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1. Introduction

Suppose that P is a distribution of N points in the unit square U = [0, 1]2. For every
x = (x1, x2) ∈ U , let B(x) = [0, x1]× [0, x2] denote the aligned rectangle containing all
points y = (y1, y2) ∈ U satisfying 0 ≤ y1 ≤ x1 and 0 ≤ y2 ≤ x2. Denote by Z[P;B(x)]
the number of points of P that lie in B(x), and consider the discrepancy function

D[P;B(x)] = Z[P;B(x)]−Nµ(B(x)),

where µ denotes the usual area measure.
The following two results are classical.

Theorem A1. (Roth [8]) There exists an absolute constant c1 > 0 such that for
every natural number N and every distribution P of N points in U , we have∫

U

|D[P;B(x)]|2dx > c1 logN.

Theorem A2. (Davenport [6]) There exists an absolute constant c2 > 0 such that
for every natural number N ≥ 2, there exists a distribution P of N points in U such
that ∫

U

|D[P;B(x)]|2dx < c2 logN.

The situation is somewhat different when the aligned rectangles are replaced by
similar copies of a given convex polygon. More precisely, suppose that P is a distri-
bution of N points in the unit square U = [0, 1]2, treated as a torus. Suppose that
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A ⊆ U is a closed convex polygon of diameter less than 1 and with centre of gravity at
the origin 0. For every real number r satisfying 0 ≤ r ≤ 1 and every angle θ satisfying
0 ≤ θ ≤ 2π, let v = θ(u) denote(

v1
v2

)
=
(

cos θ sin θ
− sin θ cos θ

)(
u1

u2

)
,

where v = (v1, v2) and u = (u1, u2), and write

A(r, θ) = {rv : v = θ(u) for some u ∈ A};

in other words, A(r, θ) is obtained from A by first rotating clockwise by angle θ and
then contracting by factor r about the origin 0. For every x ∈ U , let

A(x, r, θ) = {x + v : v ∈ A(r, θ)},

so that A(x, r, θ) is a similar copy of A, with centre of gravity at x. Denote by
Z[P;A(x, r, θ)] the number of points of P that lie in A(x, r, θ), and consider the dis-
crepancy function

D[P;A(x, r, θ)] = Z[P;A(x, r, θ)]−Nµ(A(x, r, θ)).

Corresponding to Theorems A1 and A2, we have the following two results.

Theorem B1. (Beck [1]) There exists a constant c3 = c3(A) > 0 such that for
every natural number N and every distribution P of N points in U , we have∫ 2π

0

∫ 1

0

∫
U

|D[P;A(x, r, θ)]|2dxdrdθ > c3(A)N1/2.

Theorem B2. (Beck and Chen [3]) There exists a constant c4 = c4(A) > 0 such
that for every natural number N , there exists a distribution P of N points in U such
that ∫ 2π

0

∫ 1

0

∫
U

|D[P;A(x, r, θ)]|2dxdrdθ < c4(A)N1/2.

Let us now study the case when rotation is not present. More precisely, suppose
that P is a distribution of N points in the unit square U = [0, 1]2, treated as a torus.
Suppose that A ⊆ U is a closed convex polygon of diameter less than 1 and with centre
of gravity at the origin 0. For every real number r satisfying 0 ≤ r ≤ 1 and every
x ∈ U , let

A(x, r) = {x + ru : u ∈ A},
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so that A(x, r) is a homothetic copy of A, with centre of gravity at x. Denote by
Z[P;A(x, r)] the number of points of P that lie in A(x, r), and consider the discrepancy
function

D[P;A(x, r)] = Z[P;A(x, r)]−Nµ(A(x, r)).

Corresponding to Theorems A1 and B1, we have the following lower bound result.

Theorem C1. (Beck [2]) There exists a constant c5 = c5(A) > 0 such that for
every natural number N and every distribution P of N points in U , we have∫ 1

0

∫
U

|D[P;A(x, r)]|2dxdr > c5(A) logN.

The purpose of this paper is to prove that Theorem C1 is best possible, apart from
the value of the constant c5 = c5(A). We prove the following analogue of Theorems A2
and B2.

Theorem C2. There exists a constant c6 = c6(A) > 0 such that for every natural
number N ≥ 2, there exists a distribution P of N points in U such that∫ 1

0

∫
U

|D[P;A(x, r)]|2dxdr < c6(A) logN.

Our work in this paper is motivated by our study of irregularities of point distri-
bution relative to similar copies of a closed convex polygon A. In [5], we showed that
there exists a constant c7 = c7(A) > 0 such that for every natural number N ≥ 2,
there exists a distribution P of N points in the unit torus U such that∫ 2π

0

∫ 1

0

∫
U

|D[P;A(x, r, θ)]|dxdrdθ < c7(A)(logN)2.

In the proof, the point set P that we constructed is made up primarily of a square
lattice, with appropriate adjustments near the edge of U . It is clear that the resulting
discrepancy function D[P;A(x, r, θ)] can be rather large in magnitude for some values
of θ and rather small in magnitude for other values of θ.

This observation leads us to consider, in our present case, the possibility of rotating
a square lattice to a suitable angle, and then perhaps make appropriate adjustments
near the edge of U in the same spirit as in our earlier work [4,5] on irregularities of point
distribution relative to half planes and convex polygons. Rotating a square lattice to
a suitable angle presents no difficulties, and we appeal to a result of Davenport [7] on
diophantine approximation. However, the analysis of the adjusted point set near the
edge of U appears to give rise to an error term too large for the method to succeed, at
least in the case when one of the sides of A is parallel to a side of U .
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Instead, we shall use Roth’s probabilistic method first introduced in [9], introduce
an extra translation variable and consider some average of the discrepancy function over
a collection of translated copies of our basic construction. Note first that this approach
will not give explicitly any point set P that will satisfy the conclusion of Theorem C2.
On the other hand, if the collection of translated copies of the basic construction is too
“small”, then we cannot use Parseval’s theorem and study the coefficients arising from
the Fourier series of the discrepancy function. However, if the collection of translated
copies of the basic construction is large enough to enable us to use Parseval’s theorem
in an appropriate way, then we may end up with a point set which does not contain the
correct number of points. In §6, we shall discuss a technique to overcome this difficulty.

For the sake of simplicity of notation, we consider instead a distribution P of N
points in the square V = [0, N1/2]2, treated as a torus. Suppose that A ⊆ V is a closed
convex polygon of diameter less than N1/2 and with centre of gravity at the origin 0.
For every real number r satisfying 0 ≤ r ≤ 1 and every x ∈ V , let

A(x, r) = {x + ru : u ∈ A},

so that A(x, r) is a homothetic copy of A, with centre of gravity at x. Denote by
Z[P;A(x, r)] the number of points of P that lie in A(x, r), and consider the discrepancy
function

E[P;A(x, r)] = Z[P;A(x, r)]− µ(A(x, r)).

Theorem C2 follows immediately from the result below.

Main Theorem. There exists a constant c8 = c8(A) > 0 such that for every natural
number N ≥ 2, there exists a distribution P of N points in V such that∫ 1

0

∫
V

|E[P;A(x, r)]|2dxdr < c8(A)N logN.

2. The Point Set

Let A ⊆ V be a closed convex polygon of diameter less than N1/2 and with centre of
gravity at the origin 0. Throughout this paper, A is fixed, and constants that arise
from all subsequent discussion may depend on this choice of A.

Suppose that the polygon A has k sides, with vertices v1, . . . ,vk, where

(vj − vj−1) · e(θj + π/2) = |vj − vj−1|,

with 0 ≤ θ1 < . . . < θk < 2π and v0 = vk. Here e(θ) = (cos θ, sin θ) and u · v denotes
the scalar product of u and v. Let Tj denote the side of A with vertices vj−1 and
vj , and note that the perpendicular from 0 to Tj makes an angle θj with the positive
x1–axis.
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Recall that a real number β is said to be badly approximable if there exists a
constant c9 = c9(β) > 0 such that ν‖νβ‖ > c9(β) for every positive integer ν. Here
‖x‖ = minn∈Z |x− n| denotes the distance of x from the nearest integer.

To construct the point set P which will satisfy the conclusion of the Main Theorem,
we first of all need the following result on diophantine approximation.

Lemma 1. (Davenport [7]) Suppose that f1, . . . , fr are real–valued functions of a
real variable, and have continuous first derivatives in some open interval I containing
α0, where f ′1(α0), . . . , f ′r(α0) are all non–zero. Then there exists α ∈ I such that
f1(α), . . . , fr(α) are all badly approximable.

An immediate conseqeunce of Lemma 1 is the following.

Lemma 2. There exists a real number α ∈ [0, 2π) such that the k + 2 numbers

tanα, tan(α+ π/2), tan(α+ θ1), . . . , tan(α+ θk)

are all finite and badly approximable.

We now choose a value α that satisfies the conclusion of Lemma 2 and keep it
fixed.

Consider the square lattice

Λ = Z2 = {(n1, n2) : n1, n2 ∈ Z}

with determinant 1. We shall rotate Λ clockwise by angle α to obtain the lattice

Λα = {v : v = α(u) for some u ∈ Λ}.

Here v = α(u) denotes (
v1
v2

)
=
(

cos θ sin θ
− sin θ cos θ

)(
u1

u2

)
,

where v = (v1, v2) and u = (u1, u2). For every w ∈ R2, write

w + Λα = {w + v : v ∈ Λα}.

In other words, the lattice w + Λα is obtained from the lattice Λ by first rotating
clockwise by angle α and then translating by w. Note that w + Λα is a square lattice
with determinant 1.

Our first goal is show that there is a suitable w ∈ R2 such that the set

P = (w + Λα) ∩ V
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satisfies a weaker form of the Main Theorem. However, our technique in §§4–5 cannot
guarantee that this set contains exactly N points.

It is rather inconvenient to work with the lattice Λα. We shall therefore rotate V ,
A as well as Λα anticlockwise by angle α about the origin 0 to obtain V ′, A′ and Λ
respectively.

For every w ∈ R2, let

w + Λ = {w + v : v ∈ Λ},

and write
Pw = (w + Λ) ∩ V ′.

Note that while Pw contains “on average” N points, it is possible that the number of
points of Pw can differ from N for some w ∈ R2.

3. An Averaging Argument

Denote by POL(α; θ1, . . . , θk;N) the collection of all convex polygons B ⊆ V ′ whose
edges are parallel to the edges of A′ and V ′, so that the angle each edge of B makes
with the positive x1–axis belongs to the collection

A = {α, α+ π/2, α+ θ1, . . . , α+ θk}.

In this section and §4, it is convenient not to treat V ′ as a torus.

Lemma 3. There exists a constant c10 = c10(α; θ1, . . . , θk) > 0 such that for every
convex polygon B ∈ POL(α; θ1, . . . , θk;N), we have∫

[0,1]2
|E[Pw;B]|2dw ≤ c10(α; θ1, . . . , θk) logN.

For every n = (n1, n2) ∈ Z2 and every w = (w1, w2) ∈ [0, 1]2, let

S(n,w) = (n1 + w1 − 1/2, n1 + w1 + 1/2]× (n2 + w2 − 1/2, n2 + w2 + 1/2];

in other words, S(n,w) is a square of area 1, centred at n + w and with sides parallel
to the coordinate axes.

Suppose now that B ∈ POL(α; θ1, . . . , θk;N) is chosen and fixed. Let T1, . . . , Tm
be the edges of B, and, for every j = 1, . . . ,m, let

T ∗j =
m⋃
i=1
i 6=j

Ti;
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in other words, T ∗j denotes the union of all the edges of B except the edge Tj .
Consider the set

N = {n ∈ Z2 : S(n,w) ∩B 6= ∅ for some w ∈ [0, 1]2}.

Clearly for every w ∈ [0, 1]2, we have

E[Pw;B] =
∑
n∈N

E[Pw;S(n,w) ∩B]. (1)

Next, note that N can be expressed as a pairwise disjoint union

N = N1 ∪ . . . ∪Nm ∪N+ ∪N−, (2)

where, for every j = 1, . . . ,m, we have

Nj = {n ∈ N : S(n,w) ∩ Tj 6= ∅ for some w ∈ [0, 1]2

and S(n,w) ∩ T ∗j = ∅ for every w ∈ [0, 1]2},

and where

N+ = {n ∈ N : there exist j′, j′′ ∈ {1, . . . ,m} with j′ 6= j′′

and w′,w′′ ∈ [0, 1]2 such that
S(n,w′) ∩ Tj′ 6= ∅ and S(n,w′′) ∩ Tj′′ 6= ∅}

and

N− = {n ∈ N : S(n,w) ∩ Tj = ∅ for every w ∈ [0, 1]2 and j = 1, . . . ,m}.

For every n ∈ N− and every w ∈ [0, 1]2, we clearly have S(n,w) ⊆ B, so that

Z[Pw;S(n,w) ∩B] = µ(S(n,w) ∩B) = 1.

It follows that ∑
n∈N−

E[Pw;S(n,w) ∩B] = 0. (3)

On the other hand,
E[Pw;S(n,w) ∩B] = O(1)

always. Since |N+| = OA(1), it follows that∑
n∈N+

E[Pw;S(n,w) ∩B] = OA(1). (4)
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Combining (1)–(4), we have

E[Pw;B] =
m∑
j=1

∑
n∈Nj

E[Pw;S(n,w) ∩B] +OA(1).

For every j = 1, . . . ,m, write

Ej [Pw;B] =
∑

n∈Nj

E[Pw;S(n,w) ∩B].

Since m = OA(1), Lemma 3 will follow if we show that for every j = 1, . . . ,m, we have∫
[0,1]2

|Ej [Pw;B]|2dw = OA(logN). (5)

4. A Fourier Series Technique

Suppose that the edge Tj of the polygon B lies on the line

(y1 − z1, y2 − z2) · (cosφ, sinφ) = 0, (6)

where φ ∈ A, z1, z2 are constants and y = (y1, y2) denotes an arbitrary point on the
line. In view of symmetry, we may assume, without loss of generality, that 0 ≤ φ ≤ π/4.
Then (6) can be written in the form

y1 = z1 − (y2 − z2) tanφ.

Write
Ij = {n2 ∈ Z : (n1, n2) ∈ Nj for some n1 ∈ Z}.

Suppose that n ∈ Ij . Let h ∈ Z be smallest such that (h, n) ∈ Nj . Then it is not too
difficult to see that∑

n∈Nj
n2=n

Z[Pw;S(n,w) ∩B] = [z1 − (n+ w2 − z2) tanφ− h− w1 + 1]

and ∑
n∈Nj
n2=n

µ(S(n,w) ∩B) = z1 − (n+ w2 − z2) tanφ− h− w1 +
1
2
,

so that ∑
n∈Nj
n2=n

E[Pw;S(n,w) ∩B] = −ψ(z1 − (n+ w2 − z2) tanφ− w1),
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where ψ(u) = u− [u]− 1/2 for every u ∈ R. It follows that

Ej [Pw;B] = −
∑
n∈Ij

ψ(z1 − (n+ w2 − z2) tanφ− w1).

The function ψ(u) = u− [u]− 1/2 has the Fourier expansion

−
∑
ν 6=0

e(νu)
2πiν

,

where e(x) = e2πix for every x ∈ R. It follows that the Fourier expansion of Ej [Pw;B]
is given by ∑

ν 6=0

e(ν(z1 + z2 tanφ))
2πiν

∑
n∈Ij

e(−ν(n+ w2) tanφ)e(−νw1).

For every w2 ∈ [0, 1], we have, by Parseval’s theorem, that

∫ 1

0

|Ej [Pw;B]|2dw1 �
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑
n∈Ij

e(−ν(n+ w2) tanφ)

∣∣∣∣∣∣
2

=
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑
n∈Ij

e(−νn tanφ)

∣∣∣∣∣∣
2

,

so that on integrating with respect to w2, we obtain

∫
[0,1]2

|Ej [Pw;B]|2dw�
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑
n∈Ij

e(−νn tanφ)

∣∣∣∣∣∣
2

. (7)

We next note that Ij is a collection of consecutive integers, and use the hypothesis
that tanφ is badly approximable. The estimate below is due to Davenport [6]. For the
sake of completeness, we include the short proof here.

Lemma 4. We have

∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑
n∈Ij

e(−νn tanφ)

∣∣∣∣∣∣
2

�φ log(2|Ij |). (8)

Proof. It is well known that∣∣∣∣∣∣
∑
n∈Ij

e(−νn tanφ)

∣∣∣∣∣∣� min{|Ij |, ‖ν tanφ‖−1},
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where ‖x‖ = minn∈Z |x − n| denotes the distance of x from the nearest integer. It
follows that

S =
∞∑
ν=1

1
ν2

∣∣∣∣∣∣
∑
n∈Ij

e(−νn tanφ)

∣∣∣∣∣∣
2

�
∞∑
h=1

2−2h
∑

2h−1≤ν<2h

min{|Ij |2, ‖ν tanφ‖−2}.

Since tanφ is badly approximable, there exists a constant c11 = c11(φ) > 0 such that

ν‖ν tanφ‖ > c11(φ) (9)

for every positive integer ν. Note that this implies that if 2h−1 ≤ ν < 2h, then

‖ν tanφ‖ > c11(φ)2−h.

On the other hand, for any pair h, p ∈ N, there are at most two values of ν satisfying
2h−1 ≤ ν < 2h and

pc11(φ)2−h ≤ ‖ν tanφ‖ < (p+ 1)c11(φ)2−h;

for otherwise the difference (ν1 − ν2) of two of them would contradict (9). It follows
that

S �φ

∞∑
h=1

∞∑
p=1

min{2−2h|Ij |2, p−2}

=
∑

2h≤|Ij |

∞∑
p=1

min{2−2h|Ij |2, p−2}+
∑

2h>|Ij |

∞∑
p=1

min{2−2h|Ij |2, p−2}

�
∑

2h≤|Ij |

∞∑
p=1

p−2 +
∑

2h>|Ij |

2−2h|Ij |22h|Ij |−1 +
∑

p>2h|Ij |−1

p−2


�

∑
2h≤|Ij |

1 +
∑

2h>|Ij |

2−h|Ij | � log(2|Ij |)

as required. ♣

Note now that for every j = 1, . . . ,m, we have |Ij | = O(N1/2). The inequality (5)
follows immediately on combining (7) and (8). Lemma 3 now follows.

5. A Weaker Version of the Main Theorem

For every x ∈ V ′ and every real number r satisfying 0 ≤ r ≤ 1, the convex polygon
A′(x, r) is the union of at most four polygons in POL(α; θ1, . . . , θk;N). It follows from
Lemma 3 that ∫

[0,1]2
|E[Pw;A′(x, r)]|2dw ≤ 4c10(α; θ1, . . . , θk) logN. (10)
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Clearly ∫ 1

0

∫
V ′

∫
[0,1]2

|E[Pw;A′(x, r)]|2dwdxdr ≤ 4c10(α; θ1, . . . , θk)N logN.

We can therefore conclude that there exists w0 ∈ [0, 1]2 such that the set Pw0 of points
in V ′ satisfies∫ 1

0

∫
V ′
|E[Pw0 ;A′(x, r)]|2dxdr ≤ 4c10(α; θ1, . . . , θk)N logN.

Unfortunately, this gives only a weaker version of the Main Theorem, since we cannot
guarantee that the set Pw0 has exactly N points.

6. Completion of the Proof

For every w ∈ [0, 1]2, let P∗w be obtained from Pw in the following way: If Pw has
exactly N points, then take P∗w = Pw. If Pw has more than N points, then we remove
a suitable number of points from Pw to obtain a set P∗w with exactly N points. If Pw

has fewer than N points, then we add a suitable number of points to Pw to obtain a
set P∗w with exactly N points.

Suppose now that for every w ∈ [0, 1]2, a set P∗w has been determined and contains
exactly N points. Then clearly

Z[P∗w;V ′] = N = µ(V ′),

so that
Z[Pw;V ′]− Z[P∗w;V ′] = E[Pw;V ′]. (11)

On the other hand, for every x ∈ V ′ and every real number r satisfying 0 ≤ r ≤ 1, we
clearly have

|Z[Pw;A′(x, r)]− Z[P∗w;A′(x, r)]| ≤ |Z[Pw;V ′]− Z[P∗w;V ′]|. (12)

It follows from (11) and (12) that

|E[P∗w;A′(x, r)]| = |Z[P∗w;A′(x, r)]− µ(A′(x, r))|
≤ |Z[Pw;A′(x, r)]− µ(A′(x, r))|+ |Z[P∗w;A′(x, r)]− Z[Pw;A′(x, r)]|
≤ |E[Pw;A′(x, r)]|+ |E[Pw;V ′]|. (13)

Clearly V ′ ∈ POL(α; θ1, . . . , θk;N). It follows from Lemma 3 that∫
[0,1]2

|E[Pw;V ′]|2dw ≤ c10(α; θ1, . . . , θk) logN. (14)

11



Combining (10), (13) and (14), we conclude that∫
[0,1]2

|E[P∗w;A′(x, r)]|2dw ≤ 5c10(α; θ1, . . . , θk) logN.

Clearly ∫ 1

0

∫
V ′

∫
[0,1]2

|E[P∗w;A′(x, r)]|2dwdxdr ≤ 5c10(α; θ1, . . . , θk)N logN.

We can now conclude that there exists w1 ∈ [0, 1]2 such that the set P∗w1
contains

exactly N points in V ′ and satisfies∫ 1

0

∫
V ′
|E[P∗w1

;A′(x, r)]|2dxdr ≤ 5c10(α; θ1, . . . , θk)N logN.

The Main Theorem now follows easily.
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