (9) by a
factor 2h to obtain the set

Qh = {(0.a1 . . .ah,ah . . .a1) : a1, . . . ,ah ∈ {0,1}}.

Clearly 0 ≤ ah . . .a1 < 2h, and so Qh ⊆ [0,1)× [0,2h). We next extend Qh to an
infinite set as follows. Every non-negative integer n can be written in the form

n =
∞

∑
i=1

2i−1ai = . . .a3a2a1, ai ∈ {0,1}.

Writing the digits in reverse order and placing them behind the decimal point, we
then arrive at the expression

x2(n) =
∞

∑
i=1

2−iai = 0.a1a2a3 . . . .

We now consider the set

Q = {(x2(n),n) : n = 0,1,2, . . .} ⊆ [0,1)× [0,∞).

Clearly Qh ⊆Q. It is not difficult to show that every rectangle of the form

[`2−s,(`+1)2−s)× [m2s,(m+1)2s)
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in [0,1)× [0,∞), where ` and m are integers, has unit area and contains precisely
one point of Q.

Next we consider van der Corput sets in higher dimensions. We follow the ideas
of Halton [16]. Let p be a prime number. Similar to our earlier considerations, every
non-negative integer n can be written in the form

n =
∞

∑
i=1

pi−1ai = . . .a3a2a1, ai ∈ {0,1, . . . , p−1}.

Writing the digits in reverse order and placing them behind the decimal point, we
then arrive at the expression

xp(n) =
∞

∑
i=1

p−iai = 0.a1a2a3 . . . .

Now let p1, . . . , pk be prime numbers, and consider the set

Q = {(xp1(n), . . . ,xpk(n),n) : n = 0,1,2, . . .} ⊆ [0,1)k× [0,∞).

It can then be shown, using the Chinese remainder theorem, that every rectangular
box of the form

[`1 p−s1
1 ,(`1 +1)p−s1

1 )× . . .× [`k p−sk
k ,(`k +1)p−sk

k )
×[mps1

1 . . . psk
k ,(m+1)ps1

1 . . . psk
k ) (14)

in [0,1)k× [0,∞), where `1, . . . , `k and m are integers, has unit volume and contains
precisely one point of Q, provided that p1, . . . , pk are distinct.

The inequality (8) for W = 2 can now be established by quasi Monte Carlo tech-
niques if we consider translations

Q(t) = {(xp1(n), . . . ,xpk(n),n+ t) : n = 0,1,2, . . .}

of the set Q using a probabilistic parameter t. We omit the rather messy details.

Remark. Strictly speaking, before we consider the translation by t, we should ex-
tend the set Q further to one in [0,1)k× (−∞,∞) in a suitable way.

4.3 Good Distributions

The important condition above is that the primes p1, . . . , pk are distinct. We now ask
the more general question of whether there exist primes p1, . . . , pk, not necessarily
distinct, and a point set Q ⊆ [0,1)k× [0,∞) such that every rectangular box of the
form (14), of unit volume and where `1, . . . , `k and m are integers, contains precisely
one point of Q. For any such instance, we shall say that Q is good with respect to
the primes p1, . . . , pk.
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Halton’s argument shows that good sets Q exist with respect to distinct primes
p1, . . . , pk. A construction of Faure [15] shows that good sets Q exist with respect
to primes p1, . . . , pk, provided that p1 = . . . = pk ≥ k. No other good sets Q are
currently known.

The good sets constructed by Halton have good periodicity properties, and thus
permit a quasi Monte Carlo technique using a translation parameter t. However, the
good sets constructed by Faure do not have such periodicity properties, and so do
not permit a similar quasi Monte Carlo technique. The challenge now is to find a
quasi Monte Carlo technique that works in both instances as well as for any other
good point sets that may arise. The answer lies in digit shifts introduced by Chen [7].

Let us first restrict ourselves to two dimensions, and consider a good set

Q = {(xp(n),n) : n = 0,1,2, . . .} ⊆ [0,1)× [0,∞);

note that here xp(n) may not be obtained from n by the digit-reversing process we
have described earlier for Halton sets. The number of digits that we shift depends
on the natural number N ≥ 2, the cardinality of the finite point set P we wish
to find. Normally, we choose a non-negative integer h determined uniquely by the
inequalities 2h−1 < N ≤ 2h, so that h� logN. Suppose that

xp(n) =
∞

∑
i=1

p−iai = 0.a1a2a3 . . . .

For every b = (b1, . . . ,bh), where b1, . . . ,bh ∈ {0,1, . . . , p−1}, let

xb
p(n) = 0.a1a2a3 . . .⊕0.b1 . . .bh000 . . . ,

where ⊕ denotes digit-wise addition modulo p, and write

Qb = {(xb
p(n),n) : n = 0,1,2, . . .}.

Analogous to (12), we can show that

1
ph ∑

b∈{0,1,...,p−1}h
|E[Qb;B(x,y)]|2�p h.

In higher dimensions, we consider a good set

Q = {(xp1(n), . . . ,xpk(n),n) : n = 0,1,2, . . .} ⊆ [0,1)k× [0,∞),

and choose h as above. For every j = 1, . . . ,k and b j ∈ {0,1, . . . , p j−1}h, we define

x
b j
p j(n) in terms of xp j(n) as before for every n = 0,1,2, . . . , and write

Qb1,...,bk = {(xb1
p1

(n), . . . ,xbk
pk

(n),n) : n = 0,1,2, . . .}.

We can then show that



Upper Bounds in Discrepancy Theory 15

1
(p1 . . . pk)h ∑

j=1,...,k
b j∈{0,1,...,p j−1}h

|E[Qb1,...,bk ;B(x1, . . . ,xk,y)]|2�p1,...,pk hk.

We emphasize that this quasi Monte Carlo approach is independent of choice of
p1, . . . , pk, so long as Q is good with respect to the primes p1, . . . , pk.

5 Fourier–Walsh Analysis

Much greater insight on the role of probability theory has been gained recently
through the study of the classical problem via Fourier–Walsh analysis.

The van der Corput set (9) of 2h points, together with coordinate-wise and digit-
wise addition modulo 2, forms a group which is isomorphic to Zh

2. The characters
of these groups are the classical Walsh functions with values ±1. To study the dis-
crepancy of these sets, it is therefore natural to appeal to Fourier–Walsh analysis, in
particular Fourier–Walsh series.

The more general van der Corput set

Ph = {(0.a1 . . .ah,0.ah . . .a1) : 0≤ a1, . . . ,ak < p}

of ph points, together with coordinate-wise and digit-wise addition modulo p, forms
a group which is isomorphic to Zh

p. The characters of these groups are the base p
Walsh functions, or Chrestenson–Levy functions, with values p -th roots of unity.
To study the discrepancy of these sets, it is therefore natural to appeal to base p
Fourier–Walsh analysis, in particular base p Fourier–Walsh series.

Suppose that a point set P possesses the structure of vector spaces over Zp. The
work of Skriganov [24] shows that P is a good point distribution with respect to the
norm ‖D[P]‖∞ provided that the corresponding vector spaces have large weights
relative to a special metric. Furthermore, the work of Chen and Skriganov [9] shows
that P is a good point distribution with respect to the norm ‖D[P]‖2 provided
that the corresponding vector spaces have large weights simultaneously relative to
two special metrics, a Hamming metric and a non-Hamming metric arising from
coding theory. Indeed, these large weights are guaranteed by taking p ≥ 2K2 if we
consider the classical problem in [0,1]K . This is sufficient for dispensing with the
quasi Monte Carlo approach.

Suppose now that a distribution P possesses the structure of vector spaces
over Zp, and suppose that P contains N = ph points. Then it can be shown that
a good approximation of the discrepancy function D[P;B(x)] given by

F [P;B(x)] = N ∑
l∈L

φl(x),
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where L is a finite set depending on P and φl(x) is a product of certain coefficients
of the Fourier–Walsh series of the characteristic functions χ[0,xi) of the intervals
forming the rectangular box B(x).

If p≥ 2K2, then the functions φl(x) are orthogonal, and so∫
[0,1]K
|F [P;B(x)]|2 dx = N2

∑
l∈L

∫
[0,1]K
|φl(x)|2 dx.

On ther other hand, if p < 2K2, so that we do not know whether the functions φl(x)
are orthogonal, then we consider a suitable group T of digit shifts t, so that

F [P⊕ t;B(x)] = N ∑
l∈L

Wl(t)φl(x),

where Wl(t) are K-dimensional base p Walsh functions. This quasi Monte Carlo
argument then leads to

∑
t∈T
|F [P⊕ t;B(x)]|2 = N2

∑
l′,l′′∈L

(
∑

t∈T
Wl′(t)Wl′′(t)

)
φl′(x)φl′′(x).

Using the orthogonality property

∑
t∈T

Wl′(t)Wl′′(t) =
{

#T , if l′ = l′′,
0, otherwise,

we conclude immediately that

1
#T ∑

t∈T
|F [P⊕ t;B(x)]|2 = N2

∑
l∈L
|φl(x)|2.

Integrating with respect to x trivially over [0,1]K , we conclude that

1
#T ∑

t∈T

∫
[0,1]K
|F [P⊕ t;B(x)]|2 dx = N2

∑
l∈L

∫
[0,1]K
|φl(x)|2 dx.

Hence the quasi Monte Carlo methods gives rise to orthogonality via the back door.

6 Further Reading

The oldest monograph on discrepancy theory is due to Beck and Chen [4], and
covers the subject from its infancy up to the mid-1980s, with fairly detailed proofs,
but is naturally very out of date. A more recent attempt is the beautifully written
monograph of Matoušek [18].
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The comprehensive volume by Drmota and Tichy [14] contains many results
and a very long list of precisely 2000 references, whereas the recent volume by
Dick and Pillichshammer [13] concentrates on quasi Monte Carlo methods in both
discrepancy theory and numerical integration.

The survey by Alexander, Beck and Chen [1] covers the majority of the main
results in discrepancy theory up to the turn of the century, and provides references
for the major developments. Shorter surveys, on selected aspects of the subject, are
given by Chen [8] and by Chen and Travaglini [11].
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