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1. Introduction

Suppose that P is a distribution of N points in the unit torus UL = [0, 1)L, where
L ≥ 1. For every y = (y1, . . . , yL) ∈ UL, let

B(y) = [0, y1)× . . .× [0, yL),

and let
ZL[P;B(y)] = #(P ∩B(y)),

where #S denotes the cardinality of the set S. We are interested in the discrepancy
function

DL[P;B(y)] = ZL[P;B(y)]−NµL(B(y)),

where µL denotes the usual volume in UL. The case L = 1 is trivial. For L ≥ 2, the
following results are well known.

Theorem 1A. (Roth [6]) Suppose that P is a distribution of N points in UL.
Then ∫

UL

|DL[P;B(y)]|2dy�L(logN)L−1
.

Theorem 1B. (Roth [7]) For every natural number N ≥ 2, there exists a distri-
bution P of N points in UL such that∫

UL

|DL[P;B(y)]|2dy�L(logN)L−1
.

We also have the following more general results.
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Theorem 1C. (Schmidt [8]) Let W > 1. Suppose that P is a distribution of N
points in UL. Then ∫

UL

|DL[P;B(y)]|Wdy�L,W (logN)(L−1)W/2
.

Theorem 1D. (Chen [4]) Let W > 0. For every natural number N ≥ 2, there
exists a distribution P of N points in UL such that∫

UL

|DL[P;B(y)]|Wdy�L,W (logN)(L−1)W/2
.

Note that the above theorems remain true in the trivial case L = 1.
Suppose now that P is a distribution of N points in the unit torus UK = [0, 1]K ,

where K ≥ 2. Let A be a compact and convex body in UK . For any real number
λ ∈ (0, 1], any proper orthogonal transformation τ in RK and any vector u ∈ UK , let

A(λ, τ,u) = {τ(λx) + u : x ∈ A}

(note that A(λ, τ,u) and A are similar to each other), and let

ZK [P;A(λ, τ,u)] = #(P ∩A(λ, τ,u)).

We are interested in the discrepancy function

DK [P;A(λ, τ,u)] = ZK [P;A(λ, τ,u)]−NµK(A(λ, τ,u)),

where µK denotes the usual volume in UK . Corresponding to Theorem 1A, we have
the following result. Let T be the group of all proper orthogonal transformations in
RK , and let dτ be the volume element of the invariant measure on T , normalized such
that

∫
T dτ = 1.

Theorem 2A. (Beck [1]) Suppose that P is a distribution of N points in UK , and
that A is a compact and convex body in UK . Suppose further that r(A) ≥ N−1/K ,
where r(A) denotes the radius of the largest inscribed ball of A. Then∫ 1

0

∫
T

∫
UK

|DK [P;A(λ, τ,u)]|2dudτdλ�AN
1−1/K .

We comment here that Theorem 2A is sharp. The following analogue of Theorem
1B can be deduced using ideas in Beck and Chen [2].

Theorem 2B. Suppose that A is a compact and convex body in UK . Then for every
natural number N , there exists a distribution P of N points in UK such that∫ 1

0

∫
T

∫
UK

|DK [P;A(λ, τ,u)]|2dudτdλ�AN
1−1/K .
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On the other hand, the following is a trivial deduction from Theorem 2A.

Theorem 2C. Let W ≥ 2. Suppose that P is a distribution of N points in UK , and
that A is a compact and convex body in UK . Suppose further that r(A) ≥ N−1/K ,
where r(A) denotes the radius of the largest inscribed ball of A. Then∫ 1

0

∫
T

∫
UK

|DK [P;A(λ, τ,u)]|Wdudτdλ�A,WN
(1−1/K)W/2.

In Beck and Chen [2], a version of the following problem was investigated. Suppose
that P is a distribution of N points in the unit torus UK+1, where K ≥ 2. Let A be a
compact and convex body in UK . For any real number λ ∈ (0, 1], any proper orthogonal
transformation τ in RK , any vector u ∈ UK and any y ∈ U , we consider the cartesian
product

A(λ, τ,u)× [0, y),

where A(λ, τ,u) ∈ UK is defined as before, and let

Z[P;A(λ, τ,u)× [0, y)] = #(P ∩ (A(λ, τ,u)× [0, y))).

We are interested in the discrepancy function

D[P;A(λ, τ,u)× [0, y)] = Z[P;A(λ, τ,u)× [0, y)]−NµK(A(λ, τ,u))y.

A simple corollary of Theorem 2A is the following lower bound result.

Theorem 3A. Suppose that P is a distribution of N points in UK+1, and that A is
a compact and convex body in UK . Suppose further that r(A) ≥ N−1/K , where r(A)
denotes the radius of the largest inscribed ball of A. Then∫ 1

0

∫
T

∫
UK

∫
U

|D[P;A(λ, τ,u)× [0, y)]|2dydudτdλ�AN
1−1/K .

The argument in Beck and Chen [2] can be adapted to show that Theorem 3A is
sharp. We therefore have the following complementary result.

Theorem 3B. Suppose that A is a compact and convex body in UK . Then for every
natural number N , there exists a distribution P of N points in UK+1 such that∫ 1

0

∫
T

∫
UK

∫
U

|D[P;A(λ, τ,u)× [0, y)]|2dydudτdλ�AN
1−1/K .

As before, the following is a trivial deduction from Theorem 3A.

Theorem 3C. Let W ≥ 2. Suppose that P is a distribution of N points in UK+1,
and that A is a compact and convex body in UK . Suppose further that r(A) ≥ N−1/K ,
where r(A) denotes the radius of the largest inscribed ball of A. Then∫ 1

0

∫
T

∫
UK

∫
U

|D[P;A(λ, τ,u)× [0, y)]|Wdydudτdλ�A,WN
(1−1/K)W/2.
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The purpose of this paper is to prove the following generalizations of Theorems 2B
and 3B. Theorems 2D and 3D below complement Theorems 2C and 3C respectively.

Theorem 2D. Suppose that A is a compact and convex body in UK . Then for every
natural number N , there exists a distribution P of N points in UK such that∫ 1

0

∫
T

∫
UK

|DK [P;A(λ, τ,u)]|Wdudτdλ�A,WN
(1−1/K)W/2.

Theorem 3D. Let W > 0. Suppose that A is a compact and convex body in UK .
Then for every natural number N , there exists a distribution P of N points in UK+1

such that∫ 1

0

∫
T

∫
UK

∫
U

|D[P;A(λ, τ,u)× [0, y)]|Wdydudτdλ�A,WN
(1−1/K)W/2.

The author would like to thank the referee for his valuable comments and sugges-
tions.

2. The basic idea

Let A be given and fixed. Given any natural number N , we shall show that there exists
a sequence q0, . . . ,qN−1 of N points in UK such that

1
N

N∑
M=1

∫ 1

0

∫
T

∫
UK

|DK [QM ;A(λ, τ,u)]|Wdudτdλ�A,WN
(1−1/K)W/2, (1)

where QM = {q0, . . . ,qM−1} for 1 ≤ M ≤ N . Theorem 3D follows easily. The proof
of Theorem 2D is simpler.

The construction of the sequence q0, . . . ,qN−1 may be done in the same way as in
Beck and Chen [2]. However, in view of further work, we follow the slightly different
approach in Beck and Chen [3].

Let h be a natural number, to be fixed later. For s = 0, 1, . . . , h and for every
c ∈ Z, let

I(s, c) = [c2−s, (c+ 1)2−s). (2)

In other words, I(s, c) is an interval of length 2−s and whose endpoints are consecutive
integer multiples of 2−s.

We shall construct a finite sequence qn (0 ≤ n < 2Kh) of 2Kh ≥ N points in UK

such that the following is satisfied. For every s = 0, 1, . . . , h, every set of the form

I(s, a1)× . . .× I(s, aK)
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in UK , where a1, . . . , aK ∈ Z, contains exactly one point of

{qn : c2Ks ≤ n < (c+ 1)2Ks},

where c is any non-negative integer satisfying c < 2K(h−s).
The construction of such a sequence involves ideas in combinatorics and poses no

real difficulty. However, such a sequence alone is insufficient to give a proof of either
Theorem 2B or Theorem 3B, let alone Theorems 2D and 3D. As in Beck and Chen
[2,3], we appeal to tools in probability theory. A natural consequence of this is that our
proof will not give any explicit description of the well-distributed sets in question. This
is a common phenomenon in most upper bound proofs in irregularities of distribution.

We shall describe the combinatorial part of the argument in §3 and the probabilistic
part of the argument in §4.

3. A combinatorial approach

For every integer s satisfying 1 ≤ s ≤ h, integers τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1} and
vectors a1, . . . ,as−1 ∈ {0, 1}K , let

G[τ1, . . . , τs−1; a1, . . . ,as−1] : {0, 1, . . . , 2K − 1} → {0, 1}K

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[∅]. Given these mappings, we can define a bijective mapping

F : {0, 1, . . . , 2Kh − 1} → {0, 1, . . . , 2h − 1}K

as follows. Suppose that n is an integer satisfying 0 ≤ n < 2Kh. Write

n = τh2K(h−1) + τh−12K(h−2) + . . .+ τ1, (3)

where τ1, . . . , τh ∈ {0, 1, . . . , 2K − 1}. We now let a1, . . . ,ah ∈ {0, 1}K be the solution
of the following system of equations

G[∅](τ1) = a1,
G[τ1; a1](τ2) = a2,
G[τ1, τ2; a1,a2](τ3) = a3,

...
G[τ1, . . . , τs−1; a1, . . . ,as−1](τs) = as,

...
G[τ1, . . . , τh−2; a1, . . . ,ah−2](τh−1) = ah−1,
G[τ1, . . . , τh−1; a1, . . . ,ah−1](τh) = ah.

(4)
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Suppose now that for each integer t = 1, . . . , h,

at = (at,1, . . . , at,K) ∈ {0, 1}K . (5)

We now write
Fj(n) = a1,j2h−1 + a2,j2h−2 + . . .+ ah,j (6)

and let
F (n) = (F1(n), . . . , Fk(n)). (7)

We next partition UK into a sequence of 2Kh smaller cubes

S(n) = I(h, F1(n))× . . .× I(h, Fk(n)),

where, for every j = 1, . . . ,K and every n = 0, 1, ..., 2Kh − 1, the interval I(h, Fj(n))
is defined by (2)–(6).

Lemma 1. Suppose that s is an integer satisfying 0 ≤ s ≤ h. Then for every integer
n0, the set ⋃

0≤n<2Kh

n≡n0 (mod 2Ks)

S(n) (8)

is a cube of the form

C(s, c) = I(s, c1)× . . .× I(s, cK) ⊂ UK , (9)

where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K . On the other hand, every cube of the

form (9), where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , is a union of the form (8) for
some integer n0.

Proof. Note that the condition n ≡ n0 mod 2Ks determines precisely the values of
τ1, . . . , τs in (3). We can therefore solve the system of equations

G[∅](τ1) = a1

G[τ1; a1](τ2) = a2

...
G[τ1, . . . , τs−1; a1, . . . ,as−1](τs) = as

(10)

for a1, . . . ,as. On the other hand, τs+1, . . . , τh in (3) can take all possible values. It
follows from 

G[τ1, . . . , τs; a1, . . . ,as](τs+1) = as+1

...
G[τ1, . . . , τh−1; a1, . . . ,ah−1](τh) = ah

(11)

that as+1, . . . ,ah can take all possible values. The first assertion follows. To prove
the second assertion, simply note that τ1, . . . , τs are determined uniquely with given
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a1, . . . ,as by (10), and that if as+1, . . . ,ah take all possible values, then τs+1, . . . , τh
take all possible values in view of (11). ♣

For every c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K , let q(c) be a point in the cube

C(h; c) = I(h, c1)× . . .× I(h, cK) ⊂ UK .

Using F , we can define a permutation qn (0 ≤ n < 2Kh) of the q(c) as follows. For
n = 0, 1, . . . , 2Kh − 1, let

qn = q(F (n)) = q(F1(n), . . . , FK(n)).

Clearly qn ∈ S(n) for every n = 0, 1, . . . , 2Kh − 1. Then it follows from Lemma 1 that

Lemma 2. Suppose that s and H are integers satisfying 0 ≤ s ≤ h and 0 ≤ H ≤
2K(h−s). Then every cube of the form (9), where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s−1}K ,
contains exactly one element of the set

{qn : H2Ks ≤ n < (H + 1)2Ks}.

Proof. The restriction H2Ks ≤ n < (H + 1)2Ks determines precisely the values of
τs+1, . . . , τh in (3) with no restriction on τ1, . . . , τs. On the other hand, the restriction
qn ∈ C(s; c) for a given c determines precisely the values of a1, . . . ,as with no restric-
tion on as+1, . . . ,ah. The system of equations (10) now determines precisely the values
of τ1, . . . , τs. Hence n is uniquely determined. ♣

We denote this element obtained by Lemma 2 by q(s; c;H). In other words, for
integers s, c1, . . . , cK , H satisfying the hypotheses of Lemma 2,

q(s; c;H) = {qn : H2Ks ≤ n < (H + 1)2Ks} ∩ C(s; c).

4. Some probabilistic lemmas

As in Beck and Chen [2,3], we now use some elementary concepts and facts from
probability theory (see, for example, Chung [5]), and define a “randomization” of the
deterministic points q(c) = q(c1, . . . , cK), mappings G[τ1, . . . , τs−1; a1, . . . ,as−1] and
F , and the sequence qn as follows.

(A) For c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K , let q̃(c) be a random point uni-
formly distributed in the cube C(h; c). More precisely,

Prob(q̃(c) ∈ S) =
µK(C(h; c) ∩ S)
µK(C(h; c))
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for all Borel sets S ⊂ RK .
(B) For every integer s satisfying 1 ≤ s ≤ h, integers τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K

−1} and vectors a1, . . . ,as−1 ∈ {0, 1}K , let G̃[τ1, . . . , τs−1; a1, . . . ,as−1] be a uniformly
distributed random bijective mapping from {0, 1, ..., 2K−1} to {0, 1}K . More precisely,
if π : {0, 1, ..., 2K − 1} → {0, 1}K is one of the (2K)! different (deterministic) bijective
mappings, then

Prob(G̃[τ1, . . . , τs−1; a1, . . . ,as−1] = π) =
1

(2K)!
.

(C) Let F̃ be the random bijective mapping from {0, 1, . . . , 2Kh − 1} to {0, 1,
. . . , 2h − 1}K defined by (3), (4̃) and (5)–(7), where (4̃) denotes that in the system
(4) of equations, we replace each deterministic mapping by its corresponding random
mapping.

(D) Let q̃n (0 ≤ n < 2Kh) denote the random sequence defined by F̃ , i.e. for
n = 0, 1, . . . , 2Kh − 1,

q̃n = q(F̃ (n)).

(E) Let q̃(s; c;H) denote the randomization of q(s; c;H), i.e. for integers s, c1,
. . . , cK , H satisfying the hypotheses of Lemma 2,

q̃(s; c;H) = {q̃n : H2Ks ≤ n < (H + 1)2Ks} ∩ C(s; c). (12)

(F) Finally, we may assume that the random variables

q̃(c) (c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K)

and

G̃[τ1, . . . , τs−1; a1, . . . ,as−1] (1 ≤ s ≤ h and τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1}
and a1, . . . ,as−1 ∈ {0, 1}K)

are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.

Let (Ω,F ,Prob) denote the underlying probability measure space.
We have

Lemma 3. Suppose that s and H are integers satisfying 0 ≤ s ≤ h and 0 ≤ H <
2K(h−s). Then for every c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , the random point
q̃(s; c;H) is uniformly distributed in the cube C(s; c).

Proof. Suppose that for j = 1, . . . ,K,

cj = a1,j2s−1 + a2,j2s−2 + . . .+ as,j .

For t = 1, . . . , s, let
at = (at,1, . . . , at,K).
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Since the random mapping G̃[∅] is uniformly distributed, it follows that the (random)
solution τ̃1 of the equation

G̃[∅](τ̃1) = a1

has the property that for any δ ∈ {0, 1, . . . , 2K − 1},

Prob(τ̃1 = δ) = 2−K .

Now let τ̃1 = τ1 (i.e. fix the value of this random variable), and consider the (random)
equation

G̃[τ1; a1](τ̃2) = a2.

Since G̃[τ1; a1] is also uniformly distributed, we have, for any δ = {0, 1, . . . , 2K − 1},
that

Prob(τ̃2 = δ|τ1 = τ) = 2−K .

In other words, the random variables τ̃1 and τ̃2 are independent of each other. Repeat-
ing this argument, we conclude that τ̃1, . . . , τ̃s, obtained from

G̃[∅](τ̃1) = a1,

G̃[τ1; a1](τ̃2) = a2,
...

G̃[τ1, . . . , τs−1; a1, . . . ,as−1](τ̃s) = as,

are independent random variables with common distribution function

Prob(τ̃t = δ) = 2−K

for every t = 1, . . . , s and δ ∈ {0, 1, . . . , 2K − 1}. Let

ñ0 = τ̃s2K(s−1) + τ̃s−12K(s−2) + . . .+ τ̃1.

Then ñ0 is uniformly distributed in the set {0, 1, . . . , 2Ks − 1}. Write

ñ = τh2K(h−1) + . . .+ τs+12Ks + ñ0,

where
H2Ks = τh2K(h−1) + . . .+ τs+12Ks.

Then
q̃(s; c;H) = q̃

ñ
.

Suppose now that H2Ks ≤ n < (H + 1)2Ks. Then

Prob(q̃(s; c;H) = q̃n) = Prob(ñ = n) = 2−Ks.

Since q̃n is uniformly distributed in S(n) for every n satisfying H2Ks ≤ n < (H+1)2Ks,
the result follows from the independence of ñ and q̃n. ♣
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Let S be a fixed compact and convex set in UK . For integers s and H satisfying
0 ≤ s ≤ h and 0 ≤ H < 2K(h−s), consider the random set

P̃(s,H) = {q̃(s; c;H) : c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K}, (13)

and write
ZK [P̃(s,H);S] = #(P̃(s,H) ∩ S)

and
D̃K(s,H) = ZK [P̃(s,H);S]− 2KsµK(S). (14)

Note that D̃K(s,H) depends on S. Let

T (s,H) = {c ∈ {0, 1, . . . , 2s − 1}K : C(s; c) ∩ S 6= ∅ and C(s; c) \ S 6= ∅}.

It is easy to see that
#T (s,H) ≤ 2K2(K−1)s. (15)

Since every cube C(s; c) contains exactly one element (namely q̃(s; c;H)) of the (ran-
dom) set P̃(s,H), we have

D̃K(s,H) =
∑

c∈T (s,H)

q̃(s;c;H)∈S

1− 2Ks
∑

c∈T (s,H)

µK(C(s; c) ∩ S).

For every c ∈ T (s,H), let

ξ(s; c;H) =
{

1 (q̃(s; c;H) ∈ S),
0 (otherwise). (16)

By Lemma 3, we have, writing E for “expected value”,

Eξ(s; c;H) =
µK(C(s; c) ∩ S)
µK(C(s; c))

= 2KsµK(C(s; c) ∩ S),

so that writing
η(s; c;H) = ξ(s; c;H)− Eξ(s; c;H), (17)

we have
D̃K(s,H) =

∑
c∈T (s,H)

η(s; c;H). (18)

Note that Eη = 0 and |η| ≤ 1.
We need the following analogue of Lemma 3 of Beck and Chen [2].

Lemma 4. Suppose that 0 ≤ s ≤ h. Suppose further that H is an integer satisfying
0 ≤ H < 2K(h−s) and that c(1), . . . , c(W ) ∈ {0, 1, . . . , 2s − 1}K are distinct. Then the
random variables η(s; c(1);H), . . . , η(s; c(W );H) are independent.
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Note that Lemma 4 here covers only one very special case of Lemma 3 of [2]. In
fact, the analogue of the remaining cases of Lemma 3 of [2] is replaced by applications
of Hölder’s inequality later in the argument here.

Proof of Lemma 4. It follows from (16) and (17) that it is sufficient to prove that
q̃(s; c(1);H), . . . , q̃(s; c(W );H) are independent. For every w = 1, . . . ,W , let c(w) =
(c(w)

1 , . . . , c
(w)
K ), where for every j = 1, . . . ,K,

c
(w)
j 2h−s = c

(w)
1,j 2h−1 + c

(w)
2,j 2h−2 + . . .+ c

(w)
s,j 2h−s,

where c(w)
1,j , . . . , c

(w)
s,j ∈ {0, 1}. For every t = 1, . . . , s, let

c(w)
t = (c(w)

t,1 , . . . , c
(w)
t,K).

Furthermore, let
H2Ks = λh2K(h−1) + . . .+ λs+12Ks,

where λs+1, . . . , λh ∈ {0, 1, . . . , 2K − 1}. Then the random variable q̃(s; c(w);H) de-
pends only on the following random variables: the random mappings

G̃[λ1, . . . , λs; c
(w)
1 , . . . , c(w)

s ],
G̃[λ1, . . . , λs, λs+1; c(w)

1 , . . . , c(w)
s ,ds+1],

...
G̃[λ1, . . . , λs, λs+1, . . . , λh−1; c(w)

1 , . . . , c(w)
s ,ds+1, . . . ,dh−1],

(19w)

where λ1, . . . , λs ∈ {0, 1, . . . , 2K − 1} and ds+1, . . . ,dh−1 ∈ {0, 1}K ; and the random
points

{q̃(c) : C(h; c) ⊂ C(s; c(w))}. (20w)

Note that λ1, . . . , λs are random variables, and the random functions in (19w) for
w = 1, . . . ,W all have the same common distribution function for different values of
λ1, . . . , λs (see proof of Lemma 3). On the other hand, c(1), . . . , c(W ) are distinct, and
so (c(1)

1 , . . . , c(1)
s ), . . . , (c(W )

1 , . . . , c(W )
s ) are also distinct. It follows that the random

mappings and random points in (19w) and (20w) for w = 1, . . . ,W are independent,
and the lemma follows. ♣

5. Proof of Theorems 2D and 3D

For every natural number M satisfying 1 ≤M ≤ 2Kh, let

Q̃M = {q̃0, q̃1, . . . , q̃M−1} (21)
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and, for every compact and convex set S ⊂ UK , let

ZK [Q̃M ;S] = #(Q̃M ∩ S),

and write
DK [Q̃M ;S] = ZK [Q̃M ;S]−MµK(S).

Lemma 5. LetW be an even natural number. For every natural numberM satisfying
1 ≤M ≤ 2Kh, we have

E
(
DK [Q̃M ;S]

)W
�K,WM

(1−1/K)W/2.

Lemma 5 follows easily from the lemma below, which is stated in a form suitable
for proof by induction.

Lemma 6. Let W be an even natural number. Suppose that M is a natural number
satisfying 1 ≤M ≤ 2Kh, and that

M − 1 = τh2K(h−1) + τh−12K(h−2) + . . .+ τ1, (22)

where τ1, . . . , τh ∈ {0, 1, . . . , 2K − 1}. Suppose further that exactly s of the coefficients
τ1, . . . , τh are non-zero, and that τk+1 = . . . = τh = 0 and τk 6= 0. Then

E
(
DK [Q̃M ;S]

)W
�K,W

{
1 +

1√
2

+ . . .+
(

1√
2

)s−1
}W

(
√

2)
W (K−1)(k−1)

. (23)

We shall prove Lemma 6 by induction on the number of non-zero coefficients when
M−1 is written in the form (22). The following lemma is a summary of the case s = 1.
However, it is stated in a form more general than is necessary to prove Lemma 6 in
the case s = 1. This generality is necessary in order that we may handle the inductive
step in the proof of Lemma 6. For ease of notation, we write Q̃0 = ∅.

Lemma 7. Let W be an even natural number. Suppose either that M = 0, or that
in the expression (22) for M − 1, the coefficients τ1 = . . . = τj = 0. Suppose further
that M = M + µj2K(j−1), where 0 < µj < 2K . Then

E
(
DK [(Q̃M \ Q̃M );S]

)W
�K,W (

√
2)
W (K−1)(j−1)

, (24)

where
DK [(Q̃M \ Q̃M );S] = #

(
(Q̃M \ Q̃M ) ∩ S

)
− (M −M)µK(S). (25)

Note that Lemma 6 in the case s = 1 is the special case M = 0 and j = k of
Lemma 7.

12



Proof of Lemma 7. Note first of all that M is a multiple of 2K(j−1). By (12), (13)
and (21),

Q̃M \ Q̃M =
{
q̃n : M ≤ n < M + µj2K(j−1)

}
=

µj−1⋃
mj=0

{
q̃n : M +mj2K(j−1) ≤ n < M + (mj + 1)2K(j−1)

}

=
µj−1⋃
mj=0

P̃(j − 1, H(j,mj)),

where
H(j,mj) = 2−K(j−1)M +mj .

It follows from (14), (18), (21) and (25) that

DK [(Q̃M \ Q̃M );S] =
µj−1∑
mj=0

∑
c∈T (j−1,H(j,mj))

η(j − 1; c;H(j,mj)). (26)

Applying Hölder’s inequality on the sum on the right–hand side of (26), we have

E
(
DK [(Q̃M \ Q̃M );S]

)W
≤ µW−1

j

µj−1∑
mj=0

 ∑
c∈T (j−1,H(j,mj))

Eη(j − 1; c;H(j,mj))

W

≤ 2K(W−1)

µj−1∑
mj=0

 ∑
c∈T (j−1,H(j,mj))

Eη(j − 1; c;H(j,mj))

W

. (27)

Let
Xmj

= {η(j − 1; c;H(j,mj)) : c ∈ T (j − 1, H(j,mj))}. (28)

Combining (27) and (28), we have

E
(
DK [(Q̃M \ Q̃M );S]

)W
≤ 2K(W−1)

µj−1∑
mj=0

 ∑
η1∈Xmj

. . .
∑

ηW∈Xmj

E(η1 . . . ηW )

 . (29)

Consider any particular summand on the right-hand side of (29). Clearly

|E(η1 . . . ηW )| ≤ 1

13



always. Suppose further that one of the terms among η1, . . . , ηW is distinct from all
the others, i.e. suppose that ηi is distinct from any of η1, . . . , ηi−1, ηi+1, . . . , ηW . Then
by Lemma 4, we have

E(η1 . . . ηW ) = E(ηi)E(η1 . . . ηi−1ηi+1 . . . ηW ) = 0.

It follows that the only non-zero contribution to the sum in (29) arises from terms of
the form

E
(
ηn1
i1
. . . ηnr

ir

)
, (30)

where ηi1 , . . . , ηir are distinct, min{n1, . . . , nr} ≥ 2 and n1 + . . . + nr = W . In this
case, we clearly have r ≤ W/2. Furthermore, if r = W/2, then we must have n1 =
. . . = nr = 2. Hence the number of terms in the sum∑

η1∈Xmj

. . .
∑

ηW∈Xmj

E(η1 . . . ηW ) (31)

of the form (30) with r = W/2 is

�W

(
|Xmj

|
W/2

)
�W |Xmj |

W/2
.

On the other hand, if r < W/2, then r ≤ W/2 − 1. It is easy to see that the number
of terms in the sum in (31) of the form (30) with r < W/2 is �W |Xmj

|W/2−1. Hence

E
(
DK [(Q̃M \ Q̃M );S]

)W
�K,W

µj−1∑
mj=0

|Xmj |
W/2

. (32)

Finally, note from (15) and (28) that

|Xmj | ≤ 2K2(K−1)(j−1). (33)

(24) now follows on combining (32) and (33). ♣

Proof of Lemma 6. We shall use induction on the number s of non-zero coefficients
τ1, . . . , τh in (22). The case s = 1 is proved in Lemma 7. Suppose now that (23) holds
for fixed s and k, and that τ1 = . . . = τj = 0. Now let M = M + µj2K(j−1), where
1 ≤ µj < 2K . Then in the expression of M − 1 analogous to (22), the number of
non-zero coefficients is now exactly s+ 1. Also

DK [Q̃M ;S] = DK [Q̃M );S] +DK [(Q̃M \ Q̃M );S],

so that if W is an even natural number, then

(
DK [Q̃M ;S]

)W
=

W∑
w=0

(
W

w

)(
DK [Q̃M );S]

)W−w(
DK [(Q̃M \ Q̃M );S]

)w
.

14



Applying Hölder’s inequality, we have

E
(
DK [Q̃M ;S]

)W
≤

W∑
w=0

(
W

w

){
E
(
DK [Q̃M );S]

)W}(W−w)/W{
E
(
DK [(Q̃M \ Q̃M );S]

)W}w/W
.

We now apply the induction hypothesis to the term E(DK [Q̃M );S])
W

and apply

Lemma 7 to the term E(DK [(Q̃M \ Q̃M );S])
W
, and so

E
(
DK [Q̃M ;S]

)W
�K,W

W∑
w=0

(
W

w

)({
1 +

1√
2

+ . . .+
(

1√
2

)s−1
}

(
√

2)
(K−1)(k−1)

)W−w
×

×
(

(
√

2)
(K−1)(j−1)

)w
=

({
1 +

1√
2

+ . . .+
(

1√
2

)s−1
}

(
√

2)
(K−1)(k−1)

+ (
√

2)
(K−1)(j−1)

)W

=

(
1 +

1√
2

+ . . .+
(

1√
2

)s−1

+
(

1√
2

)(K−1)(k−j)
)W

(
√

2)
W (K−1)(k−1)

=

(
1 +

1√
2

+ . . .+
(

1√
2

)s−1

+
(

1√
2

)s)W
(
√

2)
W (K−1)(k−1)

since clearly (K − 1)(k − j) ≥ s. ♣

Let A be a given compact and convex body in UK . It now follows from Lemma
5 that for any real number λ ∈ (0, 1], any proper orthogonal transformation τ in RK
and any vector u ∈ UK , we have

E
(
DK [Q̃M ;A(λ, τ,u)]

)W
�K,WM

(1−1/K)W/2

for every M satisfying 1 ≤M ≤ 2Kh. If we now choose h to satisfy

2K(h−1) < N ≤ 2Kh,

then

E

(
1
N

N∑
M=1

∫ 1

0

∫
T

∫
UK

|DK [Q̃M ;A(λ, τ,u)]|
W

dudτdλ

)
�K,WN

(1−1/K)W/2.
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(1) follows immediately. This proves Theorem 3D. Note also the simpler inequality

E
(∫ 1

0

∫
T

∫
UK

|DK [Q̃N ;A(λ, τ,u)]|
W

dudτdλ
)
�K,WN

(1−1/K)W/2.

Theorem 2D follows.
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