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1. Introduction

Suppose that P is a distribution of N points in U0, the closed disc of unit area and
centred at the origin 0. For every measurable set B in R2, let Z[P;B] denote the
number of points of P in B, and write

D[P;B] = Z[P;B]−Nµ(B ∩ U0),

where µ denotes the usual measure in R2.
For every real number r ∈ R and every angle θ satisfying 0 ≤ θ ≤ 2π, let S(r, θ)

denote the closed half–plane

S(r, θ) = {x ∈ R2 : x · e(θ) ≥ r}.

Here e(θ) = (cos θ, sin θ) and x · y denotes the scalar product of x and y.
Roth asked the question (see Schmidt [7], pages 124–125) of whether

inf
|P|=N

sup
0≤r≤π−1/2

0≤θ≤2π

|D[P;S(r, θ)]| → +∞

as N →∞. Here the supremum is taken over all disc–segments in U0, and the infimum
is taken over all distributions P of N points in U0.

This question was answered in the affirmative by Beck [2], who proved in 1983
that

inf
|P|=N

sup
0≤r≤π−1/2

0≤θ≤2π

|D[P;S(r, θ)]| � N1/4(logN)−7/2.

Recently, Alexander [1] improved this to

inf
|P|=N

sup
0≤r≤π−1/2

0≤θ≤2π

|D[P;S(r, θ)]| � N1/4.

Beck and Alexander basically studied the L2–norm of the discrepancy function
D[P;S(r, θ)]. The following result can be proved.
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Theorem A. For every distribution P of N points in U0, we have

∫ 2π

0

∫ π−1/2

0

|D[P;S(r, θ)]|2drdθ � N1/2.

This is complemented by the result below, which can be proved using probabilistic
methods.

Theorem B. For every natural number N , there exists a distribution P of N points
in U0 such that ∫ 2π

0

∫ π−1/2

0

|D[P;S(r, θ)]|2drdθ � N1/2.

The purpose of this paper is to study the L1–norm of the discrepancy function
D[P;S(r, θ)]. We shall prove, in particular, the following rather surprising result.

Theorem. For every natural number N ≥ 2, there exists a distribution P of N points
in U0 such that ∫ 2π

0

∫ π−1/2

0

|D[P;S(r, θ)]|drdθ � (logN)2.

Our work in this paper is in fact motivated by the case when U0 is a square and
not a disc, and only for very special values of N . In developing the method to prove
the theorem above, we realized that it is possible to study the problem in far greater
generality.

Let U be a convex set in R2 of unit area, and with centre of gravity at the origin
0. Suppose that P is a distribution of N points in U . For every measurable set B in
R2, let Z[P;B] denote the number of points of P in B, and write

D[P;B] = Z[P;B]−Nµ(B ∩ U).

For any θ satisfying 0 ≤ θ ≤ 2π, let

R(θ) = sup{r ≥ 0 : S(r, θ) ∩ U 6= ∅}.

We shall in fact prove

Main Theorem. For every natural number N ≥ 2, there exists a distribution P of
N points in U such that∫ 2π

0

∫ R(θ)

0

|D[P;S(r, θ)]|drdθ �U (logN)2.
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2. A special case: U is a square

We first of all consider the case when U is the square [−1/2, 1/2]2, and show that for
every natural number N , there exists a set P of 4N2 + 4N + 1 points in U such that∫ 2π

0

∫ R(θ)

0

|D[P;S(r, θ)]|drdθ � (logN)2.

For ease of notation, we consider the following renormalized version of the problem.
Let V be the square [−N − 1/2, N + 1/2]2. For every finite distribution P of points in
V and every measurable set B in R2, let Z[P;B] denote the number of points of P in
B, and write

E[P;B] = Z[P;B]− µ(B ∩ V ).

We shall show that the set

P = {−N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N}2

of 4N2 + 4N + 1 integer lattice points in V satisfies∫ 2π

0

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N(logN)2, (1)

where, for every θ ∈ [0, 2π], we have M(θ) = (2N + 1)R(θ).
The line

T (r, θ) = {x ∈ R2 : x · e(θ) = r}

is the boundary of the half–plane S(r, θ), and can be rewritten in the form

x1 cos θ + x2 sin θ = r,

where x = (x1, x2) ∈ R2.
Suppose that 0 ≤ θ ≤ π/4. Clearly M(θ) = (N+1/2)(cos θ+sin θ). We distinguish

two cases.
Case 1: 0 ≤ r ≤ (N + 1/2)(cos θ − sin θ). It is not difficult to see that T (r, θ)

intersects the edges {(x1, N + 1/2) : |x1| ≤ N + 1/2} and {(x1,−N − 1/2) : |x1| ≤
N + 1/2} of V , i.e., the “top” and “bottom” edges of V . Then

S(r, θ) ∩ V =
N⋃

n=−N
S(n, V, r, θ),
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where, for every n = −N, . . . , 0, . . . , N ,

S(n, V, r, θ) = S(r, θ) ∩ V ∩ (R× [n− 1/2, n+ 1/2]).

Clearly

E[P;S(r, θ)] =
N∑

n=−N
E[P;S(n, V, r, θ)].

Now, for every n = −N, . . . , 0, . . . , N , we have

Z[P;S(n, V, r, θ)] = [N + n tan θ − r sec θ + 1]

and
µ(S(n, V, r, θ)) = N + n tan θ − r sec θ + 1/2,

so that
E[P;S(n, V, r, θ)] = −ψ(n tan θ − r sec θ),

where ψ(z) = z − [z]− 1/2 for every z ∈ R. Hence

E[P;S(r, θ)] = −
N∑

n=−N
ψ(n tan θ − r sec θ).

Case 2: (N+1/2)(cos θ−sin θ) ≤ r ≤ (N+1/2)(cos θ+sin θ). It is not difficult to
see that T (r, θ) intersects the edges {(x1, N+1/2) : |x1| ≤ N+1/2} and {(N+1/2, x2) :
|x2| ≤ N + 1/2} of V , i.e., the “top” and “right” edges of V . Furthermore,

T (r, θ) ∩ {(N + 1/2, x2) : |x2| ≤ N + 1/2}
= {(N + 1/2,−(N + 1/2) cot θ + r cosec θ)}.

Then S(n, V, r, θ) = ∅ if n < −(N + 1/2) cot θ + r cosec θ − 1/2. On the other hand, it
is trivial that E[P;S(n, V, r, θ)] = O(1) always. It follows that

E[P;S(r, θ)] = −
N∑

n=−N
(∗)

ψ(n tan θ − r sec θ) +O(1),

where the summation is under the further restriction

n ≥ −(N + 1/2) cot θ + r cosec θ. (∗)

Note that in Case 1, the restriction (∗) would become superfluous since it is weaker
than the requirement n ≥ −N . It follows that for all r ≥ 0, we have

E[P;S(r, θ)]−G[P; r, θ]� 1,
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where

G[P; r, θ] = −
N∑

n=−N
(∗)

ψ(n tan θ − r sec θ).

The function ψ(z) = z − [z]− 1/2 has the Fourier expansion

−
∑
ν 6=0

e(zν)
2πiν

,

so that −ψ(n tan θ − r sec θ) has the Fourier expansion

∑
ν 6=0

e(−rν sec θ)
2πiν

e(nν tan θ).

It follows that the Fourier expansion of G[P; r, θ] is given by

∑
ν 6=0

e(−rν sec θ)
2πiν

N∑
n=−N

(∗)

e(nν tan θ).

However, the restriction (∗) prevents us from applying Parseval’s theorem.
To overcome this difficulty, we introduce the following idea which is motivated by

Roth’s variation of Davenport’s method (see Roth [6] and §3.1 of Beck and Chen [3]).
Let y = (y1, y2) ∈ [−1/2, 1/2]2. For every θ ∈ [0, π/4] and every r ≥ 1, let

T (y; r, θ) = T (r + y1 cos θ + y2 sin θ, θ) (2)

and
S(y; r, θ) = S(r + y1 cos θ + y2 sin θ, θ) (3)

(note here that r + y1 cos θ + y2 sin θ ≥ 0 always). Then

E[P;S(y; r, θ)] = E[P;S(r + y1 cos θ + y2 sin θ, θ)].

It is not difficult to see that if we write

G[P; y; r, θ] = −
N∑

n=−N
(∗)

ψ(n tan θ − (r + y1 cos θ + y2 sin θ) sec θ),

then

E[P;S(y; r, θ)]−G[P; y; r, θ]�

 cot θ (M(θ)− (2N + 1) sin θ − 1 ≤ r ≤M(θ)),
1 (otherwise),
N (trivially),
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so that ∫ π/4

0

∫ M(θ)

1

|E[P;S(y; r, θ)]−G[P; y; r, θ]|drdθ � N (4)

(note that |y1 cos θ+y2 sin θ| ≤ 1, so that if r ≤M(θ)−(2N+1) sin θ−1, then T (y; r, θ)
intersects the top and bottom edges of V ).

Now G[P; y; r, θ] has the Fourier expansion

∑
ν 6=0

e(−(r + y1 cos θ + y2 sin θ)ν sec θ)
2πiν

N∑
n=−N

(∗)

e(nν tan θ)

=
∑
ν 6=0

e(−rν sec θ)
2πiν

N∑
n=−N

(∗)

e((n− y2)ν tan θ)e(−y1ν).

It follows that for every y2 ∈ [−1/2, 1/2], we have, by Parseval’s theorem, that

∫ 1/2

−1/2

|G[P; y; r, θ]|2dy1 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣∣∣
N∑

n=−N
(∗)

e((n− y2)ν tan θ)

∣∣∣∣∣∣∣∣
2

=
∞∑
ν=1

1
ν2

∣∣∣∣∣∣∣∣
N∑

n=−N
(∗)

e(nν tan θ)

∣∣∣∣∣∣∣∣
2

,

so that

∫ 1/2

−1/2

∫ 1/2

−1/2

|G[P; y; r, θ]|2dy1dy2 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣∣∣
N∑

n=−N
(∗)

e(nν tan θ)

∣∣∣∣∣∣∣∣
2

�
∞∑
ν=1

1
ν2

min{N2, ‖ν tan θ‖−2}, (5)

where ‖β‖ = minn∈Z |β − n| for every β ∈ R.
We need the following crucial estimate.

Lemma 1. We have

∫ π/4

0

( ∞∑
ν=1

1
ν2

min{N2, ‖ν tan θ‖−2}

)1/2

dθ � (logN)2.
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Proof. Since tan θ � θ if 0 ≤ θ ≤ π/4, it suffices to show that

∫ 1

0

( ∞∑
n=1

1
n2

min{N2, ‖nω‖−2}

)1/2

dω � (logN)2. (6)

Clearly
∞∑
n=1

1
n2

min{N2, ‖nω‖−2} ≤
N2∑
n=1

1
n2

min{N2, ‖nω‖−2}+ 1,

so that ( ∞∑
n=1

1
n2

min{N2, ‖nω‖−2}

)1/2

≤
N2∑
n=1

1
n

min{N, ‖nω‖−1}+ 1. (7)

Now, for every n = 1, . . . , N2, we have∫ 1

0

min{N, ‖nω‖−1}dω = 2n
∫ 1/2n

0

min{N, (nω)−1}dω � logN. (8)

Inequality (6) now follows on combining (7) and (8). ♣

By the Cauchy–Schwarz inequality, we have∫ 1/2

−1/2

∫ 1/2

−1/2

|G[P; y; r, θ]|dy1dy2

�

(∫ 1/2

−1/2

∫ 1/2

−1/2

|G[P; y; r, θ]|2dy1dy2

)1/2

. (9)

It follows from (4), (5), (9) and Lemma 1 that∫ 1/2

−1/2

∫ 1/2

−1/2

∫ π/4

0

∫ M(θ)

1

|E[P;S(y; r, θ)]|drdθdy1dy2 � N(logN)2. (10)

Note now that for every θ ∈ [0, π/4], every r ≥ 1 and every y ∈ [−1/2, 1/2]2, we have,
writing s = r + y1 cos θ + y2 sin θ, that |r − s| < 1. It follows that since S(y; r, θ) =
S(r + y1 cos θ + y2 sin θ, θ), where r + y1 cos θ + y2 sin θ ≥ 0, we must have∫ M(θ)−1

2

|E[P;S(r, θ)]|dr ≤
∫ M(θ)

1

|E[P;S(y; r, θ)]|dr. (11)

On the other hand, (∫ 2

0

+
∫ M(θ)

M(θ)−1

)
|E[P;S(r, θ)]|dr � N. (12)
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It now follows from (10)–(12) that∫ π/4

0

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N(logN)2.

Similarly, for j = 1, . . . , 7, we have∫ (j+1)π/4

jπ/4

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N(logN)2.

Inequality (1) now follows.

3. A special case: U is a circular disc

Next, we consider the case when U is the closed disc of unit area and centred at the
origin 0.

Let N be any given natural number. Again we consider a renormalized version of
the problem, and take V to be the closed disc of area N and centred at the origin 0.
However, if we simply attempt to take all the integer lattice points in V as our set P,
then the number of points of P can differ from N by an amount sufficiently large to
make our task impossible (see Hardy [4] and pp. 183–308 of Landau [5]).

Our new idea is to introduce a set P such that the majority of points of P are
integer lattice points in V , and that the remaining points give rise to a one–dimensional
discrepancy along and near the boundary of V . More precisely, for any x = (x1, x2) ∈
Z2, let

A(x) = A(x1, x2) = [x1 − 1/2, x1 + 1/2]× [x2 − 1/2, x2 + 1/2]; (13)

in other words, A(x) is the aligned closed square of unit area and centred at x. Let

P1 = {p ∈ Z2 : A(p) ⊆ V }, (14)

and write
V1 =

⋃
p∈P1

A(p). (15)

Note that the points of P1 form the majority of any point set P of N points in V . For
the remaining points, let

V2 = V \ V1. (16)

Then it is easy to see, writing πM2 = N , that

µ(V2) ∈ N and µ(V2)�M.

We partition V2 as follows. Write

L = µ(V2), (17)
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and let
0 = θ0 < θ1 < . . . < θL−1 < θL = 1 (18)

such that for every j = 1, . . . , L, the set

Rj = {x ∈ V2 : 2πθj−1 ≤ arg x < 2πθj} (19)

satisfies
µ(Rj) = 1. (20)

For every j = 1, . . . , L, let
pj ∈ Rj , (21)

and write
P2 = {p1, . . . ,pL}. (22)

If we now take
P = P1 ∪ P2, (23)

then clearly P contains exactly N points.
For every measurable set B in R2, let Z[P;B] denote the number of points of P

in B, and write
E[P;B] = Z[P;B]− µ(B ∩ V ).

Clearly, for every j = 1, . . . , L, we have

E[P;Rj ] = 0. (24)

We shall show that the set P satisfies∫ 2π

0

∫ M

0

|E[P;S(r, θ)]|drdθ �M(logN)2. (25)

Again, suppose that 0 ≤ θ ≤ π/4.
As before, the line T (r, θ) is given by x1 cos θ + x2 sin θ = r, where x = (x1, x2) ∈

R2. Furthermore, T (r, θ) intersects the boundary of V at the points

(r cos θ + (M2 − r2)
1/2

sin θ, r sin θ − (M2 − r2)
1/2

cos θ) (26)

and
(r cos θ − (M2 − r2)

1/2
sin θ, r sin θ + (M2 − r2)

1/2
cos θ). (27)

Let T (1)(r, θ) denote the line segment joining the point (r cos θ, r sin θ) and (26), and
let T (2)(r, θ) denote the line segment joining the point (r cos θ, r sin θ) and (27).

Suppose first of all that 0 ≤ r ≤M − 4. Let

M (1)(r, θ) = max{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (1)(r, θ) 6= ∅}
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and

M (2)(r, θ) = min{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (2)(r, θ) 6= ∅},

and let
I(r, θ) = {n ∈ Z : M (1)(r, θ) < n < M (2)(r, θ)}.

We can now write S(r, θ) ∩ V as a union of subsets as follows. Let

S0(r, θ) =
⋃

x∈Z2

A(x)⊆S(r,θ)∩V1

A(x). (28)

Also, let

S1(r, θ) = S(r, θ) ∩


⋃

n∈I(r,θ)

⋃
m∈Z

A(m,n)∩S(r,θ) 6=∅
A(m,n)\S(r,θ)6=∅

A(m,n)

 (29)

(note here that the three conditions n ∈ I(r, θ), A(m,n) ∩ S(r, θ) 6= ∅ and A(m,n) \
S(r, θ) 6= ∅ imply that we must have A(m,n) ⊆ V1) and

S2(r, θ) =
L⋃
j=1

Rj⊆S(r,θ)

Rj . (30)

The remainder of S(r, θ) consists of

W
(1)
1 (r, θ) = S(r, θ) ∩ V ∩


⋃

n≤M(1)(r,θ)

⋃
m∈Z

A(m,n)⊆V1
A(m,n)∩S(r,θ) 6=∅
A(m,n)\S(r,θ)6=∅

A(m,n)


(31)

and

W
(2)
1 (r, θ) = S(r, θ) ∩ V ∩


⋃

n≥M(2)(r,θ)

⋃
m∈Z

A(m,n)⊆V1
A(m,n)∩S(r,θ) 6=∅
A(m,n)\S(r,θ)6=∅

A(m,n)


, (32)
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as well as

W
(1)
2 (r, θ) = S(r, θ) ∩


L⋃
j=1

Rj∩T (1)(r,θ)6=∅
Rj\S(r,θ)6=∅

Rj

 (33)

and

W
(2)
2 (r, θ) = S(r, θ) ∩


L⋃
j=1

Rj∩T (2)(r,θ)6=∅
Rj\S(r,θ)6=∅

Rj

 . (34)

It is not difficult to see that since 0 ≤ r ≤M − 4, we have

S(r, θ) ∩ V =

 2⋃
j=0

Sj(r, θ)

 ∪
 2⋃
j=1

2⋃
k=1

W
(k)
j (r, θ)

 .

Also, each pair B1 and B2 of the seven sets on the right-hand side satisfy µ(B1∩B2) = 0
and B1 ∩B2 ∩ P = ∅. It follows that

E[P;S(r, θ)] =
2∑
j=0

E[P;Sj(r, θ)] +
2∑
j=1

2∑
k=1

E[P;W (k)
j (r, θ)]. (35)

We shall estimate each of the terms on the right-hand side when 0 ≤ r ≤M − 4.
Clearly

E[P;S0(r, θ)] = 0, (36)

as for each square A(x) in S0(r, θ), we have Z[P;A(x)] = µ(A(x)) = 1. Similarly

E[P;S2(r, θ)] = 0 (37)

in view of (24).
As before, let ψ(z) = z − [z]− 1/2 for every z ∈ R.

Lemma 2. Suppose that 0 ≤ θ ≤ π/4 and 0 ≤ r ≤M − 4. Then

E[P;S1(r, θ)] = −
∑

n∈I(r,θ)

ψ(n tan θ − r sec θ). (38)

Proof. For each n ∈ I(r, θ), let

S1(n, r, θ) = S(r, θ) ∩


⋃
m∈Z

A(m,n)∩S(r,θ)6=∅
A(m,n)\S(r,θ) 6=∅

A(m,n)

 .
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Then
S1(r, θ) =

⋃
n∈I(r,θ)

S1(n, r, θ).

Clearly
E[P;S1(r, θ)] =

∑
n∈I(r,θ)

E[P;S1(n, r, θ)]. (39)

Now let n ∈ I(r, θ). Then there exists a greatest m ∈ Z such that A(m,n)∩S(r, θ) 6= ∅
and A(m,n) \ S(r, θ) 6= ∅. It is not difficult to see that

Z[P;S1(n, r, θ)] = [m+ n tan θ − r sec θ + 1]

and
µ(S1(n, r, θ)) = m+ n tan θ − r sec θ + 1/2.

It follows that
E[P;S1(n, r, θ)] = −ψ(n tan θ − r sec θ). (40)

Clearly (38) follows on combining (39) and (40). ♣

Again, if we work out the Fourier expansion of the term E[P;S1(r, θ)], then the
summation restriction n ∈ I(r, θ) prevents us from applying Parseval’s theorem. As
before, let y = (y1, y2) ∈ [−1/2, 1/2]2. For every θ ∈ [0, π/4] and every r ≥ 1, define
T (y; r, θ) and S(y; r, θ) as in (2) and (3). Note that T (y; r, θ) intersects the boundary
of V at the points

(s cos θ + (M2 − s2)
1/2

sin θ, s sin θ − (M2 − s2)
1/2

cos θ) (41)

and
(s cos θ − (M2 − s2)

1/2
sin θ, s sin θ + (M2 − s2)

1/2
cos θ), (42)

where s = s(y) = r+y1 cos θ+y2 sin θ. Let T (1)(y; r, θ) denote the line segment joining
the points (s cos θ, s sin θ) and (41), and let T (2)(y; r, θ) denote the line segment joining
the points (s cos θ, s sin θ) and (42). For 1 ≤ r ≤M − 4, let

M (1)(y; r, θ) = max{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (1)(y; r, θ) 6= ∅}

and

M (2)(y; r, θ) = min{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (2)(y; r, θ) 6= ∅},

and let
I(y; r, θ) = {n ∈ Z : M (1)(y; r, θ) < n < M (2)(y; r, θ)}.

12



Now let

S1(y; r, θ) = S(y; r, θ) ∩


⋃

n∈I(y;r,θ)

⋃
m∈Z

A(m,n)∩S(y;r,θ)6=∅
A(m,n)\S(y;r,θ) 6=∅

A(m,n)

 .

Then clearly

E[P;S1(y; r, θ)] = −
∑

n∈I(y;r,θ)

ψ(n tan θ − (r + y1 cos θ + y2 sin θ) sec θ).

We shall approximate E[P;S1(y; r, θ)] by

G1[P; y; r, θ] = −
∑

n∈I(r,θ)

ψ(n tan θ − (r + y1 cos θ + y2 sin θ) sec θ).

Lemma 3. For every y ∈ [−1/2, 1/2]2, we have∫ π/4

0

∫ M−4

1

|E[P;S1(y; r, θ)]−G1[P; y; r, θ]|drdθ �M.

The proof of Lemma 3 will be given later, as the ideas are similar to those for
studying the terms E[P;W (k)

j (r, θ)].
Now G1[P; y; r, θ] has the Fourier expansion

∑
ν 6=0

e(−(r + y1 cos θ + y2 sin θ)ν sec θ)
2πiν

∑
n∈I(r,θ)

e(nν tan θ)

=
∑
ν 6=0

e(−rν sec θ)
2πiν

∑
n∈I(r,θ)

e((n− y2)ν tan θ)e(−y1ν). (43)

It follows that for every y2 ∈ [−1/2, 1/2], we have, by Parseval’s theorem, that

∫ 1/2

−1/2

|G1[P; y; r, θ]|2dy1 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑

n∈I(r,θ)

e(nν tan θ)

∣∣∣∣∣∣
2

.

It follows that∫ 1/2

−1/2

∫ 1/2

−1/2

|G1[P; y; r, θ]|2dy1dy2 �
∞∑
ν=1

1
ν2

min{M2, ‖ν tan θ‖−2},

13



so that by the Cauchy–Schwarz inequality,

∫ 1/2

−1/2

∫ 1/2

−1/2

|G1[P; y; r, θ]|dy1dy2 �

( ∞∑
ν=1

1
ν2

min{M2, ‖ν tan θ‖−2}

)1/2

. (44)

To study the terms E[P;W (k)
j (r, θ)], we have

Lemma 4. For j, k ∈ {1, 2}, we have∫ π/4

0

∫ M−4

0

|E[P;W (k)
j (r, θ)]|drdθ �M.

Suppose that 0 ≤ θ ≤ π/4 and 0 ≤ r ≤M − 4. Let

I(1)(r, θ) = {n ∈ Z : r sin θ − (M2 − r2)
1/2

cos θ ≤ n ≤M (1)(r, θ)}

and
I(2)(r, θ) = {n ∈ Z : M (2)(r, θ) ≤ n ≤ r sin θ + (M2 − r2)

1/2
cos θ}.

Note that r sin θ ± (M2 − r2)1/2 cos θ are the second coordinates of the two points of
intersection of T (r, θ) and the boundary of V , and that

I(r, θ) ∪ I(1)(r, θ) ∪ I(2)(r, θ)

= {n ∈ Z : r sin θ − (M2 − r2)
1/2

cos θ ≤ n ≤ r sin θ + (M2 − r2)
1/2

cos θ}.

Furthermore, the three sets on the left–hand side are pairwise disjoint.
If 0 ≤ θ ≤ π/4 and 0 ≤ r ≤ M − 4, it is not difficult to see that for every

j, k ∈ {1, 2}, we have

|E[P;W (k)
j (r, θ)]| � card

(
I(k)(r, θ)

)
.

Lemma 4 will follow if we can prove

Lemma 5. For j, k ∈ {1, 2}, we have∫ π/4

0

∫ M−4

0

card
(
I(k)(r, θ)

)
drdθ �M.

To prove Lemma 3, note that if 0 ≤ θ ≤ π/4, 1 ≤ r ≤M −4 and y ∈ [−1/2, 1/2]2,
we have

E[P;S1(y; r, θ)]−G1[P; y; r, θ]� min{M, card(I(r, θ)4I(y; r, θ))}, (45)
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where B14B2 denotes the symmetric difference between the sets B1 and B2. Clearly
I(y; r, θ) = I(s, θ), where s = r + y1 cos θ + y2 sin θ ≥ 0. In this case,

I(r, θ)4I(s, θ) ⊆
2⋃
k=1

(
I(k)(r, θ) ∪ I(k)(s, θ)

)
. (46)

Note now that |r − s| < 1, so it follows from (45), (46) and Lemma 5 that∫ π/4

0

∫ M−5

2

|E[P;S1(y; r, θ)]−G1[P; y; r, θ]|drdθ

�
2∑
k=1

∫ π/4

0

∫ M−4

1

card
(
I(k)(r, θ)

)
drdθ �M.

Lemma 3 now follows on combining this and the simple observation that∫ π/4

0

(∫ 2

1

+
∫ M−4

M−5

)
|E[P;S1(y; r, θ)]−G1[P; y; r, θ]|drdθ �M.

Proof of Lemma 5. Note that T (1)(r, θ) intersects ∂V , the boundary of V , at the point
(26). Clearly n+ 1 6∈ I(1)(r, θ) if the distance between the points

(−n tan θ + r sec θ, n) ∈ T (1)(r, θ) and
(

(M2 − n2)
1/2
, n
)
∈ ∂V

exceeds 1. It follows that

card
(
I(1)(r, θ)

)
� 1 + v − r sin θ + (M2 − r2)

1/2
cos θ, (47)

where
(M2 − v2)

1/2
+ v tan θ − r sec θ = 1 (48)

and v < r sin θ. Elementary calculation gives

v = sin θ cos θ + r sin θ − (M2 − (r + cos θ)2)
1/2

cos θ, (49)

so that, combining (47) and (49), we have

card
(
I(1)(r, θ)

)
� 1 + sin θ cos θ + (M2 − r2)

1/2
cos θ − (M2 − (r + cos θ)2)

1/2
cos θ

� 1 +
r

(M2 − r2)1/2
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since r ≤M − 4. Clearly∫ π/4

0

∫ M−4

0

card
(
I(1)(r, θ)

)
drdθ �M.

On the other hand, T (2)(r, θ) intersects ∂V at the point (27). Suppose first of all that
r ≥ M sin θ, so that r cos θ − (M2 − r2)1/2 sin θ ≥ 0. Then n − 1 6∈ I(2)(r, θ) if the
distance between the points

(−n tan θ + r sec θ, n) ∈ T (2)(r, θ) and
(

(M2 − n2)
1/2
, n
)
∈ ∂V (50)

exceeds 1. It follows that if r ≥M sin θ, then

card
(
I(2)(r, θ)

)
� 1 + r sin θ + (M2 − r2)

1/2
cos θ − v, (51)

where v satisfies (48) and
v > r sin θ. (52)

Elementary calculation gives

v = sin θ cos θ + r sin θ + (M2 − (r + cos θ)2)
1/2

cos θ, (53)

so that, combining (51) and (53), we have

card
(
I(2)(r, θ)

)
� 1− sin θ cos θ + (M2 − r2)

1/2
cos θ − (M2 − (r + cos θ)2)

1/2
cos θ

� 1 +
r

(M2 − r2)1/2

since r ≤M−4. Suppose now that r < M sin θ, so that r cos θ−(M2 − r2)1/2 sin θ < 0.
Then n−1 6∈ I(2)(r, θ) if the distance between the points (50) and the distance between
the points

(−n tan θ + r sec θ, n) ∈ T (2)(r, θ) and
(
−(M2 − n2)

1/2
, n
)
∈ ∂V

exceeds 1. It follows that (51) must hold both when v satisfies (48) and (52) and when
v satisfies

(M2 − v2)
1/2 − v tan θ + r sec θ = 1

and (52). Clearly we only need to investigate the latter case. Elementary calculation
gives

v = r sin θ − sin θ cos θ + (M2 − (r − cos θ)2)
1/2

cos θ, (54)
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so that, combining (51) and (54), we have

card
(
I(2)(r, θ)

)
� 1 + sin θ cos θ + (M2 − r2)

1/2
cos θ − (M2 − (r − cos θ)2)

1/2
cos θ

� 1 +
r

(M2 − r2)1/2

since r ≤M − 4. Clearly∫ π/4

0

∫ M−4

0

card
(
I(2)(r, θ)

)
drdθ �M. ♣

It now follows from (35)–(37) and Lemma 4 that∫ π/4

0

∫ M−4

0

|E[P;S(r, θ)]|drdθ �M +
∫ π/4

0

∫ M−4

0

|E[P;S1(r, θ)]|drdθ. (55)

On the other hand, it is easy to see that if 0 ≤ θ ≤ π/4 and M − 4 ≤ r ≤M , we have

Z[P;S(r, θ)] = Z[P;S(r, θ) ∩ V1] + Z[P;S(r, θ) ∩ V2]�M + L�M

and µ(S(r, θ) ∩ V )�M , so that E[P;S(r, θ)]�M , whence∫ π/4

0

∫ M

M−4

|E[P;S(r, θ)]|drdθ �M. (56)

Combining (55) and (56), we have∫ π/4

0

∫ M

0

|E[P;S(r, θ)]|drdθ �M +
∫ π/4

0

∫ M−4

0

|E[P;S1(r, θ)]|drdθ. (57)

Combining Lemma 1, (44) and Lemma 3, we have∫ 1/2

−1/2

∫ 1/2

−1/2

∫ π/4

0

∫ M−4

1

|E[P;S1(y; r, θ)]|drdθdy1dy2 �M(logN)2. (58)

Note again that for every θ ∈ [0, π/4], every r ≥ 1 and every y ∈ [−1/2, 1/2]2, we have,
writing s = r + y1 cos θ + y2 sin θ, that |r − s| < 1. It follows that since S1(y; r, θ) =
S1(r + y1 cos θ + y2 sin θ, θ), where r + y1 cos θ + y2 sin θ ≥ 0, we must have∫ M−5

2

|E[P;S1(r, θ)]|dr ≤
∫ M−4

1

|E[P;S1(y; r, θ)]|dr. (59)
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On the other hand, |E[P;S1(r, θ)]| �M always, so that(∫ 2

0

+
∫ M−4

M−5

)
|E[P;S1(r, θ)]|dr �M. (60)

It now follows from (58)–(60) that∫ π/4

0

∫ M−4

0

|E[P;S1(r, θ)]|drdθ �M(logN)2. (61)

Combining (57) and (61), we have∫ π/4

0

∫ M

0

|E[P;S(r, θ)]|drdθ �M(logN)2.

Similarly, for j = 1, . . . , 7, we have∫ (j+1)π/4

jπ/4

∫ M

0

|E[P;S(r, θ)]|drdθ �M(logN)2.

Inequality (25) now follows.

4. Proof of the Main Theorem

Finally, we consider the problem in general, where U is a closed convex set in R2, and
with centre of gravity at 0.

Let N be any given natural number. As in the special cases considered earlier, we
let V = {N1/2x : x ∈ U}, so that µ(V ) = N . Our approach is similar to that when
V is a circular disc. Indeed, we define P, P1, P2, V1, V2, L and Rj (j = 1, . . . , L) in
terms of V by (13)–(23), and note that

µ(V2) ∈ Z and µ(V2)� N1/2.

For every measurable set B in R2, let Z[P;B] denote the number of points of P
in B, and write

E[P;B] = Z[P;B]− µ(B ∩ V ).

Then (24) holds for every j = 1, . . . , L. We shall show that the set P satisfies∫ 2π

0

∫ M(θ)

0

|E[P;B]|drdθ � N1/2(logN)2, (62)

where, for every θ ∈ [0, 2π], we have M(θ) = N1/2R(θ).
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Again, suppose that 0 ≤ θ ≤ π/4.
As before, the line T (r, θ) is given by x1 cos θ + x2 sin θ = r, where x = (x1, x2) ∈

R2. Furthermore, T (r, θ) intersects the boundary of V at the points

u(1)(r, θ) =
(
u

(1)
1 (r, θ), u(1)

2 (r, θ)
)

(63)

and
u(2)(r, θ) =

(
u

(2)
1 (r, θ), u(2)

2 (r, θ)
)
, (64)

with the restriction that u(1)
2 (r, θ) ≤ u

(2)
2 (r, θ). Here the argument is slightly more

complicated than before. Consider the line segment T (r, θ)∩V . We need the following
geometric lemma. To state this, we need some notation. Let

Rmax = sup{M(θ) : 0 ≤ θ < 2π} and Rmin = inf{M(θ) : 0 ≤ θ < 2π},

and let
ρ =

Rmin

Rmax
.

Also, for θ ∈ [0, π/4] and r ∈ [0,M(θ)], let

l(r, θ) =
∣∣∣u(1)(r, θ)− u(2)(r, θ)

∣∣∣ ;
in other words, l(r, θ) is the length of the line segment T (r, θ) ∩ V . Furthermore, let
p(r, θ) denote the midpoint of T (r, θ) ∩ V .

We shall assume that N is sufficiently large.

Lemma 6. Suppose that θ ∈ [0, π/4]. Suppose further that 0 ≤ r ≤ M(θ)− 48 and
l(r, θ) ≥ 96/ρ. Then the square of side 12, centred at p(r, θ) and with one side parallel
to T (r, θ), lies in V .

Proof. It clearly suffices to show that the sets S(r, θ)∩V and (V \S(r, θ))∪(T (r, θ)∩V )
each contains a rectangle of sides 6 and 12, with the point p(r, θ) as the midpoint of
one of the long sides.

(I) We shall first consider S(r, θ) ∩ V . Let v(r, θ) ∈ S(r, θ) ∩ V be of maximal
(perpendicular) distance from the line T (r, θ). By a suitable translation and rotation,
we may assume that p(r, θ) is the point (0, 0), that u(1)(r, θ) and u(2)(r, θ) are the
points (y, 0) and (−y, 0) respectively, where 2y = l(r, θ), and that v(r, θ) is the point
(u, x), where x ≥ 0 (the reader is advised to draw a picture). We may further assume,
without loss of generality, that u ≥ 0. Clearly, it suffices to show, in view of the
convexity of V , that the rectangle with vertices (±6, 0) and (±6, 6) is contained in the
triangle with vertices (±y, 0) and (u, x). In view of our assumption u ≥ 0, it suffices
to show that if x ≥ 48 and y ≥ 48/ρ, then

x

y + u
≥ 6
y − 6

,
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i.e. x(y − 6) ≥ 6u+ 6y. Now if u ≤ y, then since x ≥ 24 and y ≥ 12, we have

x(y − 6) ≥ xy

2
≥ 12y ≥ 6u+ 6y.

On the other hand, if u > y, then by the convexity of V , we must have x ≥ Rmin and
u− y ≤ Rmax, so that

x

u− y
≥ Rmin

Rmax
= ρ,

i.e. x+ ρy ≥ ρu. Since x ≥ 48 and y ≥ 48/ρ, we have, noting that ρ ≤ 1, that

x(y − 6) ≥ xy

2
≥ 12x

ρ
+ 12y =

12
ρ

(x+ ρy) ≥ 12u > 6u+ 6y.

(II) We now consider (V \ S(r, θ)) ∪ (T (r, θ) ∩ V ). Let u(1)(0, θ) and u(2)(0, θ)
denote the endpoints of the line segment T (0, θ)∩ V . By a suitable rotation about the
centre 0 of V , we may assume that T (r, θ) is a horizontal line (the reader is advised to
draw a picture), that the point p(r, θ) is denoted by (u, r), that the points u(1)(r, θ)
and u(2)(r, θ) are denoted by (u + y, r) and (u − y, r) respectively, where 2y = l(r, θ).
Clearly, in view of convexity, it suffices to show that if y ≥ 48/ρ, then the points
(u± 6, r− 6) are contained in the triangle with vertices (0, 0) and (u± y, r). Again, in
view of convexity, it suffices to show that if y ≥ 48/ρ, then

6
y − 6

≤ Rmin

Rmax
= ρ,

i.e. y ≥ 6(1 + ρ)/ρ. This last inequality clearly holds if y ≥ 48/ρ, since ρ ≤ 1. ♣

For every θ ∈ [0, π/4] and r ∈ [0,M(θ)], let SQ(r, θ) denote the square of side 12,
centred at p(r, θ) and with one side parallel to T (r, θ). Further, let

M∗(θ) = sup{0 ≤ r ≤M(θ) : SQ(r, θ) ⊆ V }.

Then clearly

Lemma 7. For every θ ∈ [0, π/4], either

M∗(θ) ≥M(θ)− 48

or

l (M∗(θ), θ) ≤ 96
ρ
.

We shall also need
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Lemma 8. For every θ ∈ [0, π/4] and every r ∈ [M∗(θ),M(θ)], we have

l(r, θ) ≤ 2l (M∗(θ), θ)

if N is sufficiently large.

Proof. We may assume that N is sufficiently large so that l(0, θ) ≥ 96/ρ. Suppose
first of all that l(M∗(θ), θ) ≤ l(0, θ). Then in view of convexity, we must have l(r, θ) ≤
l (M∗(θ), θ) if r ≥ M∗(θ). Suppose now that l(M∗(θ), θ) > l(0, θ). Then, again by
convexity, we must have

l(r, θ)
r
≤ l(M∗(θ), θ)

M∗(θ)
.

In view of Lemma 7 and our assumption that l(0, θ) ≥ 96/ρ, we must have M∗(θ) ≥
M(θ)− 48. It follows that

l(r, θ) ≤ r

M(θ)− 48
l (M∗(θ), θ) ≤ M(θ)

M(θ)− 48
l (M∗(θ), θ) .

Note now that M(θ)→∞ as N →∞. ♣

For every θ ∈ [0, π/4] and every r ∈ [0,M(θ)], let T (1)(r, θ) denote the line segment
joining the points p(r, θ) and u(1)(r, θ), and let T (2)(r, θ) denote the line segment joining
the points p(r, θ) and u(2)(r, θ).

Suppose first of all that 0 ≤ r ≤M∗(θ). As before, let

M (1)(r, θ) = max{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (1)(r, θ) 6= ∅} (65)

and

M (2)(r, θ) = min{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (2)(r, θ) 6= ∅}, (66)

and let
I(r, θ) = {n ∈ Z : M (1)(r, θ) < n < M (2)(r, θ)}. (67)

Then in view of Lemma 6, we must have I(r, θ) 6= ∅. We now write S(r, θ) ∩ V in the
form

S(r, θ) ∩ V =

 2⋃
j=0

Sj(r, θ)

 ∪
 2⋃
j=1

2⋃
k=1

W
(k)
j (r, θ)

 ,

where the seven sets on the right-hand side are defined by (28)–(34). Clearly, each pair
B1 and B2 of these seven sets satisfy µ(B1 ∩B2) = 0 and B1 ∩B2 ∩ P = ∅. It follows
that

E[P;S(r, θ)] =
2∑
j=0

E[P;Sj(r, θ)] +
2∑
j=1

2∑
k=1

E[P;W (k)
j (r, θ)]. (68)
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We shall estimate each of the terms on the right-hand side when 0 ≤ r ≤M∗(θ).
Clearly

E[P;S0(r, θ)] = E[P;S2(r, θ)] = 0 (69)

as before. Also, as in Lemma 2, we have, writing ψ(z) = z − [z]− 1/2 for every z ∈ R,
that

Lemma 9. Suppose that 0 ≤ θ ≤ π/4 and 0 ≤ r ≤M∗(θ). Then

E[P;S1(r, θ)] = −
∑

n∈I(r,θ)

ψ(n tan θ − r sec θ).

As in the special case of the disc, the summation restriction n ∈ I(r, θ) again
prevents us from applying Parseval’s theorem to the Fourier expansion of the term
E[P;S1(r, θ)]. We can overcome this in a similar way as before. Let y = (y1, y2) ∈
[−1/2, 1/2]2. For every θ ∈ [0, π/4] and every r ≥ 1, define T (y; r, θ) and S(y; r, θ) as
in (2) and (3). Suppose now that T (y; r, θ) intersects the boundary of V at the points

u(1)(y; r, θ) =
(
u

(1)
1 (y; r, θ), u(1)

2 (y; r, θ)
)

and
u(2)(y; r, θ) =

(
u

(2)
1 (y; r, θ), u(2)

2 (y; r, θ)
)
,

with the restriction that u(1)
2 (y; r, θ) ≤ u

(2)
2 (y; r, θ). Let T (1)(y; r, θ) denote the line

segment joining the points p(y; r, θ) and u(1)(y; r, θ), and let T (2)(y; r, θ) denote the
line segment joining the points p(y; r, θ) and u(2)(y; r, θ), where p(y; r, θ) denotes the
midpoint of the line segment T (y; r, θ) ∩ V . For 1 ≤ r ≤M∗(θ), let

M (1)(y; r, θ) = max{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (1)(y; r, θ) 6= ∅}

and

M (2)(y; r, θ) = min{n ∈ Z : there exists m ∈ Z such that A(m,n) ∩ V2 6= ∅
and A(m,n) ∩ T (2)(y; r, θ) 6= ∅},

and let
I(y; r, θ) = {n ∈ Z : M (1)(y; r, θ) < n < M (2)(y; r, θ)}.

Now let, as before,

S1(y; r, θ) = S(y; r, θ) ∩


⋃

n∈I(y;r,θ)

⋃
m∈Z

A(m,n)∩S(y;r,θ)6=∅
A(m,n)\S(y;r,θ)6=∅

A(m,n)

 .

22



Then clearly

E[P;S1(y; r, θ)] = −
∑

n∈I(y;r,θ)

ψ(n tan θ − (r + y1 cos θ + y2 sin θ) sec θ).

We shall approximate E[P;S1(y; r, θ)] by

G1[P; y; r, θ] = −
∑

n∈I(r,θ)

ψ(n tan θ − (r + y1 cos θ + y2 sin θ) sec θ).

Corresponding to Lemma 3, we have

Lemma 10. For every y ∈ [−1/2, 1/2]2, we have∫ π/4

0

∫ M∗(θ)

1

|E[P;S1(y; r, θ)]−G1[P; y; r, θ]|drdθ � N1/2.

We shall prove Lemma 10 later.
Now G1[P; y; r, θ] has the Fourier expansion (43). It follows, as before, that

∫ 1/2

−1/2

∫ 1/2

−1/2

|G1[P; y; r, θ]|dy1dy2 �

( ∞∑
ν=1

1
ν2

min{N, ‖ν tan θ‖−2}

)1/2

(70)

for every θ ∈ [0, π/4] and r ∈ [0,M∗(θ)].
To study the terms E[P;W (k)

j (r, θ)], we have the following analogue of Lemma 4.

Lemma 11. For j, k ∈ {1, 2}, we have∫ π/4

0

∫ M∗(θ)

0

|E[P;W (k)
j (r, θ)]|drdθ � N1/2.

Suppose that 0 ≤ θ ≤ π/4 and 0 ≤ r ≤M∗(θ). Let

I(1)(r, θ) = {n ∈ Z : u(1)
2 (r, θ) ≤ n ≤M (1)(r, θ)} (71)

and
I(2)(r, θ) = {n ∈ Z : M (2)(r, θ) ≤ n ≤ u(2)

2 (r, θ)}.

Then clearly

I(r, θ) ∪ I(1)(r, θ) ∪ I(2)(r, θ) = {n ∈ Z : u(1)
2 (r, θ) ≤ n ≤ u(2)

2 (r, θ)}.

Furthermore, the three sets on the left–hand side are pairwise disjoint.
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If 0 ≤ θ ≤ π/4 and 0 ≤ r ≤ M∗(θ), it is not difficult to see that for every
j, k ∈ {1, 2}, we have

|E[P;W (k)
j (r, θ)]| � card

(
I(k)(r, θ)

)
.

Lemma 11 will follow from the analogue of Lemma 5 below.

Lemma 12. For j, k ∈ {1, 2}, we have∫ π/4

0

∫ M∗(θ)

0

card
(
I(k)(r, θ)

)
drdθ � N1/2.

To prove Lemma 10, note that if 0 ≤ θ ≤ π/4, 1 ≤ r ≤M∗(θ) and y ∈ [−1/2, 1/2]2,
we have

E[P;S1(y; r, θ)]−G1[P; y; r, θ]� min
{
N1/2, card(I(r, θ)4I(y; r, θ))

}
, (72)

where B14B2 denotes the symmetric difference between the sets B1 and B2. Clearly
I(y; r, θ) = I(s, θ), where s = r + y1 cos θ + y2 sin θ ≥ 0. In this case,

I(r, θ)4I(s, θ) ⊆
2⋃
k=1

(
I(k)(r, θ) ∪ I(k)(s, θ)

)
. (73)

Note now that |r − s| < 1, so it follows from (72), (73) and Lemma 12 that∫ π/4

0

∫ M∗(θ)−1

2

|E[P;S1(y; r, θ)]−G1[P; y; r, θ]|drdθ

�
2∑
k=1

∫ π/4

0

∫ M∗(θ)

1

card
(
I(k)(r, θ)

)
drdθ � N1/2.

Lemma 10 now follows on combining this and the simple observation that

∫ π/4

0

(∫ 2

1

+
∫ M∗(θ)

M∗(θ)−1

)
|E[P;S1(y; r, θ)]−G1[P; y; r, θ]|drdθ � N1/2.

Note that Lemma 12 is a generalization of Lemma 5. Our proof, however, is
necessarily different. In our earlier proof of Lemma 5, we use explicitly the equation of
∂V , the boundary of V . In the general case, such information is clearly not available.

Our proof here is based on the following simple geometric observation.
Consider the points u(1)(n, θ), where n ∈ Z and 0 ≤ n ≤ M(θ). We extend

this definition in the natural way to n = −1,−2, . . . ,−6. For each θ ∈ [0, π/4] and
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n = −6, . . . ,−1, 0, 1, . . . , [M(θ)], let Nθ(n) denote the area of the rectangle with one
edge on T (n, θ) and with vertices u(1)(n, θ) and u(1)(n+ 1, θ).

Lemma 13. Suppose that 0 ≤ θ ≤ π/4 and 0 ≤ r ≤M∗(θ). Then

I(1)(r, θ) ≤ max

{
6,

6∑
i=1

Nθ(n+ i, θ),
6∑
i=1

Nθ(n− i, θ)

}
,

where n = [r].

Proof. Let

M = max

{
6,

6∑
i=1

Nθ(n+ i, θ),
6∑
i=1

Nθ(n− i, θ)

}
.

Then the two right-angled triangles with vertices

u(1)(r, θ) and u(1)(r, θ) +Me(θ + π/2)
and u(1)(r, θ) +Me(θ + π/2)± 6e(θ),

where e(φ) = (cosφ, sinφ) for φ ∈ R, each contains a square of the type A(m,n) ⊆ V1,
in view of the convexity of V . The result follows from the definitions of I(r, θ) and
I(1)(r, θ) (see (65)–(67) and (71)). ♣

Proof of Lemma 12. Note that for every n = −6, . . . ,−1, 0, 1, . . . , [M(θ)], we have

Nθ(n) ≤
∣∣∣u(1)(n, θ)− u(1)(n+ 1, θ)

∣∣∣ .
It follows from Lemma 13 that∫ M∗(θ)

0

card
(
I(1)(r, θ)

)
drdθ �M∗(θ) +

6∑
i=−6

∣∣∣u(1)(n+ i, θ)− u(1)(n+ i+ 1, θ)
∣∣∣

≤M∗(θ) + 13 perimeter (V )� N1/2.

A similar argument applies for I(2)(r, θ). ♣

It now follows from (68), (69) and Lemma 11 that

∫ π/4

0

∫ M∗(θ)

0

|E[P;S(r, θ)]|drdθ

� N1/2 +
∫ π/4

0

∫ M∗(θ)

0

|E[P;S1(r, θ)]|drdθ. (74)
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Next, we investigate the integral∫ π/4

0

∫ M(θ)

M∗(θ)

|E[P;S(r, θ)]|drdθ.

Suppose that 0 ≤ θ ≤ π/4 and M∗(θ) ≤ r ≤ M(θ). We shall use Lemma 7. If
M∗(θ) ≥ M(θ) − 48, then clearly M(θ) − r ≤ 48. On the other hand, l(r, θ) � N1/2

trivially. We now use the simple estimate

|E[P;S(r, θ)]| � µ(S(r, θ)) ≤ (M(θ)− r)l(r, θ).

Clearly ∫ M(θ)

M∗(θ)

|E[P;S(r, θ)]|dr � N1/2.

Suppose now that M∗(θ) < M(θ)− 48. Note that

|E[P;S(r, θ)]| � µ


⋃

m,n∈Z
A(m,n)⊆V1

A(m,n)∩S(r,θ)6=∅
A(m,n)\S(r,θ)6=∅

A(m,n)


+ µ


L⋃
j=1

Rj∩S(r,θ)6=∅
Rj\S(r,θ)6=∅

Rj


� l(r, θ)� 1

in view of Lemmas 7 and 8. It now follows that∫ M(θ)

M∗(θ)

|E[P;S(r, θ)]|dr �M(θ)−M∗(θ)� N1/2.

In either case, ∫ π/4

0

∫ M(θ)

M∗(θ)

|E[P;S(r, θ)]|drdθ � N1/2. (75)

Combining (74) and (75), we get∫ π/4

0

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ

� N1/2 +
∫ π/4

0

∫ M∗(θ)

0

|E[P;S(r, θ)]|drdθ. (76)

As before, combining Lemmas 1 and 10 and (70), we have∫ 1/2

−1/2

∫ 1/2

−1/2

∫ π/4

0

∫ M∗(θ)

1

|E[P;S1(y; r, θ)]|drdθdy1dy2 � N1/2(logN)2. (77)
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The estimate ∫ π/4

0

∫ M∗(θ)

0

|E[P;S1(r, θ)]|drdθ � N1/2(logN)2 (78)

now follows from (77) in the same way that (61) follows from (58). Combining (76)
and (78), we have ∫ π/4

0

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N1/2(logN)2.

Similarly, for j = 1, . . . , 7, we have∫ (j+1)π/4

jπ/4

∫ M(θ)

0

|E[P;S(r, θ)]|drdθ � N1/2(logN)2.

Inequality (62) now follows.
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