
Irregularities of point distribution relative to convex polygons II

J. Beck and W.W.L. Chen

1. Introduction

Suppose that P is a distribution of N points in the unit square U = [0, 1]2, treated as
a torus. For every measurable set B in U , let Z[P;B] denote the number of points of
P in B, and write

D[P;B] = Z[P;B]−Nµ(B),

where µ denotes the usual measure in R2.
Let A ⊆ U be a closed convex polygon of diameter not exceeding 1 and centred

at the origin 0. For every real number r satisfying 0 ≤ r ≤ 1 and for every angle θ
satisfying 0 ≤ θ ≤ 2π, let v = θ(u) denote(

v1
v2

)
=
(

cos θ − sin θ
sin θ cos θ

)(
u1

u2

)
, (1)

where v = (v1, v2) and u = (u1, u2), and write

A(r, θ) = {rv : v = θ(u) for some u ∈ A}; (2)

in other words, A(r, θ) is obtained from A by first rotating clockwise by angle θ and
then contracting by factor r about the origin 0. For every x ∈ U , let

A(x, r, θ) = {x + v : v ∈ A(r, θ)}, (3)

so that A(x, r, θ) is a similar copy of A, with centre of gravity at x.
In 1987, Beck [1] proved that

inf
|P|=N

sup
x∈U

0≤r≤1
0≤θ≤2π

|D[P;A(x, r, θ)]| �A N
1/4,

where the supremum is taken over all similar copies A(x, r, θ) of A, and the infimum
is taken over all distributions P of N points in U . In fact, Beck proved

Theorem A. For every distribution P of N points in U , we have∫ 1

0

∫ 2π

0

∫
U

|D[P;A(x, r, θ)]|2dxdθdr �A N
1/2.
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This is complemented by the result below, which can be proved using probabilistic
methods (see, for example, Beck and Chen [2]).

Theorem B. For every natural number N , there exists a distribution P of N points
in U such that ∫ 1

0

∫ 2π

0

∫
U

|D[P;A(x, r, θ)]|2dxdθdr �A N
1/2.

The purpose of this paper is to study the L1–norm of the discrepancy function
D[P;A(x, r, θ)]. In particular, we prove

Theorem. For every natural number N ≥ 2, there exists a distribution P of N points
in U such that ∫ 1

0

∫ 2π

0

∫
U

|D[P;A(x, r, θ)]|dxdθdr �A (logN)2.

Our work in this paper is motivated by our study of irregularities of point distri-
bution relative to half–planes in [3]. There, the same surprising difference between the
L1–norm and the L2–norm of the corresponding discrepancy function is also present.
In fact, the analogy between the two problems becomes clear on noting that a convex
polygon is the intersection of a finite number of half–planes. We can therefore employ
some of the techniques in [3].

In §2, we shall study the problem when N is a perfect square. Here the argument
is relatively straightforward. However, we shall introduce some extra technicalities here
for use in §3, where we extend the argument to when N is no longer a perfect square.

For ease of notation, we consider the following renormalized version of the prob-
lem. Let V be the square [0, N1/2]2, again treated as a torus (modulo N1/2 for each
coordinate). For every finite distribution P of points in V and every measurable set B
in V , let Z[P;B] denote the number of points of P in B, and write

E[P;B] = Z[P;B]− µ(B).

Let A ⊆ V be a closed convex polygon of diameter not exceeding N1/2 and centred at
the origin 0. For every real number r satisfying 0 ≤ r ≤ 1, every angle θ satisfying
0 ≤ θ ≤ 2π and every x ∈ V , we define A(x, r, θ) in terms of (1)–(3). We shall prove

Main Theorem. For every natural number N ≥ 2, there exists a distribution P of
N points in V such that∫ 1

0

∫ 2π

0

∫
V

|E[P;A(x, r, θ)]|dxdθdr �A N(logN)2. (4)

The key idea in the proof of our Main Theorem is to split the integral over V in
(4) into a sum of integrals over sets whose diameters are very small. We may then
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use the variable x in the same way as the probabilistic variable in Roth’s probabilistic
method in [4].

We thank Bob Vaughan for pointing out the simple proof of Lemma 1, and the
referee for his valuable comments.

2. A special case

We first of all consider the case when N = M2, where M ∈ N. We shall show that the
set

P = {(m− 1/2, n− 1/2) : m,n ∈ N and 1 ≤ m,n ≤M}

of N points in V satisfies the inequality (4).
Let A ⊆ V be a closed convex polygon of k sides and of diameter not exceeding

M . Suppose that v1,v2, . . . ,vk are the vertices of A, where

(vj − vj−1) · e(θj + π/2) = |vj − vj−1|,

with 0 ≤ θ1 < . . . < θk < 2π and v0 = vk. Here e(θ) = (cos θ, sin θ) and u · v denotes
the scalar product of u and v. Let Tj denote the side of A with vertices vj−1 and
vj , and note that the perpendicular from 0 to Tj makes an angle θj with the positive
x1–axis.

Consider now the set A(x, r, θ), where the contraction r ∈ [0, 1], the rotation θ ∈
[0, 2π] and the centre of gravity x ∈ V are fixed. We let v1(x, r, θ), . . . ,vk(x, r, θ) denote
respectively the images of v1, . . . ,vk after contraction r, rotation θ and translation
x. For each j = 1, . . . , k, let Tj(x, r, θ) denote the line segment joining the vertices
vj−1(x, r, θ) and vj(x, r, θ). For convenience, we use the convention that Tj(x, r, θ)
does not include either of these two vertices. Furthermore, let

T ∗j (x, r, θ) =
k⋃
i=1
i 6=j

Tj(x, r, θ);

in other words, T ∗j (x, r, θ) is the union of all the other edges of A(x, r, θ). Now, for
every m,n ∈ N satisfying 1 ≤ m,n ≤M , let

B(m,n) = (m− 1,m]× (n− 1, n].

We shall write, for each j = 1, . . . , k,

Sj(x, r, θ) =
⋃

1≤m,n≤M
B(m,n)∩Tj(x,r,θ) 6=∅
B(m,n)∩T∗j (x,r,θ)=∅

B(m,n);
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in other words, Sj(x, r, θ) is the union of all squares B(m,n) that intersect with the
edge Tj(x, r, θ). Furthermore, let

V (x, r, θ) =


⋃

1≤m,n≤M
B(m,n)∩A(x,r,θ) 6=∅
B(m,n)6⊆A(x,r,θ)

B(m,n)

 \
 k⋃
j=1

Sj(x, r, θ)

 ;

in other words, V (x, r, θ) is the union of all B(m,n) that intersect non–trivially with
more than one edge of A(x, r, θ). We also let

W0(x, r, θ) =
⋃

1≤m,n≤M
B(m,n)∩A(x,r,θ)=∅

B(m,n)

and

W1(x, r, θ) =

 ⋃
1≤m,n≤M

B(m,n)⊆A(x,r,θ)

B(m,n)

 \
 k⋃
j=1

Sj(x, r, θ)

 .

Note that

(0,M ]2 =

 k⋃
j=1

Sj(x, r, θ)

 ∪ V (x, r, θ) ∪

(
1⋃
i=0

Wi(x, r, θ)

)
,

so that, for every j = 1, . . . , k, writing

Aj(x, r, θ) = A(x, r, θ) ∩ Sj(x, r, θ),

we have

A(x, r, θ) =

 k⋃
j=1

Aj(x, r, θ)

 ∪ (A(x, r, θ) ∩ V (x, r, θ))

∪

(
1⋃
i=0

(A(x, r, θ) ∩Wi(x, r, θ))

)
. (5)

Note now that the (k + 3) sets on the right–hand side of (5) are pairwise disjoint, so
that

E[P;A(x, r, θ)] =
k∑
j=1

E[P;Aj(x, r, θ)] + E[P;A(x, r, θ) ∩ V (x, r, θ)]

+
1∑
i=0

E[P;A(x, r, θ) ∩Wi(x, r, θ)]. (6)
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It is easy to see that for i = 0, 1, if B(m,n) ⊆ Wi(x, r, θ), then Z[P;A(x, r, θ) ∩
B(m,n)] = µ(A(x, r, θ)∩B(m,n)) = i, so that E[P;A(x, r, θ)∩B(m,n)] = 0. It follows
that

E[P;A(x, r, θ) ∩Wi(x, r, θ)] = 0 (7)

for i = 0, 1. On the other hand, note that

card
({

(m,n) ∈ N2 : B(m,n) ⊆ V (x, r, θ)
})
�A 1,

so that
E[P;A(x, r, θ) ∩ V (x, r, θ)]�A 1. (8)

Combining (6)–(8), it is easy to see that to prove (4), it suffices to prove that for every
j = 1, . . . , k, we have∫ 1

0

∫ 2π

0

∫
V

|E[P;Aj(x, r, θ)]|dxdθdr � N(logN)2. (9)

Note that we may extend the definition of Aj(x, r, θ) by periodicity 2π on θ.
Suppose now that 0 ≤ θ + θj ≤ π/4. Let

Ij(x, r, θ) = {n ∈ N : B(m,n) ⊆ Sj(x, r, θ) for some m ∈ N}.

Consider the edge Tj(x, r, θ). Since V is treated as a torus, Tj(x, r, θ) ∩ [0,M ]2 can be
interpreted as the union of at most three line segments of the form

Tj,ρ(x, r, θ) (ρ = 1, 2, 3)

in the square [0,M ]2, with equation

(y +N1/2(αρ, βρ)− x) · e(θ + θj) = rMj , (10)

where y = (y1, y2) denotes any arbitrary point on Tj,ρ(x, r, θ), where Mj denotes the
perpendicular distance of Tj from 0, and where αρ, βρ ∈ {−1, 0, 1}. Here we use N1/2

instead of M , as we need the greater generality in §3.
Let PTj,ρ(x, r, θ) denote the projection of Tj,ρ(x, r, θ) on the y2–axis, and let

Ij,ρ(x, r, θ) = {n ∈ (0,M ] : (n− 1, n] ⊆ PTj,ρ(x, r, θ)} ∩ Ij(x, r, θ).

Clearly
Ij,ρ(x, r, θ) ⊆ Ij(x, r, θ) (ρ = 1, 2, 3)

and

card

(
Ij(x, r, θ) \

(
3⋃
ρ=1

Ij,ρ(x, r, θ)

))
≤ 1. (11)
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For each ρ = 1, 2, 3, we now write

Sj,ρ(x, r, θ) =
⋃

1≤m≤M
n∈Ij,ρ(x,r,θ)

B(m,n)⊆Sj(x,r,θ)

B(m,n).

Then
3⋃
ρ=1

Sj,ρ(x, r, θ) ⊆ Sj(x, r, θ),

so that writing
Aj,ρ(x, r, θ) = A(x, r, θ) ∩ Sj,ρ(x, r, θ),

we have
3⋃
ρ=1

Aj,ρ(x, r, θ) ⊆ Aj(x, r, θ). (12)

Note now that the union on the left–hand side of (12) is pairwise disjoint. Furthermore,
in view of (11), the set

Aj(x, r, θ) \
3⋃
ρ=1

Aj,ρ(x, r, θ)

is contained in the union of at most two squares of the form B(m,n), so that∣∣∣∣∣E
[
P;Aj(x, r, θ) \

3⋃
ρ=1

Aj,ρ(x, r, θ)

]∣∣∣∣∣ ≤ 2.

It follows that

|E[P;Aj(x, r, θ)]| ≤
3∑
ρ=1

|E[P;Aj,ρ(x, r, θ)]|+ 2. (13)

Let n = (n1, n2) ∈ N2∩(0,M ]2, and let ρ = 1, 2, 3. We consider the set Aj,ρ(n, r, θ).
For each n ∈ Ij,ρ(n, r, θ), let

Aj,ρ(n; n, r, θ) = Aj,ρ(n, r, θ) ∩ (R× (n− 1, n]).

There exists a smallest integer m such that B(m,n) ∩ Aj,ρ(n; n, r, θ) 6= ∅. Then it
follows from (10) that

Z[P;Aj,ρ(n; n, r, θ)]

= [rMj secφ− (n+N1/2βρ − n2 − 1/2) tanφ−N1/2αρ + n1 −m+ 3/2],

where φ = θ + θj . On the other hand,

µ(Aj,ρ(n; n, r, θ)])

= rMj secφ− (n+N1/2βρ − n2 − 1/2) tanφ−N1/2αρ + n1 −m+ 1.
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Clearly

E[P;Aj,ρ(n; n, r, θ)]

= −ψ(rMj secφ− (n+N1/2βρ − n2 − 1/2) tanφ−N1/2αρ + n1 + 1/2),

where ψ(z) = z − [z]− 1/2 for every z ∈ R. It follows that

E[P;Aj,ρ(n, r, θ)]

= −
∑

n∈Ij,ρ(n,r,θ)

ψ(rMj secφ− (n+N1/2βρ − n2 − 1/2) tanφ−N1/2αρ + n1 + 1/2).

Suppose now that x ∈ B(n). Then x = n − z, where z = (z1, z2) ∈ [0, 1)2. By
permuting Ij,ρ(x, r, θ) for ρ = 1, 2, 3 if necessary, we may assume that

card(Ij,ρ(x, r, θ)4Ij,ρ(n, r, θ))� 1

for ρ = 1, 2, 3. Let

G[P; j, ρ; x, r, θ] = −
∑

n∈Ij,ρ(n,r,θ)

ψ(H(r,Mj , φ,N, αρ, βρ,n, z2)− z1 − n tanφ),

where

H(r,Mj , φ,N, αρ, βρ,n, z2)

= rMj secφ− (N1/2βρ − n2 + z2 − 1/2) tanφ−N1/2αρ + n1 + 1/2.

Then
E[P;Aj,ρ(x, r, θ)]−G[P; j, ρ; x, r, θ]� 1. (14)

The function ψ(z) = z − [z]− 1/2 has Fourier expansion

−
∑
ν 6=0

e(zν)
2πiν

.

It follows that the Fourier expansion of G[P; j, ρ; x, r, θ] is given by

∑
ν 6=0

e(νH(r,Mj , φ,N, αρ, βρ,n, z2))
2πiν

∑
n∈Ij,ρ(n,r,θ)

e(−nν tanφ)e(−z1ν).

Hence for every x2 ∈ (n2 − 1, n2], we have, by Parseval’s theorem, that

∫ n1

n1−1

|G[P; j, ρ; x, r, θ]|2dx1 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑

n∈Ij,ρ(n,r,θ)

e(nν tanφ)

∣∣∣∣∣∣
2

,
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so that, on noting that Ij,ρ(n, r, θ) is a set of consecutive integers, we have∫
B(n)

|G[P; j, ρ; x, r, θ]|2dx�
∞∑
ν=1

1
ν2

min{M2, ‖ν tanφ‖2}, (15)

where ‖β‖ = minn∈Z |β − n| for every β ∈ R.
We need the following crucial estimate.

Lemma 1. We have∫ π/4

0

( ∞∑
ν=1

1
ν2

min{M2, ‖ν tanφ‖2}

)1/2

dφ� (logM)2.

Proof. Since tanφ � φ if 0 ≤ φ ≤ π/4, it suffices to show that

∫ 1

0

( ∞∑
n=1

1
n2

min{M2, ‖nω‖−2}

)1/2

dω � (logM)2. (16)

Clearly
∞∑
n=1

1
n2

min{M2, ‖nω‖−2} ≤
M2∑
n=1

1
n2

min{M2, ‖nω‖−2}+ 1,

so that ( ∞∑
n=1

1
n2

min{M2, ‖nω‖−2}

)1/2

≤
M2∑
n=1

1
n

min{M, ‖nω‖−1}+ 1. (17)

Now, for every n = 1, . . . ,M2, we have∫ 1

0

min{M, ‖nω‖−1}dω = 2n
∫ 1/2n

0

min{M, (nω)−1}dω � logM. (18)

Inequality (16) now follows on combining (17) and (18). ♣

By the Cauchy–Schwarz inequality, we have

∫
B(n)

|G[P; j, ρ; x, r, θ]|dx�

(∫
B(n)

|G[P; j, ρ; x, r, θ]|2dx

)1/2

. (19)

It follows from (13)–(15), (19) and Lemma 1 that∫ 1

0

∫ π/4

0

∫
B(n)

|E[P;Aj(x, r, θ)]|dxdφdr � (logN)2.
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Similarly, for i = 1, . . . , 7, we have∫ 1

0

∫ (i+1)π/4

iπ/4

∫
B(n)

|E[P;Aj(x, r, θ)]|dxdφdr � (logN)2.

It follows that ∫ 1

0

∫ 2π

0

∫
B(n)

|E[P;Aj(x, r, θ)]|dxdθdr � (logN)2.

Summing over all B(n) in V , we have∫ 1

0

∫ 2π

0

∫
[0,M ]2

|E[P;Aj(x, r, θ)]|dxdθdr

=
∑

n∈N2∩(0,M ]2

∫ 1

0

∫ 2π

0

∫
B(n)

|E[P;Aj(x, r, θ)]|dxdθdr

� N(logN)2.

Inequality (9) follows.

3. Proof of the Main Theorem

Suppose now that the natural number N ≥ 2. Let M ∈ N be chosen such that
M2 ≤ N < (M + 1)2. Consider the square V = [0, N1/2]2. Clearly [0,M ]2 ⊆ V . Let
Q = N1/2 −M . For every i = 1, . . . , R, where R = [MQ], let

C1(i) =
[
i− 1
Q

,
i

Q

]
× [M,N1/2] and C2(i) = [M,N1/2]×

[
i− 1
Q

,
i

Q

]
,

and let

C1 =
R⋃
i=1

C1(i) and C2 =
R⋃
i=1

C2(i).

Furthermore, let
C3 = V \

(
[0,M ]2 ∪ C1 ∪ C2

)
,

and note that
µ(C3) ∈ {0, 1, 2}, (20)

and that µ(C3) = 0 if and only if N = M2.
Let A ⊆ V be a closed convex polygon of k sides, of diameter not exceeding N1/2

and with vertices v1, . . . ,vk.
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We now let

P1 = {(m− 1/2, n− 1/2) : m,n ∈ N and 1 ≤ m,n ≤M}

as in the special case. Furthermore, let

P2 =
{(

i

Q
− 1

2Q
,M +

Q

2

)
: i = 1, . . . , R

}
∪
{(

M +
Q

2
,
i

Q
− 1

2Q

)
: i = 1, . . . , R

}
and let P3 be any set of µ(C3) points in C3. We shall show that the set P = P1∪P2∪P3

satisfies (4).
Consider now the set A(x, r, θ), where the contraction r ∈ [0, 1], the rotation

θ ∈ [0, 2π] and the centre of gravity x ∈ V are fixed. As before, we let v1(x, r, θ), . . . ,
vk(x, r, θ) denote respectively the images of v1, . . . ,vk after contraction r, rotation θ
and translation x. For each j = 1, . . . , k, we define Tj(x, r, θ), Sj(x, r, θ), V (x, r, θ),
W0(x, r, θ), W1(x, r, θ) and Aj(x, r, θ) as before. Then

A(x, r, θ) =

 k⋃
j=1

Aj(x, r, θ)

 ∪ (A(x, r, θ) ∩ V (x, r, θ))

∪

(
1⋃
i=0

(A(x, r, θ) ∩Wi(x, r, θ))

)

∪

(
3⋃
i=1

(A(x, r, θ) ∩ Ci)

)
. (21)

Note now that the (k + 6) sets on the right–hand side of (21) satisfy µ(B1 ∩ B2) = 0
and B1 ∩B2 ∩ P = ∅. It follows that

E[P;A(x, r, θ)] =
k∑
j=1

E[P;Aj(x, r, θ)] + E[P;A(x, r, θ) ∩ V (x, r, θ)]

+
1∑
i=0

E[P;A(x, r, θ) ∩Wi(x, r, θ)]

+
3∑
i=1

E[P;A(x, r, θ) ∩ Ci]. (22)

Suppose first of all that x ∈ [0,M ]2. Then as in §2, writing

F [P;A(x, r, θ)] =
k∑
j=1

E[P;Aj(x, r, θ)] + E[P;A(x, r, θ) ∩ V (x, r, θ)]

+
1∑
i=0

E[P;A(x, r, θ) ∩Wi(x, r, θ)],
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we can show that∫ 1

0

∫ 2π

0

∫
[0,M ]2

|F [P;A(x, r, θ)]|dxdθdr �A N(logN)2.

To prove (4), it therefore remains to show that for every i = 1, 2, 3, we have∫ 1

0

∫ 2π

0

∫
[0,M ]2

|E[P;A(x, r, θ) ∩ Ci]|dxdθdr �A N ; (23)

and that ∫ 1

0

∫ 2π

0

∫
V \[0,M ]2

|E[P;A(x, r, θ)]|dxdθdr �A N. (24)

In view of (20), we must have |E[P;A(x, r, θ) ∩ C3]| ≤ 2, so that (23) holds
when i = 3. Consider now E[P;A(x, r, θ) ∩ C1]. Let r and θ be fixed, and let E =
{0, R/Q} × [M,N1/2]; in other words, E denotes the two short edges of the rectangle
C1. The following three lemmas are obvious. For every x ∈ [0,M ]2, let ∂A(x, r, θ)
denotes the boundary of A(x, r, θ).

Lemma 2. Let x ∈ [0,M ]2. Suppose that

∂A(x, r, θ) ∩ E = ∅. (25)

Suppose further that no vertex of A(x, r, θ) lies in C1; in other words,

vj(x, r, θ) 6∈ C1 (j = 1, . . . , k). (26)

Then |E[P;A(x, r, θ) ∩ C1]| ≤ 1.

Lemma 3. We have µ({x ∈ [0,M ]2 : ∂A(x, r, θ) ∩ E 6= ∅}) ≤ kN1/2.

Lemma 4. For every j = 1, . . . , k, we have µ({x ∈ [0,M ]2 : vj(x, r, θ) ∈ C1}) ≤
µ(C1) ≤ N1/2.

Note also that
|E[P;A(x, r, θ) ∩ C1]| ≤ µ(C1) ≤ N1/2 (27)

trivially. Let χ(r, θ) = {x ∈ [0,M ]2 : (25) and (26) hold}. Then by Lemmas 2–4 and
(27), we have∫

[0,M ]2
|E[P;A(x, r, θ) ∩ C1]|dx ≤

∫
χ(r,θ)

dx +
∫

[0,M ]2\χ(r,θ)

N1/2dx ≤ (2k + 1)N.

Inequality (23) follows for i = 1. A similar argument applies in the case i = 2.
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Suppose now that x ∈ V \ [0,M ]2. Clearly E[P;B]� N1/2 for every set B in the
union (21). On the other hand, µ(V \ [0,M ]2)� N1/2. Inequality (24) clearly follows
on noting (22).
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