On irregularities of distribution III

W.W.L. Chen

Dedicated to the memory of Gerold Wagner

1. Introduction
Suppose that P is a distribution of N points in the unit torus U* = [0, 1)L, where
L>1. Foreveryy = (y1,...,yr) € UL, let

B(y)=1[0,y1) x ... x[0,yL),
and let
Z[P; B(y)] = #(P N B(y)),

where #S5 denotes the cardinality of the set S. We are interested in the discrepancy
function

Dr[P; B(y)l = Z1[P; B(y)] = NpL(B(y)),

where 117, denotes the usual volume in UZ. The case L = 1 is trivial. For L > 2, the
following results are well known.

Theorem 1A. (Roth [6]) Suppose that P is a distribution of N points in UL,
Then

|, 1PulP B Py los )"

Theorem 1B. (Roth [7]) For every natural number N > 2, there exists a distri-
bution P of N points in U" such that

/UL |D[P; B(y)]|*dy< (log N)L—1'

We also have the following more general results.
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Theorem 1C. (Schmidt [8]) Let W > 1. Suppose that P is a distribution of N
points in U*. Then

/L IDL[P; B(y)]|" dy>>L.w (log N)E~DW/2,
U

Theorem 1D. (Chen [4]) Let W > 0. For every natural number N > 2, there
exists a distribution P of N points in U such that

[ IDuPs B dy < llog N) O
U

Note that the above theorems remain true in the trivial case L = 1.

Suppose now that P is a distribution of N points in the unit torus U¥ = [0, 1]
where K > 2. Let A be a compact and convex body in U¥X. For any real number
A € (0,1], any proper orthogonal transformation 7 in R¥ and any vector u € UX, let

K
)

AN\ 1,u) ={t(Ax)+u:x€ A}
(note that A(A, 7,u) and A are similar to each other), and let
Zr[P; A\ m,u)] = #(P N A, 7,u)).
We are interested in the discrepancy function
Dk[P; A\, ,u)] = Zg[P; AN\, 7,u)] — Nug (A(A, 7,0)),

where px denotes the usual volume in UX. Corresponding to Theorem 1A, we have
the following result. Let 7 be the group of all proper orthogonal transformations in
RE and let d be the volume element of the invariant measure on 7', normalized such
that [ dr = 1.

Theorem 2A. (Beck [1]) Suppose that P is a distribution of N points in UX | and
that A is a compact and convex body in UK. Suppose further that r(A) > N—/K,
where r(A) denotes the radius of the largest inscribed ball of A. Then

1
/// |Dg[P; A\, 7, w)]Pdudrdr> N1 -V E,
0 T JUK

We comment here that Theorem 2A is sharp. The following analogue of Theorem
1B can be deduced using ideas in Beck and Chen [2].

Theorem 2B. Suppose that A is a compact and convex body in UX. Then for every
natural number N, there exists a distribution P of N points in UX such that

1
/ / / Dk [P A 7, 0)] Pdudrdi< 4 N1=1/E.
0 T JUK
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On the other hand, the following is a trivial deduction from Theorem 2A.

Theorem 2C. Let W > 2. Suppose that P is a distribution of N points in UX, and
that A is a compact and convex body in UK. Suppose further that r(A) > N—/K,
where r(A) denotes the radius of the largest inscribed ball of A. Then

1
/// Dk [P; A\, 7,w)] Y dudrdds 4y NG/ EOW/2,
o JTJux

In Beck and Chen [2], a version of the following problem was investigated. Suppose
that P is a distribution of N points in the unit torus UX*!, where K > 2. Let A be a
compact and convex body in U¥X. For any real number \ € (0, 1], any proper orthogonal
transformation 7 in R, any vector u € U and any y € U, we consider the cartesian
product

A7) x [0,),

where A(A,7,u) € UX is defined as before, and let
Z[Py A(A m,u) x [0,y)] = #(P N (A(A, 7,u) x [0,7))).
We are interested in the discrepancy function
DIP; A\, m,u) x [0,y)] = Z[P; A(A, 7,u) x [0,y)] = Npk (AQA, 7, 0))y.
A simple corollary of Theorem 2A is the following lower bound result.

Theorem 3A. Suppose that P is a distribution of N points in UK+, and that A is
a compact and convex body in UX. Suppose further that r(A) > N~Y¥  where r(A)
denotes the radius of the largest inscribed ball of A. Then

1
/// /lD[P;A(A’T’u)X[0=y)]|2dydud7d)\>>AN1_1/K.
0o JTJUK JU

The argument in Beck and Chen [2] can be adapted to show that Theorem 3A is
sharp. We therefore have the following complementary result.

Theorem 3B. Suppose that A is a compact and convex body in UX. Then for every
natural number N, there exists a distribution P of N points in UX*+! such that

1
/// /|D[73;A()\,T,U)><[0,y)]’2dydud7d)\<<AN1_1/K'
0 TJUK JU

As before, the following is a trivial deduction from Theorem 3A.

Theorem 3C. Let W > 2. Suppose that P is a distribution of N points in UK*1,
and that A is a compact and convex body in UX. Suppose further that r(A) > N-VEK,
where r(A) denotes the radius of the largest inscribed ball of A. Then

1
/ / / / ID[P; A\, 7, u) x [0,)]]" dydudrd A 4y NIV EIW/2,
o JTJUK JU
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The purpose of this paper is to prove the following generalizations of Theorems 2B
and 3B. Theorems 2D and 3D below complement Theorems 2C and 3C respectively.

Theorem 2D. Suppose that A is a compact and convex body in U¥. Then for every
natural number N, there exists a distribution P of N points in UX such that

1
/// Dk [P; A\, 7, w)] Y dudrdi< 4y NGV EOW/2,
0 T JUK

Theorem 3D. Let W > 0. Suppose that A is a compact and convex body in UX.
Then for every natural number N, there exists a distribution P of N points in UX*1
such that

1
/// /|D[P§A()\77,U)X[0,y)]|Wdydude)\<<A7WN(1—1/K)W/2_
0 7T JUK JU

The author would like to thank the referee for his valuable comments and sugges-
tions.

2. The basic idea

Let A be given and fixed. Given any natural number N, we shall show that there exists
a sequence qpo, . ..,qn—1 of N points in U such that

N 1
1
—E:/ // D[ Qars A, 7, )| dudrdA oy NO-VEOW2 ()
NM:l 0 T UK

where Qpr = {qo,.-.,qm_1} for 1 < M < N. Theorem 3D follows easily. The proof
of Theorem 2D is simpler.

The construction of the sequence qq, . ..,qn_1 may be done in the same way as in
Beck and Chen [2]. However, in view of further work, we follow the slightly different
approach in Beck and Chen [3].

Let h be a natural number, to be fixed later. For s = 0,1,...,h and for every
c €7, let

I(s,c) =[c27°% (c+1)27%). (2)

In other words, I(s, c) is an interval of length 2% and whose endpoints are consecutive
integer multiples of 27°.

We shall construct a finite sequence q,, (0 < n < 2K") of 28" > N points in UX
such that the following is satisfied. For every s = 0,1,...,h, every set of the form

I(s,a1) x ... x I(s,ak)
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in UK where a1,...,ax € Z, contains exactly one point of
{qn : 255 <n < (c+1)255),

where ¢ is any non-negative integer satisfying ¢ < 25(=9),

The construction of such a sequence involves ideas in combinatorics and poses no
real difficulty. However, such a sequence alone is insufficient to give a proof of either
Theorem 2B or Theorem 3B, let alone Theorems 2D and 3D. As in Beck and Chen
[2,3], we appeal to tools in probability theory. A natural consequence of this is that our
proof will not give any explicit description of the well-distributed sets in question. This
is a common phenomenon in most upper bound proofs in irregularities of distribution.

We shall describe the combinatorial part of the argument in §3 and the probabilistic
part of the argument in §4.

3. A combinatorial approach

For every integer s satisfying 1 < s < h, integers 71,...,7,_1 € {0,1,...,2K — 1} and
vectors aj,...,as_1 € {0, 1}K, let

Glri,...,Ts—1;a1,...,a,-1] : {0,1,...,25 =1} — {0,1}*

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[()]. Given these mappings, we can define a bijective mapping

F:{0,1,...,25" ~1y ~{0,1,...,2" — 11"

as follows. Suppose that n is an integer satisfying 0 < n < 25", Write
n = ThQK(h_l) + Th_12K(h_2) + ...+ 7, (3)

where 71,...,7, € {0,1,...,2K —1}. We now let ay,...,a; € {0, l}K be the solution
of the following system of equations

((G[0)(11) = ai,
G[Tl;al](Tz) = ay,
G[TlaTQ;alaaQ](7—3) = as,

G[Tl,...,7'3_1;3_1,...,3_3_1](7'3> = ag,
G[T1,. .., Th—2;a1, ..., ap—2](Th—1) = ap_1,
. G[Tl,...,Th_l;al,...,ah_l](Th> = ap.
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Suppose now that for each integer t = 1,...,h,

a; = (ag1,...,arx) € {0,1}7. (5)
We now write
Fj(n) = a17j2h_1 +a2’j2h_2 +...+Gjh’j (6)
and let
F(n) = (Fi(n),. .., Fy(n)). (7)

We next partition UK into a sequence of 25" smaller cubes
S(n) =1(h,Fi(n)) x ... x I(h, Fx(n)),

where, for every j = 1,...,K and every n = 0,1,...,2K" — 1 the interval I(h, F}(n))
is defined by (2)—(6).

Lemma 1. Suppose that s is an integer satisfying 0 < s < h. Then for every integer
ng, the set

U S(n) (8)

is a cube of the form
C(s,c) =1I(s,c1) x ... x I(s,cx) C UK, 9)

where ¢ = (c1,...,¢cx) € {0,1,...,25 — 1}K. On the other hand, every cube of the
form (9), where ¢ = (ci,...,cx) € {0,1,...,2° — 1} is a union of the form (8) for
some integer ny.

Proof. Note that the condition n = ng mod 2%* determines precisely the values of

Ti,...,Ts in (3). We can therefore solve the system of equations
Gl0)(11) = ay
Glr;a1](m2) = az
. (10)
G[Tl, ey Tg—17A1, ... ,as_l](Ts> = Aag
for aj,...,as. On the other hand, 7541,...,7, in (3) can take all possible values. It
follows from
Glr,...,Ts;a1,. .., 8] (Ts4+1) = Ast1
(11)
G[Tl, vy Th—1,aA1, ... ,ah_l](Th) = ap
that as41,...,a, can take all possible values. The first assertion follows. To prove
the second assertion, simply note that 7,...,7s are determined uniquely with given
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ai,...,as by (10), and that if agyq,...,a, take all possible values, then 7541,..., 73
take all possible values in view of (11). &

For every ¢ = (c1,...,cx) € {0,1,...,2" — 1}K, let q(c) be a point in the cube
C(h;c) =I(h,c1) x ... x I(h,cx) C UK.

Using F, we can define a permutation q, (0 < n < 25") of the g(c) as follows. For
n=0,1,...,25" — 1, let

an = q(F(n)) = a(F1(n), ..., Fx(n)).

Clearly q,, € S(n) for every n =0,1,...,2%" — 1. Then it follows from Lemma 1 that

Lemma 2. Suppose that s and H are integers satisfying 0 < s < h and 0 < H <
2K (h=5)  Then every cube of the form (9), where c = (c1,...,cx) € {0,1,...,25—1}X,
contains exactly one element of the set

{qn : H2%® <n < (H +1)255}.

Proof. The restriction H25 < n < (H + 1)2K% determines precisely the values of
Ts41,---,Thp in (3) with no restriction on 7,...,7s. On the other hand, the restriction
d, € C(s;c) for a given ¢ determines precisely the values of ay,...,as with no restric-
tion on as41,...,a,. The system of equations (10) now determines precisely the values
of 71,...,7s. Hence n is uniquely determined. o

We denote this element obtained by Lemma 2 by q(s;c; H). In other words, for
integers s, c1,...,ck, H satisfying the hypotheses of Lemma 2,

q(s;c; H) = {qn, : H25* <n < (H +1)25%°} N C(s; ).

4. Some probabilistic lemmas

As in Beck and Chen [2,3], we now use some elementary concepts and facts from
probability theory (see, for example, Chung [5]), and define a “randomization” of the
deterministic points q(c) = q(ey,...,cx), mappings G[r,...,Ts_1;81,...,a5s_1] and
F', and the sequence q,, as follows.

(A) Forc= (ci,...,cx) €{0,1,...,2" — 1}K, let q(c) be a random point uni-
formly distributed in the cube C(h;c). More precisely,

B _ pux(C(h;e)NS)
Prob(q(c) € §) = 1 (C(h;c))




for all Borel sets S C R¥.

(B) For every integer s satisfying 1 < s < h, integers 71,...,75_1 € {0,1,...,2K
—1} and vectors ay,...,a,_1 € {0, l}K, let é[ﬁ, .., Ts—1;81,...,85_1] be a uniformly
distributed random bijective mapping from {0, 1, ..., 2% —1} to {0, l}K. More precisely,
if 7:{0,1,....,25 —1} — {0,1}* is one of the (25)! different (deterministic) bijective
mappings, then

Prob(é[ﬁ ey Te—1381,...,85-1] =T) = L
Y Ty (2F)!

(C) Let F be the random bijective mapping from {0,1,...,25" — 1} to {0,1,
..., 2" — 11K defined by (3), (4) and (5)—(7), where (4) denotes that in the system
(4) of equations, we replace each deterministic mapping by its corresponding random
mapping.

(D) Let g, (0 < n < 25h) denote the random sequence defined by F, i.e. for
n=0,1,...,28 1, N

an = q(F(n)).

(E) Let q(s;c; H) denote the randomization of q(s;c; H), i.e. for integers s, cq,

..., i, H satisfying the hypotheses of Lemma 2,

d(s;c; H) = {qn : H25* <n < (H +1)25%°} N C(s;¢). (12)

(F) Finally, we may assume that the random variables

de)  (c=(cr,...,cx) €{0,1,...,2" — 117

and

Gr,...,Ts—1;1,...,85-1] (1<s<handm,...,7s_1 €{0,1,...,25 — 1}
and ay,...,a,_1 € {0,1}7)
are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.

Let (2, F, Prob) denote the underlying probability measure space.
We have

Lemma 3. Suppose that s and H are integers satisfying 0 < s < h and 0 < H <
2K(h=5) " Then for every ¢ = (ci1,...,cx) € {0,1,...,2° — 1}K, the random point
d(s;c; H) is uniformly distributed in the cube C(s;c).

Proof. Suppose that for j =1,..., K,
cj = a17j23_1 + ag,jQS_Q 4+ ...+ Qs,j-

Fort=1,...,s, let
a; = (at,lw--aat,K)-
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Since the random mapping G[0)] is uniformly distributed, it follows that the (random)
solution 77 of the equation

G0](71) =&
has the property that for any § € {0,1,...,2% — 1},
Prob(7, = 6) =275,

Now let 71 = 7 (i.e. fix the value of this random variable), and consider the (random)
equation B
G[Tl; a1]<7ﬂ:2) = ag.

Since é[ﬁ; a,] is also uniformly distributed, we have, for any § = {0,1,...,2% — 1},
that
PI‘Ob(?Q = 5|7'1 = T) = 2_K.

In other words, the random variables 71 and 75 are independent of each other. Repeat-
ing this argument, we conclude that 71,...,7s, obtained from

Gl0)(7) = au,

G[ﬁ; 31](?2) = ay,

G[r,...,Ts—1;a1,...,a5_1](Ts) = as,
are independent random variables with common distribution function
Prob(7; = 6) =27
for every t =1,...,s and 6 € {0,1,...,25 —1}. Let
g = 7280670 4 7 oKE=2 g g3
Then 7 is uniformly distributed in the set {0,1,...,2%% —1}. Write
n=725070 42 1w,

where
H2Ks — ppoKh=1) o 4 7 2Ks,

Then
q(s;c; H) = q.
Suppose now that H25% <n < (H + 1)2K5. Then
Prob(q(s;c; H) = q,) = Prob(n = n) = 2755,

Since q,, is uniformly distributed in S(n) for every n satisfying H2%* < n < (H+1)2Ks,
the result follows from the independence of n and q,,. &
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Let S be a fixed compact and convex set in UX. For integers s and H satisfying
0<s<hand 0<H < 2K("=3%) consider the random set

P(s,H) ={q(s;ic;H):c=(c1,...,cx) €{0,1,...,2° — 1}, (13)

and write

ZK[P(‘SvH);S] = #(P<S7H> A S)

and
Dy (s, H) = Zg[P(s, H); S| — 25° g (S). (14)

Note that ﬁK(s, H) depends on S. Let
T(s,H)={ce{0,1,...,2 —1}* : C(s;¢) NS # 0 and C(s;c) \ S # 0}

It is easy to see that
#T(s,H) < 2K2K-Ds, (15)

Since every cube C(s;c) contains exactly one element (namely q(s;c; H)) of the (ran-
dom) set P(s, H), we have

Dg(s,H)= > 1-25 3" ux(C(s;¢)nS).

ceT(s,H) ceT(s,H)
d(sic;iH)ES
For every c € T'(s, H), let
ey J 1 (AlsicsH) €8),
{0 H) = {O (otherwise). (16)
By Lemma 3, we have, writing E for “expected value”,
pr(C(s;e)NS) 1%
E&(s;c; H) = =27° C(s;e)NS),
so that writing
n(s;c; H) = {(s;¢; H) — E{(s; ¢; H), (17)
we have B
Di(s,H)= Y n(s;c;H). (18)
ceT (s,H)

Note that Enp =0 and |n| < 1.
We need the following analogue of Lemma 3 of Beck and Chen [2].

Lemma 4. Suppose that 0 < s < h. Suppose further that H is an integer satisfying
0 < H < 25(=%) and that ¢, ... cW) ¢ {0,1,...,2% — 1}K are distinct. Then the
random variables n(s;c(M; H), ... ,n(s;cW); H) are independent.
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Note that Lemma 4 here covers only one very special case of Lemma 3 of [2]. In
fact, the analogue of the remaining cases of Lemma 3 of [2] is replaced by applications
of Hélder’s inequality later in the argument here.

Proof of Lemma 4. 1t follows from (16) and (17) that it is sufficient to prove that
q(s;cM: H),....q(s;c¢W): H) are independent. For every w = 1,..., W, let ¢(®) =

(cgw), . ,c(;(”)), where for every j =1,..., K,
W) ah—s w) oh— W) oh— W) yh—s
c{Wghms = ((Woh=1 4 (figh=2 1y [(Wgh=s,
where cgfg-), . ,cgfg-) € {0,1}. For every t =1,...,s, let
c§“’> = (c&'{),...,cijﬁ).

Furthermore, let
H2Ks = N\ 28 (=1 o N 2K

where Agi1,..., n € {0,1,...,25K —1}. Then the random variable q(s;c(*); H) de-
pends only on the following random variables: the random mappings

G[)\l,...,)\S;cgw),...,cgw)],

~ . o (w) (w) d
G[Alj"-a)\sv)\s—klacl N I S—|—1]7 (19'1,0)
G,y e Aot - dnen el el dyyr, . dped]

where A,..., A, € {0,1,...,25 — 1} and dsy4,...,dn_1 € {0, l}K; and the random
points
{alc) : C(h;c) € C(s;¢!™))}. (20w)

Note that A1,...,As are random variables, and the random functions in (19w) for
w = 1,...,W all have the same common distribution function for different values of
AL, ..., As (see proof of Lemma 3). On the other hand, ¢V, ... ¢W) are distinct, and
SO (cgl), . ,cgl)), - (C§W)’ . ,cgw)) are also distinct. It follows that the random
mappings and random points in (19w) and (20w) for w = 1,..., W are independent,

and the lemma follows. &

5. Proof of Theorems 2D and 3D

For every natural number M satisfying 1 < M < 2Kh et

On = {d0, 1, -, dar1} (21)
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and, for every compact and convex set S C UK, let
Zk[On; Sl = #(Qu N S),

and write

Di[Qur; S| = Zk[Qus; S] — Muk(S).

Lemma 5. Let W be an even natural number. For every natural number M satisfying
1 < M < 2Eh we have

~ w
E(DK[QM,S]> <<Kwa(1_1/K)W/2.

Lemma 5 follows easily from the lemma below, which is stated in a form suitable
for proof by induction.

Lemma 6. Let W be an even natural number. Suppose that M is a natural number
satisfying 1 < M < 2K" and that

M—1 :ThQK(h_l) +Th_12K(h_2) + ..o 4T, (22)

where 11, ..., € {0,1,...,2% —1}. Suppose further that exactly s of the coefficients
Ti,...,Th are non-zero, and that 7,41 = ... =7, = 0 and 7, # 0. Then

E(DK[@M;S]>W<<K,W{1 + % +ot (%)Sl}w(\/i)wwl)(kl)- (23)

We shall prove Lemma 6 by induction on the number of non-zero coefficients when
M —1 is written in the form (22). The following lemma is a summary of the case s = 1.
However, it is stated in a form more general than is necessary to prove Lemma 6 in
the case s = 1. This generality is necessary in order that we may handle the inductive
step in the proof of Lemma 6. For ease of notation, we write Qg = 0.

Lemma 7. Let W be an even natural number. Suppose either that M = 0, or that
in the expression (22) for M — 1, the coefficients 71 = ... = 7; = 0. Suppose further
that M = M + p1;2K0=Y where 0 < p; < 2K. Then

W(K-1)(G-1)

B(Dul(@57\ Q) 1) <aear(v2) , (24)

where

D[(Q57\ Qu)sS] = # (O \ Q) N S) = (T = M)u(S). (25

Note that Lemma 6 in the case s = 1 is the special case M = 0 and j = k of
Lemma 7.
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Proof of Lemma 7. Note first of all that M is a multiple of 26U~—1. By (12), (13)
and (21),

éﬁ\éM = {an2M§n<M+,uj2K(j—1)}

pi—1
= U {an M+ ijK(j_l) <n< M + (mj 4 1)2K(j—1)}

where
H(],mj) = 2_K(‘j_1)M —I—mj

It follows from (14), (18), (21) and (25) that

Dk [(Q57\ Qu); 8] = Z Z n(j — ;¢ H(j, my)). (26)

Applying Hoélder’s inequality on the sum on the right—hand side of (26), we have

B(Dxl( @5\ Q)i 8])

w
s —1
eSS 3 En(j — 1;¢; H(j,m;))
mj:(] CGT(j717H(j7mj))
w
pi—1
< oKW1 §° S En(j — Lie; H(j,my)) | - (27)
m;=0 \ceT(j—1,H(j,m;))
Let
X, = {0 = L& H(G,my)) - ¢ € T(j — 1, H(j,m;))}. (28)

Combining (27) and (28), we have
B B W pj—1
E<DK[<QM\ QM);5]> <2RW=DNT N Y E(mew) |- (29)
m;=0 \n1€Xm; nw EXm
Consider any particular summand on the right-hand side of (29). Clearly

[E(n...qw)| <1
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always. Suppose further that one of the terms among 71, ..., nw is distinct from all
the others, i.e. suppose that 7); is distinct from any of n1,...,m,-1,m+1,...,nw. Then
by Lemma 4, we have

E(m ...nw) =E®m)E®1...0i—17i41...mw) = 0.

It follows that the only non-zero contribution to the sum in (29) arises from terms of
the form

E (77,?11 .. .77?:) , (30)

where n;,,...,n; are distinct, min{ny,...,n,.} > 2 and ny + ... +n, = W. In this
case, we clearly have r < W/2. Furthermore, if » = W/2, then we must have n; =
... =mn, = 2. Hence the number of terms in the sum

o> E(m...qw) (31)

of the form (30) with r = W/2 is

|Xm'| W/2
J X, .
<<W(W/2 <<W‘ J’

On the other hand, if » < W/2, then r < W/2 — 1. It is easy to see that the number

of terms in the sum in (31) of the form (30) with r < W/2 is <w [Xp, /271 Hence
5 A3 w R w2
E(Dxl(Q5\ On)i8)) <waw D 1, "7 (32)
Mj—o
Finally, note from (15) and (28) that
X, | < 9 (E=1)(G—-1) (33)

(24) now follows on combining (32) and (33). &

Proof of Lemma 6. We shall use induction on the number s of non-zero coefficients
T1,...,Th in (22). The case s = 1 is proved in Lemma 7. Suppose now that (23) holds
for fixed s and k, and that 71 = ... = 7; = 0. Now let M = M + p;2K0~1 where
1 < pj < 2K, Then in the expression of M — 1 analogous to (22), the number of
non-zero coefficients is now exactly s + 1. Also

Dk |[Q37:S] = Dk [Qum); 8] + Di[(Qg7 \ Qur); S,
so that if W is an even natural number, then

(Do) =3 () (Dx1@a0:81)" " (Dl G S])

w=0
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Applying Holder’s inequality, we have

w/W

<TU/) {E<DK[@M); 3])W}(W_w)/W{E(DK[(éM\ Qu); 3]>W}

We now apply the induction hypothesis to the term E(DK[QM);S])W and apply
~ ~ 1%
Lemma 7 to the term E(Dg[(Q37 \ Qum);S]) , and so

W—w

B+ @) pa )
y <(\/§)<K—1>o—1>>w

1%
1 1\*! K—1)(k—1 K-1)(j—1
- {1+— L+ (—) }(@( D (v) e ))
A\ W
1 )(K_l)(k_” (\/§>W(K71)(kz—1)
V2
oy (K1) (k—1)
W(K—1)(k—1
+(—= V2
(5) ) v2)
since clearly (K —1)(k—j) > s. &
Let A be a given compact and convex body in UX. It now follows from Lemma

5 that for any real number X\ € (0,1], any proper orthogonal transformation 7 in R¥
and any vector u € UK, we have

~ 1%
E(DK[QM; A\, T, u)]) <<K,WM(1—1/K)W/2

for every M satisfying 1 < M < 25" If we now choose h to satisfy
2K(h71) < N S 2Kh7

then

N 1
1 ~
E _Z/ // |DK[QM;A()\,T,u)]|Wdude)\ <<K,WN(1_1/K)W/2.

15



(1) follows immediately. This proves Theorem 3D. Note also the simpler inequality

1
E (/ / / | Dk [Qn; AN, T, U)]|Wdud7'd)\) <<K7WN(1—1/K)W/2'
0o JTJux

Theorem 2D follows.

o N o o
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