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1. Introduction

Suppose that P is a distribution of N points in the unit square U = [0, 1]2, treated as
a torus. For every measurable set B in U, let Z[P; B] denote the number of points of
P in B, and write

D[P; Bl = Z[P; B] — Nu(B),

where p denotes the usual measure in R2.

Let A C U be a closed convex polygon of diameter not exceeding 1 and centred
at the origin 0. For every real number r satisfying 0 < r < 1 and for every angle 6
satisfying 0 < 6 < 2, let v = 6(u) denote

vy  [cosf —sinf Uy (1)
ve )\ sinf cos6 ug )’
where v = (v1,v2) and u = (uy,u2), and write

A(r,0) = {rv:v =0(u) for some u € A}; (2)

in other words, A(r,6) is obtained from A by first rotating clockwise by angle 6 and
then contracting by factor r about the origin 0. For every x € U, let

Ax,r,0) ={x+v:veA(rb)}, (3)

so that A(x,r,6) is a similar copy of A, with centre of gravity at x.
In 1987, Beck [1] proved that

inf  sup |D[P;A(x,r,0)]| >4 N4,
IPI=N xeU

where the supremum is taken over all similar copies A(x,7,6) of A, and the infimum
is taken over all distributions P of N points in U. In fact, Beck proved

Theorem A. For every distribution P of N points in U, we have

1 27
/ / / |D[P; A(x, 7, 0)]|°dxdfdr >, N'/2.
0 0 U

1



This is complemented by the result below, which can be proved using probabilistic
methods (see, for example, Beck and Chen [2]).

Theorem B. For every natural number N, there exists a distribution P of N points
in U such that

1 2m
/ / / |D[P; A(x,r,0)]|°dxdfdr < 4 N'/2.
0 0 U

The purpose of this paper is to study the L!'-norm of the discrepancy function
DI[P; A(x,r,0)]. In particular, we prove

Theorem. For every natural number N > 2, there exists a distribution P of N points
in U such that

1 27
/ / / IDIP: A(x,r, 0)]|dxdddr < 4 (log N)?.
0 0 U

Our work in this paper is motivated by our study of irregularities of point distri-
bution relative to half-planes in [3]. There, the same surprising difference between the
L'norm and the L?>norm of the corresponding discrepancy function is also present.
In fact, the analogy between the two problems becomes clear on noting that a convex
polygon is the intersection of a finite number of half-planes. We can therefore employ
some of the techniques in [3].

In §2, we shall study the problem when N is a perfect square. Here the argument
is relatively straightforward. However, we shall introduce some extra technicalities here
for use in §3, where we extend the argument to when NN is no longer a perfect square.

For ease of notation, we consider the following renormalized version of the prob-
lem. Let V be the square [0, N'/2]2, again treated as a torus (modulo N/2 for each
coordinate). For every finite distribution P of points in V' and every measurable set B
in V, let Z[P; B] denote the number of points of P in B, and write

E[P; B] = Z[P; B] — (B).

Let A C V be a closed convex polygon of diameter not exceeding N'/2? and centred at
the origin 0. For every real number r satisfying 0 < r < 1, every angle 6 satisfying
0 <6 <27 and every x € V, we define A(x,r,6) in terms of (1)—(3). We shall prove

Main Theorem. For every natural number N > 2, there exists a distribution P of
N points in V' such that

/ 1 / " / |E[P; A(x,7,0)]|dxdfdr < 4 N(log N)>. (4)
0 0 14

The key idea in the proof of our Main Theorem is to split the integral over V in
(4) into a sum of integrals over sets whose diameters are very small. We may then
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use the variable x in the same way as the probabilistic variable in Roth’s probabilistic
method in [4].

We thank Bob Vaughan for pointing out the simple proof of Lemma 1, and the
referee for his valuable comments.

2. A special case

We first of all consider the case when N = M?, where M € N. We shall show that the
set
P={(m-1/2,n—-1/2) :m,neNand 1 <m,n < M}

of N points in V satisfies the inequality (4).
Let A C V be a closed convex polygon of k sides and of diameter not exceeding
M. Suppose that vi,vsa,..., vy are the vertices of A, where

(vj —vj-1)-e(0; +7/2) = |v; — v,

with 0 < 6; < ... <0, <27 and vg = vi. Here e(f) = (cosf,sinf) and u - v denotes
the scalar product of u and v. Let T, denote the side of A with vertices v;_; and
v;, and note that the perpendicular from 0 to T; makes an angle 6; with the positive
T1—axis.

Consider now the set A(x,r,#), where the contraction r € [0, 1], the rotation 0 €
[0, 27] and the centre of gravity x € V are fixed. We let vi(x,7,0),...,vi(x,7,0) denote
respectively the images of vq,..., vy after contraction r, rotation # and translation
x. For each j = 1,...,k, let Tj(x,7,6) denote the line segment joining the vertices
v;_1(x,7,0) and v;(x,r,0). For convenience, we use the convention that T)(x,r,0)
does not include either of these two vertices. Furthermore, let

X?“(9

C?r

(x,7,0)
1=1
i#]

in other words, T (x,r,0) is the union of all the other edges of A(x,r,0). Now, for
every m,n € N satisfying 1 < m,n < M, let

B(m,n)=(m—1,m] x (n —1,n].

We shall write, for each j =1,...,k,

Sj<X7T79) = U B(mvn);
1<mn<M
B(m,n)NTj(x,r,0)#0
B(m,n)NT} (x,r,0)=0
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in other words, S;(x,,6) is the union of all squares B(m,n) that intersect with the
edge T;(x,r,6). Furthermore, let

k
V(x,r,0) = U B(m,n) |\ Usj(x,r,e) ;

1<m,n<M
B(m, n)ﬂA(x 7,0)Z£0
B(m,n)ZA(x,r,0)

in other words, V(x,r,6) is the union of all B(m,n) that intersect non—trivially with
more than one edge of A(x,r,60). We also let

WO<X7 T, 9) = U B(m7 TL)
1<mn<M
B(m,n)NA(x,r,0)=0
and
k
W= U Boww |\ [USixno)
1<m,n<M j=1
B(m,n)CA(x,r,0)

Note that

k 1
U (x,7,0) | UV (x,7,0)U (U Wi(x,, 9)) ;

j=1 1=0
so that, for every j = 1,..., k, writing
Aj(x,r,0) = A(x,r,0)NS;(x,r,0),

we have

k
A(x,r,0) U (x,7,0) | U(A(x,r,0)NV(x,70))

U (U(A(x, r,0) N Wi(x, T, e))> : (5)

1=0

Note now that the (k + 3) sets on the right—hand side of (5) are pairwise disjoint, so
that

k
E[P; A(x,r,0)] = Y E[P; Aj(x,r,0)] + E[P; A(x,r,0) N V(x,7,0)]

j=1

+ Y E[P; A(x,7,0) N\ Wi(x,,0)]. (6)
1=0
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It is easy to see that for i = 0,1, if B(m,n) C W;(x,r,0), then Z[P; A(x,r,0) N
B(m,n)| = p(A(x,r,0)NB(m,n)) = i, so that E[P; A(x,r,0)NB(m,n)] = 0. It follows
that

E[P; A(x,r,0) N W;(x,7,6)] =0 (7)

for + = 0,1. On the other hand, note that
card ({(m, n) € N*: B(m,n) C V(x,r, 9)}) <al,

so that
E[P; A(x,r,0) NV (x,7,0)] <a 1. (8)

Combining (6)—(8), it is easy to see that to prove (4), it suffices to prove that for every

7 =1,...,k, we have

/1 /%/ |E[P; Aj(x,r,0)]|dxdfdr < N(log N)>. o)
0 JO v

Note that we may extend the definition of A;(x,r,6) by periodicity 27 on 6.
Suppose now that 0 < 0+ 6; < /4. Let

Ii(x,7,0) ={n € N: B(m,n) C Sj(x,r,6) for some m € N}.

Consider the edge T}(x,r,0). Since V is treated as a torus, Tj(x,r,60) N[0, M]? can be
interpreted as the union of at most three line segments of the form

T; p(x,7,0) (p=1,2,3)

in the square [0, M]?, with equation

(v + NY2(a,, B,) —x) - (0 + ;) = rM; (10)

where y = (y1,y2) denotes any arbitrary point on T} ,(x,r,8), where M; denotes the
perpendicular distance of T from 0, and where «,, 3, € {—1,0,1}. Here we use N1/2
instead of M, as we need the greater generality in §3.

Let PT} ,(x,r,0) denote the projection of T} ,(x,r,6) on the ys—axis, and let

I ,(x,7,0) ={n € (0,M]: (n—1,n] C PT; ,(x,7,0)} N I;(x,7,0).

Clearly

Ijm(xv T, 0) - Ij(xa T, 0) (p = 17273)

and

card (Ij(x,r, 0)\ <U I (%, 0))) <1. (11)
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For each p = 1,2, 3, we now write

S;p(x,r,0) = U B(m,n).

1<m<M
nel; ,(x,r,0)

Then
U Sj7p(X,T‘, 9) g Sj(X,T’, 9)7

=1

i)

so that writing
Ajp(x,1m,0) = A(x,71,0) N Sj p(x,7,0),

we have

3
U 4j,(x,7,0) € Aj(x,7,0). (12)
p=1

Note now that the union on the left—hand side of (12) is pairwise disjoint. Furthermore,

in view of (11), the set
3

A;(x,m,0)\ | 4j,(x,7,0)

p=1

is contained in the union of at most two squares of the form B(m,n), so that

3
E |P;Aj(x,r,0)\ | Aj,(x,m, 9)] <2.
p=1
It follows that ;
|E[P; Aj(x,7,0)]] < |E[P; A; ,(x,7,0)]| +2. (13)

p=1

Let n = (n1,n2) € N*N(0, M]?, and let p = 1,2, 3. We consider the set 4; ,(n,r,0).
For each n € I ,(n,r,6), let

Aj (s, 0) = A; ,(n,r,0) N (R x (n—1,n]).

There exists a smallest integer m such that B(m,n) N A, ,(n;n,r,6) # (. Then it
follows from (10) that

Z[P; Aj p(n;n, 7, 0)]
= [rMjsec — (n+ NY28, —ng — 1/2) tan — NV%a, +ny; —m + 3/2],

where ¢ = 0 4 0;. On the other hand,

p(Ajp(n;m,r, 0)])
=rM;secp — (n-l—Nl/zﬁp —ng — 1/2)tan¢—N1/2ap+n1 -m+ 1.
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Clearly

E[P; A; ,(n;n,r,0)]
= —¢(rM;secd — (n+ NV23, —ny —1/2)tan¢ — N'/2a, +ny +1/2),

where ¥(z) = z — [2] — 1/2 for every z € R. It follows that

E[P;Aj ,(n,1,0)]

= - Z ¢(TMJ'S€C¢—(n+N1/2ﬁp—n2—1/2)ta,n¢—N1/2ap—|—n1—|—1/2).
TLGILp(n,’I’,Q)

Suppose now that x € B(n). Then x = n — z, where z = (z1,22) € [0,1)?. By
permuting I; ,(x,r,8) for p = 1,2, 3 if necessary, we may assume that

CaI'd(Ij7p(X, r, Q)Alj,p(nv T, 0)) <1
for p= 1, 2,3 Let

G[PEjJJQX,Tve] = - Z w<H(ran;¢7N7apaﬁp7n7z2>_Zl_ntan(b)ﬂ

nel; ,(n,r,0)
where

H(T, Mja¢a N7 apvﬁp7n7z2)
=rM;secp — (Nl/zﬁp —ng+ 29 —1/2) tan¢>—N1/2ap+n1 +1/2.

Then
E[P; A, ,(x,7,0)] — G[P; 4, p;x,r,0] < 1. (14)

The function 1(z) = z — [z] — 1/2 has Fourier expansion

o Z €(ZV)
o 2miv

It follows that the Fourier expansion of G[P;j, p;x,r, 0] is given by

Z 6(1/7’((7’, Mj;¢; N, Oép?ﬁp7n7z2)) Z

2miv
v#£0 n€l; ,(n,r,0)

e(—nvtang)e(—z1v).

Hence for every zo € (n2 — 1, ns], we have, by Parseval’s theorem, that

2

ni ' oo 1
/n ) G[P; 4, psx, 7, 0] *day < Z 2 Z e(nvtan@)| |

1= v=1 nel; ,(n,r,0)
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so that, on noting that I, ,(n,r,8) is a set of consecutive integers, we have
=1
| 16Pipxro)fax < Y S min(dr, v tan o)),
B(n) v=1

where ||3]| = miny,ez |3 — n| for every 5 € R.
We need the following crucial estimate.

Lemma 1. We have

oo

w/4 1 1/2

/ (Zﬁmin{MQ,Hytan¢|]2}> do < (logM)Q,
0 v=1

Proof. Since tan ¢ < ¢ if 0 < ¢ < 7/4, it suffices to show that

1/2

1/ )
/ (Zﬁmin{MaHan %} dw < (log M)
0 n=1

Clearly

0o 1 M? 1

: —2 . -2

Zﬁmm{Mz,llnwll } < Zﬁmm{MQ,llnwll P+

n=1 n=1
so that

00 1 1/2 M2 1

(Z —~ min{M?, HWH—Q}) <> — min{M, lnw|| =1} + 1.

n=1 n=1

Now, for every n =1,..., M?, we have

1 1/2n
/ min{ M, |[nw| " }dw = Zn/ min{ M, (nw) " }dw < log M.
0 0

Inequality (16) now follows on combining (17) and (18). &

By the Cauchy—Schwarz inequality, we have
1/2
[ 161Pgpxr)ix < ( | 16ipis e enzdx) .
B(n) B(n)
It follows from (13)—(15), (19) and Lemma 1 that

1 pm/4
/ / / IE[P: 4, (x, 7, 0)]|dxdedr < (log N)®.
o Jo B(n)
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Similarly, for i =1,...,7, we have
(i+1)7/4 .
/ / / E[P; Aj(x,r,0)]|dxdédr < (log N)™.
im/4 B(n)

It follows that
1 27
/ / / E[P; 4, (x, 7, )] |dxdddr < (log N)2.
0o Jo B(n)

Summing over all B(n) in V', we have

1 27
/ / / |E[P; A;(x,r,0)]|dxdfdr
o Jo 0,M]2

- ¥ //%/B |E[P; A;(x, 7, 0)]|dxdodr

neN2n(0,M]2 (n)

< N(log N)>.

Inequality (9) follows.

3. Proof of the Main Theorem

Suppose now that the natural number N > 2. Let M € N be chosen such that
M? < N < (M + 1)%. Consider the square V = [0, N'/2]2. Clearly [0, M]?> C V. Let
Q= NY2— M. For every i = 1,..., R, where R = [MQ], let

1—1 ¢

(i) = {Q Q] (M,N'2]  and Cg(i):[M,Nl/Q]x{% i},

and let
R R
Ci=JCi()) and  Cp=]Cai)
i=1 =1

Furthermore, let

=V\ ([0,M]*?UCLUCs),
and note that
:U’(CB) € {07 1; 2}7 (20)

and that u(C3) = 0 if and only if N = M2,
Let A C V be a closed convex polygon of k sides, of diameter not exceeding N1/2
and with vertices vq,..., V.



We now let
Pr={(m—-1/2,n—-1/2):m,neNand 1 <m,n < M}

as in the special case. Furthermore, let

(i QY.
P2_{(6—E,M+§)Z—1,,R}

Q i y .
(e @5 DY)

and let Ps be any set of ;(Cs) points in C'5. We shall show that the set P = P;UP,UP;
satisfies (4).

Consider now the set A(x,r,60), where the contraction r € [0,1], the rotation
0 € [0,27] and the centre of gravity x € V are fixed. As before, we let vq(x,7,0),...,
vi(x,r,0) denote respectively the images of vq,..., vy after contraction r, rotation 6
and translation x. For each j = 1,...,k, we deﬁne T;(x,r,0), S;(x,r,0), V(x,r,0),
Wo(x,7,0), Wi(x,r,0) and A;(x,7,0) as before. Then

A(x,r,0)

Cw

(x,7,0) | U(A(x,r,0)NV(x,70))

(O (x,7,0) ﬂW(er)))
U (U(A(x, r,0) mci)> . (21)

i=1
Note now that the (k + 6) sets on the right-hand side of (21) satisfy u(B; N Bz) =0
and B; N Bo NP = (. It follows that

E[P; A(x,1,0)] = Y " E[P; Aj(x,7,0)] + E[P; A(x,7,0) N V(x,7,0)]

Z E[P7 A(Xa r, 0) n Wz (Xa r, 0)]
1=0
3
> E[P; A(x,r,0) N Ci. (22)

Suppose first of all that x € [0, M]?. Then as in §2, writing

k
FIP; A(x,r,0)] = > E[P; Aj(x,7,0)] + E[P; A(x,7,0) N V(x,7,0)]

1
+ ZE[P; A(x,r,0) N Wi(x,r,0)],
i=0
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we can show that
1 27
/ / / |F[P; A(x,7,0)]|dxdfdr < 4 N(log N)?.
0o Jo [0,M]2

To prove (4), it therefore remains to show that for every i = 1,2, 3, we have

1 27
/ / / B[P A(x, 7, 0) O Ci][dxdfdr < 4 N: (23)
o Jo Jpo,m2
and that e
/ / / |E[P; A(x,r,0)]|dxdfdr <4 N. (24)
o Jo  Jv\[o,m)2
In view of (20), we must have |E[P;A(x,r,0) N Cs]| < 2, so that (23) holds
when i = 3. Consider now E[P; A(x,7,0) N Ci]. Let r and 0 be fixed, and let £ =
{0, R/Q} x [M,N'/2]; in other words, £ denotes the two short edges of the rectangle
Ci. The following three lemmas are obvious. For every x € [0, M]?, let OA(x,,0)
denotes the boundary of A(x,r,@).
Lemma 2. Let x € [0, M]?. Suppose that
0A(x,r,0)NE = . (25)
Suppose further that no vertex of A(x,r,0) lies in Cy; in other words,
Vj(X,T,e)Q/Cl (jzl,,k) (26)
Then |E[P; A(x,r,60) N C4]] < 1.
Lemma 3. We have p({x € [0, M]? : 0A(x,r,0) N E # 0}) < kN'/2,

Lemma 4. For every j = 1,...,k, we have pu({x € [0, M]? : v;(x,1,0) € C1}) <
p(Cr) < N2,

Note also that
|E[P; A(x,7,0) N C1]| < u(Cy) < N'/2 (27)

trivially. Let x(r,0) = {x € [0, M]? : (25) and (26) hold}. Then by Lemmas 2-4 and
(27), we have

/ |E[P;A(x,r,9)ﬂCl]]dx§/
0,02

dx + / NY2dx < (2k +1)N.
X(r,0) [0,M]2\x(r,0)

Inequality (23) follows for ¢ = 1. A similar argument applies in the case i = 2.
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Suppose now that x € V'\ [0, M]?. Clearly E[P; B] < N'/2 for every set B in the
union (21). On the other hand, u(V \ [0, M]?) < N'/2. Inequality (24) clearly follows
on noting (22).
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