Irregularities of point distribution relative to half—planes I

J. Beck and W.W.L. Chen

1. Introduction

Suppose that P is a distribution of N points in Uy, the closed disc of unit area and
centred at the origin 0. For every measurable set B in R?, let Z[P; B] denote the
number of points of P in B, and write

D[P; B] = Z[P; B] = Nu(B N Up),

where p denotes the usual measure in R2.
For every real number r € R and every angle 6 satisfying 0 < 6 < 27, let S(r,0)
denote the closed half-plane

S(r,0) = {x € R*:x-e(0) >r}.

Here e(f) = (cosf,sinf) and x -y denotes the scalar product of x and y.
Roth asked the question (see Schmidt [7], pages 124-125) of whether

inf sup  |D[P;S(r,0)]| — +o0
IPI=N g<pr<n—1/2
0<6<27

as N — oo. Here the supremum is taken over all disc—segments in Uy, and the infimum
is taken over all distributions P of N points in Uj.

This question was answered in the affirmative by Beck [2], who proved in 1983
that

inf  sup  |D[P;S(r,0)]| > N4 (log N)~7/2.
PI=N g<p<n—1/2
0<6<27

Recently, Alexander [1] improved this to

inf sup | D[P;S(r,0)]| > N4,
|P|=N 0<r<m—1/2

0<0<27

Beck and Alexander basically studied the L?norm of the discrepancy function
D[P;S(r,0)]. The following result can be proved.

1



Theorem A. For every distribution P of N points in Uy, we have

27
/ / D[P; S(r,0)]|>drdf > N'/2.

This is complemented by the result below, which can be proved using probabilistic
methods.

Theorem B. For every natural number N, there exists a distribution P of N points
in Uy such that

27
/ / D[P; S(r,0)]|*drdd < N'/2.

The purpose of this paper is to study the L!'-norm of the discrepancy function
D[P; S(r,0)]. We shall prove, in particular, the following rather surprising result.

Theorem. For every natural number N > 2, there exists a distribution P of N points
in Uy such that

/%/ IDIP: S(r, 0)]|drdf < (log N)?.

Our work in this paper is in fact motivated by the case when Uy is a square and
not a disc, and only for very special values of N. In developing the method to prove
the theorem above, we realized that it is possible to study the problem in far greater
generality.

Let U be a convex set in R? of unit area, and with centre of gravity at the origin
0. Suppose that P is a distribution of N points in U. For every measurable set B in
R2, let Z[P; B] denote the number of points of P in B, and write

D[P;B] = Z[P;B] — Nu(BnU,).
For any 6 satisfying 0 < 6 < 2m, let
R(0) =sup{r >0:S(r,0) NU # 0}.
We shall in fact prove

Main Theorem. For every natural number N > 2, there exists a distribution P of
N points in U such that

27 (0)
/ / |D[P; S(r,0)]|drd0 <y (log N)>.
0 0
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2. A special case: U is a square

We first of all consider the case when U is the square [—1/2,1/2]?, and show that for
every natural number N, there exists a set P of 4N? + 4N + 1 points in U such that

27 prR(0)
/ / |D[P; S(r,0)]|drdf < (log N)>.
o Jo

For ease of notation, we consider the following renormalized version of the problem.
Let V be the square [-N — 1/2, N + 1/2]°. For every finite distribution P of points in
V and every measurable set B in R?, let Z[P; B] denote the number of points of P in
B, and write
E[P;B] =Z[P;B] —u(BNYV).

We shall show that the set
P={-N,-N+1,...,-1,0,1,...,N —1,N}?

of 4N? 4+ 4N + 1 integer lattice points in V satisfies

2 pM(6)
/ /ﬁ [E[P; S(r, 0)]|drdd < N(log N2, (1)
0 0

where, for every 6 € [0, 27|, we have M (0) = (2N + 1)R(0).
The line
T(r,0)={xcR?*:x-e(f) =7}
is the boundary of the half-plane S(r,#), and can be rewritten in the form

r1c0860 + x98infh =1,

where x = (21, 72) € R%.

Suppose that 0 < 6 < 7/4. Clearly M (0) = (N+1/2)(cos 6+sin ). We distinguish
two cases.

Case 1: 0 <r < (N+1/2)(cosf —sinf). It is not difficult to see that T'(r,0)
intersects the edges {(x1,N + 1/2) : |z1] < N 4+ 1/2} and {(z1,—N — 1/2) : |z1| <
N +1/2} of V, i.e., the “top” and “bottom” edges of V. Then

N
Sr.o)nvV =[] Snv,ro),
n=—N
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where, for every n = —-N,...,0,..., N,

S(n,V,r,0) =Sr,)nVN(R x [n—1/2,n+1/2]).

Clearly
N
E[P;S(r,0) = Y _ E[P;S(n,V,r,0)].
n=—N

Now, for every n = —N,...,0,..., N, we have

Z[P;S(n,V,r,0)] =[N +ntan — rsect + 1]
and

w(S(n,V,r,0)) = N +ntan —rsect + 1/2,
so that

E[P;S(n,V,r,0)] = —¢(ntan @ — rsech),
where ¥ (z) = z — [2] — 1/2 for every z € R. Hence

N
E[P;S(r,0)] = — Z Y(ntanf — rsech).

n=—N

Case2: (N+1/2)(cosf@—sinf) <r < (N+1/2)(cosf+sinf). It is not difficult to
see that T'(r, 0) intersects the edges {(z1, N+1/2) : |x1| < N+1/2} and {(N+1/2,x2) :
|za] < N +1/2} of V| ie., the “top” and “right” edges of V. Furthermore,

T(r,0) N {(N +1/2,29) : 22| < N +1/2}
={(N +1/2,—(N +1/2) cot 0 + r cosech)}.

Then S(n,V,r,0) =0 if n < —(N + 1/2) cot § + r cosecd — 1/2. On the other hand, it
is trivial that E[P;S(n,V,r,0)] = O(1) always. It follows that

N
E[P;S(r,0)] = — Z Y(ntanb — rsecf) + O(1),
n=—N
(%)
where the summation is under the further restriction

n > —(N +1/2)cot 6 + r cosec 6. (*)

Note that in Case 1, the restriction (x) would become superfluous since it is weaker
than the requirement n > —N. It follows that for all » > 0, we have

E[P;S(r,0)] — G[P;r,0] < 1,
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where
N

G[P;r, 0] = — Z Y(ntand — rsech).

n=—N
(%)

The function 9 (z) = z — [z] — 1/2 has the Fourier expansion
B Z e(zv)
s 2miv

so that —¢(ntan @ — rsec) has the Fourier expansion

e(nvtanb).

e(—rvsect
Z ( )

o 2miv

It follows that the Fourier expansion of G[P;r, 6] is given by
—rvsect) a
Z 51 Z (nvtan®).
v#0 n=—N
(*)
However, the restriction (x) prevents us from applying Parseval’s theorem.
To overcome this difficulty, we introduce the following idea which is motivated by

Roth’s variation of Davenport’s method (see Roth [6] and §3.1 of Beck and Chen [3]).
Let y = (y1,y2) € [-1/2, 1/2]2. For every 6 € [0,7/4] and every r > 1, let

T(y;r,0) =T (r +y1cosd + yasinb, 6) (2)

and
S(yir.8) = S(r + g1 cosf + g sin,0) )

(note here that r + y; cos 0 + y2 sin@ > 0 always). Then
E[P;S(y;r,0)] = E[P; S(r + y1 cos € + yasin 6, )].

It is not difficult to see that if we write

N
G[P;y;r,0] = — Z Y(ntand — (r + y; cos 4 yo sinf) sech),

n=—N
(%)

then

cot (M(0)— (2N +1)sinf —1<r < M(6)),
E[P;S(y;r,0)] — G[P;y;r,0] < ¢ 1 (otherwise),
N (trivially),
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so that P
/ / E[P;S(y;r,0)] — G[P;y;r,0]|drdd < N (4)

(note that |y; cosO+yasinf| < 1, so that if r < M(0)— (2N +1)sinf—1, then T'(y;r, 0)
intersects the top and bottom edges of V).
Now G[P;y;r, 0] has the Fourier expansion

N

e(—(r + y1 cos 0 + yo sin ) v sec )
Z 5 Z e(nv tanf)
v#0 n=—N

(%)
—rvsect)
:Z Z ((n —y2)vtanf)e(—yiv).

s 2rmiv e
(%)

It follows that for every yo € [—1/2,1/2], we have, by Parseval’s theorem, that

2

1/2 S
/ G[Pyy:ir 0] dyr < > —| D el(n —yz)vtano)
~1/2 = =y
(*)
2
00 1 N
:Zﬁ Z e(nvtand)| |
v=1 n=—N
(%)
so that
2
12 p1/2 o | XN
/ / 7)§Y;7”,9]|2dy1dy2<<z—2 Z e(nvtan)
1/2J-1/2 il Wt
()
00 1 -
<<Zﬁmin{N2,||ytan(9|| 1 (5)
v=1

where ||3]] = min,ez |3 — n| for every § € R.
We need the following crucial estimate.

Lemma 1. We have

v=1

/4 0o 1 1/2
/ (Z — min{N?, ||1/tan0||_2}) df < (log N)>.
0 14
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Proof. Since tanf =< 0 if 0 < 6 < 7/4, it suffices to show that

1 00 1/2
1 _
/ (memw?,unwn 2}) dw < (log N)” (6)
0 n=1
Clearly
L min{? ‘2<N1'N2 141
2 min{N el < 3 S min{N?, 75 1
so that
00 1 1/2 N2
(Z — min{N?, ||nw||_2}) < Z min{N, [[nw| '} + 1. (7)
n=1 n
Now, for every n = 1,..., N2, we have
1 1/2n
/ min{ N, ||nw|| ' }dw = 2n/ min{N, (nw)” " }dw < log N. (8)
0 0

Inequality (6) now follows on combining (7) and (8). &

By the Cauchy—Schwarz inequality, we have

1/2 1/2
/ / G[P;y;r, 0]|dyidys

1/2J-1/2

1/2 1/2 1/2
<<( / Py;r,9]|2dy1dyz> - 9)

—1/2J-1/2

It follows from (4), (5), (9) and Lemma 1 that

12 p1/2  pr/4 M(6)
o[ EPs ety < Niog N (o)
1

1/2J-1/2Jo
Note now that for every 6 € [0,7/4], every > 1 and every y € [—1/2, 1/2]2, we have,

writing s = 7 + y1 cosf + yo sinf, that |r — s| < 1. It follows that since S(y;r,0) =
S(r + y1 cosO + y2 sin 6, 0), where r + y; cos 0 + yo sin @ > 0, we must have

(6)—-1 M(6)
/ |E[P; S(r,0)]|dr < / \E[P; S(y; 7. 0)]|dr. (11)
2 1

On the other hand,

M(0)
(/ / ) \E[P; S(r, 0)]|dr < N. (12)
M(6)—1
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It now follows from (10)—(12) that

w/4  rM(0)
/ / |E[P; S(r,0)]|drdd < N(log N)>.
0 0

Similarly, for j = 1,...,7, we have

Giye/a M) .
/ / E[P: S(r, 0)]|drdd < N(log N)2.
/4 0

Inequality (1) now follows.

3. A special case: U is a circular disc

Next, we consider the case when U is the closed disc of unit area and centred at the
origin 0.

Let N be any given natural number. Again we consider a renormalized version of
the problem, and take V' to be the closed disc of area N and centred at the origin O.
However, if we simply attempt to take all the integer lattice points in V' as our set P,
then the number of points of P can differ from N by an amount sufficiently large to
make our task impossible (see Hardy [4] and pp. 183-308 of Landau [5]).

Our new idea is to introduce a set P such that the majority of points of P are
integer lattice points in V', and that the remaining points give rise to a one-dimensional
discrepancy along and near the boundary of V. More precisely, for any x = (z1,x2) €
72, let

A(x) = A(z1,22) = [11 — 1/2,21 +1/2] X [0 — 1/2, 20 + 1/2]; (13)

in other words, A(x) is the aligned closed square of unit area and centred at x. Let
Pr={peZ®: Alp) CV}, (14)

and write

Vi= U A(p). (15)

pEP1

Note that the points of P; form the majority of any point set P of N points in V. For
the remaining points, let
Vo=V \V. (16)

Then it is easy to see, writing 7M? = N, that
uw(Ve) € N and u(Va) < M.
We partition V5 as follows. Write
L= p(Va), (17)
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and let
0:‘90<91<~~'<0L—1<9L:1 (18)

such that for every j = 1,..., L, the set

Rj={xeVy:27m0;_1 <argx < 2mb;} (19)
satisfies
W(Ry) = 1. (20)
For every j =1,...,L, let
P; € Rj, (21)
and write
PQ :{plv"'apL}' (22)
If we now take
P =P UPs, (23)

then clearly P contains exactly N points.
For every measurable set B in R?, let Z[P; B] denote the number of points of P
in B, and write

E[P;B] =Z[P;B] —u(BNYV).
Clearly, for every j = 1,..., L, we have
E[P;R;] = 0. (24)

We shall show that the set P satisfies
27 M
/ / E[P; S(r, 0)]|drdd < M(log N)?. (25)
0 0

Again, suppose that 0 < 6 < 7/4.
As before, the line T'(r, 0) is given by x1 cos + xosinf = r, where x = (x1,22) €
R2. Furthermore, T(r,6) intersects the boundary of V' at the points

(rcosf + (M? — 7‘2)1/2 sin@,rsinf — (M? — 7“2)1/2 cos ) (26)

and
(rcos® — (M? — 7“2)1/2 sin @, rsinf 4 (M? — 7‘2)1/2 cosf). (27)

Let T™M(r,0) denote the line segment joining the point (rcosf,rsin@) and (26), and
let T(®)(r,6) denote the line segment joining the point (rcosf,rsinf) and (27).
Suppose first of all that 0 <r < M — 4. Let

MW (r,0) = max{n € Z : there exists m € Z such that A(m,n)N Vs # 0
and A(m,n) N TW (r,0) # 0}
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and

M@ (r,0) = min{n € Z : there exists m € Z such that A(m,n)N Vs # 0
and A(m,n) N TP (r,0) £ 0},

and let
Ir,0) ={neZ: MY (r,0) <n< M 0)}.

We can now write S(r,0) NV as a union of subsets as follows. Let

So(r,0) = U A(x). (28)
x€7Z?
A(x)CS(r,0)NVy
Also, let
Si(r,0) = Sro)n| | U Almn (29)
nel(r,0) MEZL

A(m,n)NS(r,0)#0
A(m,n)\S(r,0)#0

(note here that the three conditions n € I(r,0), A(m,n) N S(r,0) # 0 and A(m,n) \
S(r,0) # () imply that we must have A(m,n) C V;) and

L
So(r0) = |J Ry (30)

=1

R, E5(r0)
The remainder of S(r,#) consists of
w(r,0) = S(r,0) NV N U U A(m,n) (31)
n< M) (r,0) meZ
A(m,n)CVy
A(m,n)NS(r,0)#0

A(m,n)\S(r,0)#£0

and

WP (r,0) = S(r,0) NV N U U A(m,n) |, (32)
n>M () (r,0) meZ
A(mvn)gvl

A(m,n)NS(r,0)#0
A(m,n)\S(r,0)#0
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as well as

W (r,0) = S(r,0) N U R; (33)

j=1
R;NTD (r,0)#0
R;\S(r,0)#0

and

L
Wi (r,0) = S(r,0) N U R;|. (34)

j=1
R;NTP (r,0)#£0
R;j\S(r,0)#0

It is not difficult to see that since 0 < r < M — 4, we have

Sr,o)nV =] S0 UUWJ-(k)(T,O) .

Also, each pair By and Bs of the seven sets on the right-hand side satisfy u(B1NB3) = 0
and B1 N Bo NP = (. It follows that

2 2
[PSrQ]—ZEPS (r, 0]+ 33 B[P W (r,0)). (35)
7=0 1=1k=1
We shall estimate each of the terms on the right-hand side when 0 <r < M — 4.
Clearly

E[P; So(r,0)] =0, (36)

as for each square A(x) in Sy(r, 8), we have Z[P; A(x)] = u(A(x)) = 1. Similarly
E[P;Sy(r,0)] =0 (37)

in view of (24).
As before, let ¥(z) = z — [2] — 1/2 for every z € R.

Lemma 2. Suppose that 0 <0 < 7/4 and 0 <r < M — 4. Then

E[P;Si(r,0)) =~ > t(ntan6 — rsec). (38)

nel(r,0)

Proof. For each n € I(r,0), let

Sy(n,r,0) = S(r,0) N U A(m,n)
MmeZ
A(m,n)NS(r,0)#£0
A(m,n)\S(r,0)#0
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Then
Sl(ra 0) = U Sl(n7ra 0)

nel(r,0)

Clearly
E[P;Si(r,0)] = > E[P;Si(n,r,0)]. (39)

nel(r,0)
Now let n € I(r,0). Then there exists a greatest m € Z such that A(m,n)NS(r,0) # 0
and A(m,n)\ S(r,0) # 0. Tt is not difficult to see that
Z[P;S1(n,r,0)] = [m+ntanf — rsect + 1]
and
w(S1(n,r,0)) =m+ntanf — rsec + 1/2.

It follows that
E[P;S1(n,r,0)] = —(ntan @ — rsech). (40)

Clearly (38) follows on combining (39) and (40). &

Again, if we work out the Fourier expansion of the term E[P;S;(r, )], then the
summation restriction n € I(r,0) prevents us from applying Parseval’s theorem. As
before, let y = (y1,y2) € [—1/2,1/2]2. For every 6 € [0,7/4] and every r > 1, define
T(y;r,0) and S(y;r,0) as in (2) and (3). Note that T'(y;r, ) intersects the boundary
of V' at the points

(scos® + (M? — 32)1/2 sin, ssin@ — (M? — 32)1/2 cos 0) (41)

and
(scosf — (M? — 82)1/2 sin, ssin @ 4 (M? — 52)1/2 cosf), (42)

where s = s(y) = r+y1 cos@+yzsinf. Let T (y;r,6) denote the line segment joining
the points (scos#, ssinf) and (41), and let T (y;r,6) denote the line segment joining
the points (scosf, ssinf) and (42). For 1 <r < M — 4, let

M) (y;7,0) = max{n € Z : there exists m € Z such that A(m,n) N Vy % 0
and A(m,n) N T (y;r,0) # 0}

and

M(z)(y; r,0) = min{n € Z : there exists m € Z such that A(m,n) N Vs # ()
and A(m,n) N T3 (y;r,0) # 0},

and let
I(y;r,0) ={ne€Z: MWD (y;r,0) <n < M®(y;r,0)}.
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Now let

Si(y;r,0) = S(y;r,0) N U U A(m,n)

nel(y;r,0) meZ
A(m,n)NS(y;r,0)#0
A(m,n)\S(y;r,0)#0

Then clearly

E[P; S (y;r,0)] = — Z Y(ntand — (r + y1 cos @ + yo sin ) sech).

n€l(y;r,0)

We shall approximate E[P; S1(y;r,0)] by

G1[Pyy;r, 0] = — Z Y(ntanf — (r + y1 cos O + yo sin 6) sec §).
nel(r,0)

Lemma 3. For everyy € [—1/2,1/2]%, we have

/4 M—4
/ / B[P S1 (y:7,0)] — Ga[Piy: 7, 0]|drd < M.
1

The proof of Lemma 3 will be given later, as the ideas are similar to those for
studying the terms E[P; W;k)(r, 6)].
Now G1[P;y;r, 0] has the Fourier expansion

Z el={r + 1 cosf + yz sin B)v sech) Z e(nv tan @)
2miv
V0 nel(r,0)
—rvsec)
B Z 2miv Z e((n — y2)v tan B)e(—y1v). (43)
v#0 nel(r,0)

It follows that for every yo € [—1/2,1/2], we have, by Parseval’s theorem, that

2

1/2
/ |G1[P;y:r, 0] dy; < Z Z e(nvtan6)
~1/

v= 1 nel(r,0)

It follows that

/2 ,1/2
/ / G4 [P;y;r, 0] Pdyrdys < Z —mln{M2 v tan 6] 2},

1/2J-1/2
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so that by the Cauchy-Schwarz inequality,

/2 ,1/2 >~ 1/2
/ |G1[P;y;r, 0] dyidys < (Z > min{M?, HutanQHQ}) , (44)
—1/2J-1/2 iyt

To study the terms E[P; Wj(k)(r, 0)], we have

Lemma 4. For j, k € {1,2}, we have

7/4 M—4 i
/ / B[P W™ (1, 0)]|drd < M.
0 0

Suppose that 0 <0 < 7/4 and 0 <7 < M — 4. Let

ID(r,0) = {ne€Z:rsind— (M? —1r2)"* cos0 < n < MV (r,0)}

and
ID,0)={neZ: M 0) <n<rsind+ (M —r2)"" cos o).

Note that 7sin@ + (M? — 7“2)1/ ? cos 0 are the second coordinates of the two points of
intersection of T'(r,#) and the boundary of V', and that

I(r,0) U IM (r,0) U TP (r,0)

={necZ:rsinf — (M? —r2)1/2

cos <n <rsinf + (M2 = 7“2)1/2 cosf}.
Furthermore, the three sets on the left—hand side are pairwise disjoint.
If0 <60 <7w/4dand 0 < r < M — 4, it is not difficult to see that for every
J,k € {1,2}, we have
|E[P; Wj(k)(r, 0)]| < card <I(k)(r, 9)> .

Lemma 4 will follow if we can prove

Lemma 5. For j, k € {1,2}, we have

w/4 rM—4
/ / card (I(k)(r, 9)) drdf < M.
0 0

To prove Lemma 3, note that if 0 <8 < 7/4,1 <r <M —4andy € [-1/2,1/2)°,
we have

E[P;S1(y;r,0)] — G1[P;y;r,0] < min{M, card(I(r,0)AI(y;r,0))}, (45)
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where B1 A By denotes the symmetric difference between the sets B; and Bs. Clearly
I(y;r,0) = 1(s,0), where s = r + y; cosf + yosinf > 0. In this case,

2
I(r,0)\I(s,0) U (I(k) (r,0) U T®) (s, 9)) (46)

Note now that |r — s| < 1, so it follows from (45), (46) and Lemma 5 that

w/4 pM-—5
/ / |E[P; S1(y;r,0)] — G1[P;y;r,6]|drdf
0 2

2 n/4 pM—4
< Z/ / card (I(k)(r, 9)) drdfd < M.
/0 1

Lemma 3 now follows on combining this and the simple observation that

/ (// )|E7’Sl(yn“9)]—G1[P;y;r,9]|drd9<<M.

Proof of Lemma 5. Note that T™ (7, §) intersects OV, the boundary of V', at the point
(26). Clearly n+ 1 ¢ IV (r,0) if the distance between the points

(—ntan@ +rsec,n) € TW(r,0) and ((]\42 — n2)1/2, n) e oV
exceeds 1. It follows that
card (I(l)(r, 0)) < 1+v—rsinf+ (M? - 7’2)1/2 cos 0, (47)

where s
(M? —v?) L vtand — rsecd =1 (48)

and v < rsinf. Elementary calculation gives
v =sinfcosh + rsinf — (M? — (r + cos 0)2)1/2 cos 0, (49)
so that, combining (47) and (49), we have
card (I(l)(r, 9))
< 1+sinfcosf+ (M? — 7'2)1/2 cos@ — (M? — (r + cos 9)2)1/2 cos 0

r

<1+ ar_
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since r < M — 4. Clearly

m/4 pM—4
/ / card (I(l)(r, 9)) drdf < M.
0 0

On the other hand, T(®)(r, §) intersects OV at the point (27). Suppose first of all that
r > Msin6, so that rcos@ — (M?> —7"2)1/2 sinf > 0. Then n — 1 ¢ I?(r,0) if the
distance between the points

1/2

(—ntanf + rsec,n) € T3 (r,0) and ((M2 —n?) ,n) eV (50)

exceeds 1. It follows that if » > M sin 6, then

card (I(2)(r, 9)) < 1+rsinf+ (M? - 7“2)1/2 cosf — v, (51)
where v satisfies (48) and
v > rsinf. (52)
Elementary calculation gives
v =sinfcosh + rsinf + (M? — (r + cos 0)2)1/2 cos 6, (53)

so that, combining (51) and (53), we have

card (1(2) (r, 9))

< 1—sinfcosf + (M? — 7"2)1/2 cosf — (M? — (r + 0059)2)1/2 cos 6

<1+ a7

since 7 < M —4. Suppose now that r < M sin 6, so that r cos § — (M? — r2)1/2 sinf < 0.
Then n—1 ¢ I®)(r, 0) if the distance between the points (50) and the distance between
the points

(—ntan + rsec,n) € T (r,0) and (—(M2 — n2)1/27n> e oV

exceeds 1. It follows that (51) must hold both when v satisfies (48) and (52) and when
v satisfies s
(M? —v?) /2 _ytand + rsecd =1

and (52). Clearly we only need to investigate the latter case. Elementary calculation
gives

v =rsinf —sinfcosd + (M? — (r — cos 0)2)1/2 cos 6, (54)
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so that, combining (51) and (54), we have

card (](2) (r, «9))

< 1+sinfcosf+ (M? — 7“2)1/2 cos — (M? — (r — 0059)2)1/2 cos 6

r

<1+ ar_

since r < M — 4. Clearly

m/4 pM—4
/ / card <I(2)(r, 9)) drdd < M. &
0 0

It now follows from (35)—(37) and Lemma 4 that

/4 pM—4 /4 pM—4
/ / B[P S(r, 0)]|drdd < M + / / B[P Sy (r,0)]|drdo.  (55)
0 0 0 0
On the other hand, it is easy to see that if 0 < 0 <7 /4 and M —4 <r < M, we have
ZP;S(r,0) = Z[P; S(r,0) N V1] + Z[P; S(r,0) N Vo] < M + L < M

and p(S(r,0) N V) < M, so that E[P;S(r,0)] < M, whence

/4 M
/ / [B[P; S(r, 0)]|drdd < M. (56)
0 M—4

Combining (55) and (56), we have

/4 pM /4 pPM—4
/ / [E[P: S(r, 0)]|drdd < M + / / B[P Sy (r,0)]|drds.  (57)
0 0 0 0

Combining Lemma 1, (44) and Lemma 3, we have
12 p1/2

/4 pPM—4
/ / EP; S (v 7, 0)]|drdfdydys < M(log N)2.  (58)
—172J-172Jo 1

Note again that for every 6 € [0,7/4], every r > 1 and every y € [—1/2,1/2]%, we have,
writing s = 7 + y; cos 0 + y2 sinf, that |r — s| < 1. It follows that since Si(y;r,0) =
S1(r + y1 cosO + yosin 6, 0), where r + y; cosf + y2 sin € > 0, we must have

/2 E[P; Sy (r, 0)]|dr < / E[P: Sy (y: . 0)]dr- (59)
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On the other hand, |E[P;S1(r,0)]| < M always, so that

(/2 + /AH) B[P S, (r, 0)]|dr < M. (60)
0 M-—-5

It now follows from (58)—(60) that

/ " / U B 54 (r.0)][drdd < M (log N2 (61)

Combining (57) and (61), we have

/4 rM
/ / |E[P; S(r, 0)]|drdd < M(log N)2.
0 0

Similarly, for j =1,...,7, we have

G+1)7/4 oM ,
/ / E[P; S(r, 0)]drd8 < M(log N)?.
jm/4 0

Inequality (25) now follows.

4. Proof of the Main Theorem

Finally, we consider the problem in general, where U is a closed convex set in R?, and
with centre of gravity at O.

Let N be any given natural number. As in the special cases considered earlier, we
let V = {N'?x :x € U}, so that u(V) = N. Our approach is similar to that when
V is a circular disc. Indeed, we define P, Py, Pa, Vi, Vo, Land R; (j =1,...,L) in
terms of V' by (13)—(23), and note that

n(Va) € Z and u(Va) < N2,
For every measurable set B in R?, let Z[P; B] denote the number of points of P

in B, and write

E[P;B] = Z[P;B] —u(BnYV).
Then (24) holds for every j = 1,..., L. We shall show that the set P satisfies

2w pM(6)
/ / [E[P: B)|drdd < N2(log N)?, (62)
0 0

where, for every 6 € [0, 27], we have M(0) = N'/2R(6).
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Again, suppose that 0 < 0 < /4.
As before, the line T'(r, 0) is given by x1 cosf + zosinf = r, where x = (1, 22) €
R2. Furthermore, T'(r,6) intersects the boundary of V' at the points

u(r,0) = (ugl)(r, 0), uél)(r, 0)) (63)

and
u®(r,0) = (uf (r,0), 05 (r,0) ) (64)

with the restriction that ugl)(r, 0) < ug2)(r, 0). Here the argument is slightly more
complicated than before. Consider the line segment 7'(r,8) N V. We need the following
geometric lemma. To state this, we need some notation. Let

Rpax =sup{M(0):0 <6 < 2r} and Rpypin = inf{M(0) : 0 < 0 < 27},
and let

Rmin
Rmax

p =
Also, for 6 € [0, 7/4] and r € [0, M(0)], let
5(7’7 6) = u(l)(’fB 6) - 11(2) (T7 6) )

in other words, I(r,0) is the length of the line segment 7T'(r,0) N V. Furthermore, let
p(r,0) denote the midpoint of T'(r,0) N V.
We shall assume that NV is sufficiently large.

Lemma 6. Suppose that 6 € [0,7/4]. Suppose further that 0 < r < M(6) — 48 and
l(r,0) > 96/p. Then the square of side 12, centred at p(r, ) and with one side parallel
to T'(r,0), liesin V.

Proof. It clearly suffices to show that the sets S(r, )NV and (V\S(r, 0))U(T(r,0)NV)
each contains a rectangle of sides 6 and 12, with the point p(r,#) as the midpoint of
one of the long sides.

(I) We shall first consider S(r,0) N V. Let v(r,0) € S(r,0) NV be of maximal
(perpendicular) distance from the line T'(r, ). By a suitable translation and rotation,
we may assume that p(r,6) is the point (0,0), that u¥)(r,6) and u®(r,6) are the
points (y,0) and (—y, 0) respectively, where 2y = [(r,0), and that v(r,0) is the point
(u,x), where = > 0 (the reader is advised to draw a picture). We may further assume,
without loss of generality, that v > 0. Clearly, it suffices to show, in view of the
convexity of V, that the rectangle with vertices (£6,0) and (46, 6) is contained in the
triangle with vertices (£+y,0) and (u,x). In view of our assumption u > 0, it suffices
to show that if x > 48 and y > 48/p, then

T 6
> )
y+u y—6
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ie. xz(y —6) > 6u+ 6y. Now if u <y, then since x > 24 and y > 12, we have
z(y —6) > % > 12y > 6u + 6.

On the other hand, if u > y, then by the convexity of V', we must have x > R,.;, and
u — 1y < Rmax, S0 that
x > anin = p,
u— y Rmax

ie. x+ py > pu. Since x > 48 and y > 48/p, we have, noting that p < 1, that

12 12
x(y—6)2%2—x—l—12y:—(a:—|—py)212u>6u+6y.
p p

(II)  We now consider (V' \ S(r,0)) U (T'(r,0) N V). Let u®(0,6) and u®(0,6)
denote the endpoints of the line segment 7°(0,0) N V. By a suitable rotation about the
centre 0 of V', we may assume that T'(r, ) is a horizontal line (the reader is advised to
draw a picture), that the point p(r,6) is denoted by (u,r), that the points u*)(r, )
and u® (r,0) are denoted by (u + y,r) and (u — y, ) respectively, where 2y = I(r, 0).
Clearly, in view of convexity, it suffices to show that if y > 48/p, then the points
(u=£ 6,7 —6) are contained in the triangle with vertices (0,0) and (u £y, 7). Again, in
view of convexity, it suffices to show that if y > 48/p, then

6 <Rmin_
y_6_Rmax_p’

ie. y>6(1+ p)/p. This last inequality clearly holds if y > 48/p, since p < 1. &

For every 6 € [0,7/4] and r € [0, M (0)], let SQ(r,#) denote the square of side 12,
centred at p(r,#) and with one side parallel to T'(r,0). Further, let

M*(0) =sup{0 <r < M(0): SQ(r,0) CV}.
Then clearly

Lemma 7. For every 0 € [0, /4], either

or

‘We shall also need
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Lemma 8. For every 0 € [0, 7/4] and every r € [M*(0), M (0)], we have
I(r,0) <20 (M7(6),0)
if N is sufficiently large.

Proof. We may assume that N is sufficiently large so that [(0,60) > 96/p. Suppose
first of all that [(M™*(6),0) < 1(0,0). Then in view of convexity, we must have [(r, ) <
[(M*(0),0) if r > M*(6). Suppose now that [(M*(0),0) > [(0,6). Then, again by
convexity, we must have

r,6) _ UM*(6).6)

r M~ (6

In view of Lemma 7 and our assumption that [(0,6) > 96/p, we must have M*(0) >
M(6) — 48. It follows that

I(r,0) < 1(M*(6),0) < 1 (M*(6),6).

M(0) — 48 M(6) — 48

Note now that M(0) — co as N — oco. &

For every 6 € [0, /4] and every r € [0, M (0)], let T(M)(r, #) denote the line segment
joining the points p(r, #) and u(®(r, §), and let 7 (r, §) denote the line segment joining
the points p(r,6) and u® (r,6).

Suppose first of all that 0 < r < M*(#). As before, let

MW (r,0) = max{n € Z : there exists m € Z such that A(m,n) N Vs # 0

and A(m,n) NTW (r,0) # 0} (65)
and
M@ (r,0) = min{n € Z : there exists m € Z such that A(m,n) N Vy # 0
and A(m,n) N TP (r,0) # 0}, (66)
and let
Ir,0) ={neZ: MY (r,0) <n < M (r0)}. (67)

Then in view of Lemma 6, we must have I(r,6) # (. We now write S(r,6) NV in the

form
2 2 2
Stroynv = S;r0) | U UU W (r0) |,
=0 j=1k=1

where the seven sets on the right-hand side are defined by (28)—(34). Clearly, each pair
B; and Bs of these seven sets satisfy u(B; N By) =0 and B; N Bo NP = (). Tt follows
that

E[P;S(r,0)] Z Si(r, 0]+ 3" E[P; W (r,0)). (68)

— j=1k=1

21



We shall estimate each of the terms on the right-hand side when 0 < r < M*(0).
Clearly
E[P, So(’r’, 9)] = E[P, SQ (T, 9)] =0 (69)

as before. Also, as in Lemma 2, we have, writing ¢ (z) = z — [z] — 1/2 for every z € R,
that

Lemma 9. Suppose that 0 <60 < 7/4 and 0 < r < M*(0). Then

E[P;S1(r,0)] = — Z Y(ntanb — rsech).

nel(r,0)

As in the special case of the disc, the summation restriction n € I(r,0) again
prevents us from applying Parseval’s theorem to the Fourier expansion of the term
E[P; S1(r,0)]. We can overcome this in a similar way as before. Let y = (y1,y2) €
[—1/2,1/2]%. For every 0 € [0,7/4] and every r > 1, define T(y;r,6) and S(y;r,0) as
in (2) and (3). Suppose now that T'(y;r,6) intersects the boundary of V' at the points

ul(y;r,6) = <U§1)(y;r, 0), u$" (y; 7, 9))

and , ,
u®(y;r,0) = (U§ (v, 0), us? (y;r, 9)) ,

with the restriction that uél)(y;r7 0) < uéz)(y;r, 6). Let TM (y;r,6) denote the line
segment joining the points p(y;r,8) and u®(y;r,0), and let T3 (y;r,0) denote the
line segment joining the points p(y;r,6) and u®(y;r, ), where p(y;r,6) denotes the
midpoint of the line segment T'(y;7,0) N V. For 1 <r < M*(0), let
M (y;r,0) = max{n € Z : there exists m € Z such that A(m,n) N Vs # 0
and A(m,n) N T(l)(y; r,0) #£ 0}

and

M@ (y:r,0) = min{n € Z : there exists m € Z such that A(m,n) N Vs # 0
and A(m,n) N T® (y;r,0) # 0},
and let
I(y;r,0) ={n € Z: MM (y;r,0) <n < M® (y;r,0)}.

Now let, as before,

Si(y;r,0) = S(y;r,0) N U U A(m,n)
nel(y;r,0) meZ

A(m,n)NS (y;r,0) 70

A(m,m)\S (yi1,0) 0
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Then clearly

E[P;S1(y;r,0)] = — Z Y(ntanb — (r 4+ y1 cos + yo sin 6) sec ).
nel(y;r,0)

We shall approximate E[P; Sy (y;r,0)] by

G1[P;y;r, 0] = Z Y(ntand — (r + yi cos + yo sin0) sech).
nel(r,0)

Corresponding to Lemma 3, we have

Lemma 10. For every y € [—1/2,1/2]*, we have

w/4 pM*(0)
/ / |B[P; Si(y:r, 0)] — Gu[P; y: 1 6]|drd6 < NV2.
1

We shall prove Lemma 10 later.
Now G1[P;y;r, 6] has the Fourier expansion (43). It follows, as before, that

/2 p1/2 © 4 1/2
[ iGiPyir s < {3 2 ming v ang] 2} (70)
1/2J-1/2 i

for every 6 € [0,7/4] and r € [0, M*(0)].
To study the terms E[P; Wj(k) (r,0)], we have the following analogue of Lemma 4.

Lemma 11. For j, k € {1,2}, we have

7/4  pM* (9)
/ / PN (r,0)]|drdo < N/,

Suppose that 0 < 0 < w/4 and 0 < r < M*(0). Let
IV 0) = {neZ w0 <n<MD(r,0)} (71)

and
ID(r,0) = {n e Z: MD(r,0) < n <P (r,0)).

Then clearly

IO UIV (o) UTD(r,0) = {neZ:ul”(r,0) <n < ul?(r,0)}.

Furthermore, the three sets on the left—-hand side are pairwise disjoint.
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If0 <60 < 7/4and 0 < r < M*(0), it is not difficult to see that for every
J,k € {1,2}, we have

E[P;WH (r,0)]| < card <I(k)('r, 9)) .
Lemma 11 will follow from the analogue of Lemma 5 below.

Lemma 12. For j, k € {1,2}, we have

x/4  M*(0)
/ / card (I(k)(r, 0)) drdf < N2,

To prove Lemma 10, note that if 0 < § < 7/4,1 < r < M*(0) and y € [-1/2,1/2)°,
we have

E[P; $1(y;7,0)] = Ga[Psy;r, 0] < min { N2 card(I(r,0) AL (yim,0) |, (72)
where B1A B> denotes the symmetric difference between the sets By and By. Clearly
I(y;r,0) = 1(s,0), where s =1+ y; cos0 + y2sin@ > 0. In this case,

2

I(r,0)AI(s,6) U (I(k) r,0) U I(k)(s,9)> . (73)

Note now that |r — s| < 1, so it follows from (72), (73) and Lemma 12 that

/4 pM*(0)—
/ /‘ E[P; 81 (y:7.0)] — G1[P;y: -, 6]|drdd

n/4 M (0)
< Z/ / card (I(k)(r, 6’)> drdd < N1/,
10 1
Lemma 10 now follows on combining this and the simple observation that

M*(6)
/ (/ / ) |E[P; Sy (y;7,0)] — G1[P;y;r,0]|drdd < N2,

*(0)—1

Note that Lemma 12 is a generalization of Lemma 5. Our proof, however, is
necessarily different. In our earlier proof of Lemma 5, we use explicitly the equation of
0V, the boundary of V. In the general case, such information is clearly not available.

Our proof here is based on the following simple geometric observation.

Consider the points u™(n,6), where n € Z and 0 < n < M(#). We extend
this definition in the natural way to n = —1,—2,...,—6. For each 6 € [0,7/4] and
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n=-6,...,—1,0,1,...,[M(0)], let Np(n) denote the area of the rectangle with one
edge on T'(n,#) and with vertices u¥(n,6) and u™(n + 1, 6).

Lemma 13. Suppose that 0 <0 < 7/4 and 0 < r < M*(0). Then

6 6
IM(r,0) < max {6, ZNQ(H +1i,6), ZNg(n - i,@)} g
i=1 i=1

where n = [r].

Proof. Let
6 6
M = max {6,2/\[9(71 +i,9),ZN9(n — i,@)} :

i=1 =1

Then the two right-angled triangles with vertices

u(r,0) and  u®(r,0) + Me(0 + 7/2)
and uM (r,0) + Me(8 + 7/2) £ 6e(6),

where e(¢) = (cos ¢,sin ¢) for ¢ € R, each contains a square of the type A(m,n) C V7,
in view of the convexity of V. The result follows from the definitions of I(r,#) and
IM(r,0) (see (65)—(67) and (71)). &

Proof of Lemma 12. Note that for every n = —6,...,—1,0,1,...,[M(0)], we have
No(n) < [uD(n,0) = u®(n +1,0)]

It follows from Lemma 13 that

M™(0) 6
/ card (I(l)(r, 9)) drdd < M*(0) + 3 ‘u(l)(n +0,0) —uWD(n+i+1,0)
0 i=—6
< M*() + 13 perimeter (V) < N1/2.
A similar argument applies for 1) (r,0). &

It now follows from (68), (69) and Lemma 11 that

x4 M*(6)
/ / \B[P; S(r, 0)]|drdo
0 0

x/4  M*(6)
< N2 4 / / \E[P: Sy (r, 0)]|drdo. (74)
0 0
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Next, we investigate the integral

w/4 M(Q)
/ / E[P; S(r, 0)]|drd6.
(9)

Suppose that 0 < 0 < 7w/4 and M*(0) < r < M(0). We shall use Lemma 7. If
M*(0) > M(6) — 48, then clearly M (0) — r < 48. On the other hand, I(r,0) < N'/2
trivially. We now use the simple estimate

|E[P; S(r, 0)]| < p(S(r,0)) < (M(0) —7)i(r,0).

Clearly

M(6)
/ \E[P; S(r, 0)]|dr < N'/2.
M- (6)

Suppose now that M*(0) < M(0) — 48. Note that

L
|B[P; S(r,0)]] < p U A(m,n) | +p U &
m,ne’l =1
A(m,n)CVy R;NS(r,0)#£0
A(m,n)NS(r,0)#0 R;\S(r,0)#0

A(m,n)\S(r,0)#£0
< I(r,f) < 1

in view of Lemmas 7 and &. It now follows that

M(6)
[ BP0 dr < M (D)~ M*(0) <€ N2
M~(0)

In either case,

/4 M(G)
/ / E[P; S(r,0)]|drdd < N'/2. (75)
<e>

Combining (74) and (75), we get

w/4 pM(0)
/ / E[P: S(r, 0)]|drdo
0 0
w/4  pM*(0)
< NY2 4 / / |E[P; S(r,0)]|drd6. (76)
0 0

As before, combining Lemmas 1 and 10 and (70), we have

1/2 1/2  pm/4 pM*(0)
/ / / / |E[P; S1(y;7,0)]|drd0dy,dys < N'/?(log N)?*. (77)

1/2J-172Jo
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The estimate

n/4 M*(0)
/ / |E[P; Sy (r,0)]|drdd < N'/?(log N)? (78)
0 0

now follows from (77) in the same way that (61) follows from (58). Combining (76)
and (78), we have

w/4  rM(0)
/ / |E[P; S(r,0)]|drdd < N'/?(log N)?.
0 0

Similarly, for j =1,...,7, we have

(G+)m/4  pM(0) )
/ / E[P; S(r, 0)]|drdd < N'/(log N)?.
/4 0

Inequality (62) now follows.
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