Discrepancy of weighted matrix nets

W.W.L. Chen and V.F. Lev

1. Introduction

Suppose that s € N is fixed. For any invertible real s x s matrix A, consider the lattice
A={Am:m € Z°},

and write

X =ANU?,

where
7° ={(my,...,mg) :mq,...,ms € Z}

is the s—dimensional integer lattice, and
U ={(x1,...,25): 0< x9,...,25 < 1}

is the s—dimensional unit cube. In other words, X is the set of all the points of the
lattice A that fall into the unit cube U?.

By a matrix net generated by A, we mean a pair of the form (X, p), where the set
X is defined as above and p: X — R is a weight function on the points of the set X.

Remark. We emphasize here that the set X arises from a lattice A. If X is an
arbitrary set of IV points in U?®, not generated by a matrix as indicated above, then the
“natural” choice of weight function p(x) = 1/N may result in a very poorly distributed
net. To see this, consider the one—dimensional case with

x 4o 1 2 2K -2 2K -1 2K+1 2K +3 4K —3 4K -1
| 4K TAKTTTT 4K T 4K ) 4K 4K T 4K T 4K ’

where K is a positive integer and N = 3K. If p(x) = 1/N for every x € X, then the
discrepancy

sup
1€0,1)

> p(x) — p(I)

xel

SR

x€[0,1/2)
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Here the supremum is taken over all intervals I C [0,1) and p(I) denotes the length of
the interval I. On the other hand, if

() = { VAE, ifx <12,
PRIZ 12K, ifx>1/2,

then it is easily seen that there exists a positive constant ¢ such that

C

sup < N

S > p(x) = pu(l)

xel

The purpose of this paper is to show that the phenomenon discussed in the remark
above cannot possibly happen for matrix nets. We shall show that in the approximation
of certain integrals and in certain discrepancy problems, matrix nets with equal weights
are essentially best possible. Here, we say that the matrix net (X, p) has equal weights
if there exists some fixed number py € R such that p(x) = pg for every x € X.

We shall consider classes @ of functions f : R® — R which satisfy the following
conditions:

(®1) Integrability: Every f € ® is Riemann integrable on U*.
(®2) Periodicity: Every f € @ is periodic with period 1 in each variable.
(®3) Translation invariance: For every f € ® and every z € R®, we have f, € O,
where f,(x) = f(x+ z) for all x € R®.
Examples of such classes ® are given by the class of characteristic functions of aligned
rectangular boxes modulo U? and the class of functions with restrictions on the absolute
values of Fourier coefficients which provide sufficient smoothness.
For every function f € ® and for every matrix net (X, p), write

www=2mww—mmm

xeX

and let
R(®; X, p) = sup |R(f; X, p)|,

fed
where the supremum is taken over all functions f € ®. Furthermore, for every py € R,
write

R(f;X,p0) = > _ pof(x)— | flt)dt,
xeX Ch
and let
R(®; X, po) = sup |R(f; X, po)],

fed
where the supremum is again taken over all functions f € ®. Here we have used the
same letter R to denote four related, but distinct, quantities. However, this should not
lead to confusion in the subsequent argument.
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The following theorem shows that if the inverse of A has integer entries, then one
can always choose equal weights to minimize the error term in approximate integration.

Theorem 1.  Suppose that A is an inverse of an integer-valued matrix. Then for
every class ® satisfying conditions ($1)—(®3), we have

inf R(®; X, p) = inf R(®; X, po),
P PO

where the infima are taken over all functions p : X — R and over all numbers py € R
respectively.

Theorem 1 shows that for any matrix A, the inverse A~! of which has integer
entries, the weights may be chosen to be equal. This raises the question of whether the
natural choice pg = 1/N, where N = | X| denotes the cardinality of the set X, is always
the best. Our next theorem shows that this is necessarily the case for any “reasonable”
point set X arising from a lattice.

Theorem 2. Suppose that A is an inverse of an integer-valued matrix, and that the
class ® satisfies conditions (®1)—(P3). Let

M(®) = sup
fe®

f(t)dt’ . (1)

Us

Suppose further that for some fixed real number ¢ € (0,1), at least one of the following
two conditions holds:
(a) R(®; X,1/N) < e 1M(®D).
(b) inf,, R(®; X, po) < (1 —e)M(®) and M(P) > 0.
Then
R(®; X,1/N) < §infR(CI);X,p),

g p

where the infimum is taken over all functions p : X — R.

Observe that if condition (b) does not hold, then in view of Theorem 1, matrix
nets with the point set X are not suitable for approximate integration of functions in
® for any choice of weights. Condition (a) may be easier to verify.

Let us now concentrate on the special case of Theorem 2 when ® is the class of
characteristic functions of all aligned rectangular boxes

B —= [algbl) X ... X [as,bs);

where we assume that 0 < b; —a; < 1 for every ¢ = 1,...,s. We denote by B the
collection of all boxes of this type. For every x € R® and every B € B, we shall write
x € B (mod U?) to denote that there exists n € Z® such that x —n € B. We define

(x) = 1, ifxe B (mod U?),
XB 10, otherwise.
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For every matrix net (X, p), consider the discrepancy function

Dp(X,p)= Y p(x)—u(B), (2)

xeX
xB(x)=1

where p(B) denotes the s—dimensional volume of B, and let

D(X,p) = sup |Dp(X, p)l, (3)

where the supremum is taken over all aligned rectangular boxes in B. In the case of
constant weight function p(x) = pg, we shall use the notation Dg(X, pg) and D(X, po)
respectively, so that in particular

Do(XA/N) =~ 3 1-u(B). (4)
xeX
xB(x)=1

It is easily seen that the class ® of all the functions xp satisfies the conditions
(®1) — (®3), and that for this class, M(®) = 1 and R(®; X, p) = D(X, p), the latter
identity in view of

Rixs X, p) = 3 p(x)xn(x) - / ws®)dt = S p(x) = u(B) = Dy(X, p)

S

xeX x€X
xB(x)=1

for every B € B. Also, it is clear from (3) and (4) that D(X,1/N) < 1, and so condition
(a) of Theorem 2 is satisfied for any constant ¢ < 1. Therefore, as very special cases of
Theorems 1 and 2, we immediately have the following two corollaries.

Corollary 1. Suppose that A is an inverse of an integer—valued matrix. Then

inf D(X, p) = inf D(X, po),
P PO

where the infima are taken over all functions p : X — R and over all numbers pg € R
respectively.

Corollary 2. Suppose that A is an inverse of an integer—valued matrix. Then
D(X,1/N) < 3inf D(X, p),
p
where the infimum is taken over all functions p : X — R.

The situation becomes more complicated if the inverse matrix A~! has some non—
integer entries. Indeed, the method for proving Theorem 1 does not extend directly to
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this more general case. Consequently, we are only able to prove a result analogous to
Corollary 2 above.

More precisely, our aim is to show that there is some positive constant ¢ = ¢(s),
depending only on the dimension s, such that D(X,1/N) < ¢(s)D(X,p) for every
matrix net (X, p).

Theorem 3. Suppose that A is an arbitrary invertible real matrix. Then

D(X,1/N) < (25)** inf D(X, p),
P
where the infimum is taken over all functions p : X — R.

In fact, the multiplicative constant on the right hand side can be slightly improved.
However, we make no serious attempt here to optimize this constant.

We shall prove Theorem 1 in §2, Theorem 2 in §3 and Theorem 3 in §§4-5.

The use of lattices in discrepancy problems is motivated by the study of the se-
quence {na} of the fractional parts of na, and dates back to the work of Hardy and
Littlewood, Kronecker, Ostrowski, Weyl and others in the first half of this century.
Later, Davenport [4] used lattices to show that Roth’s celebrated result on irregulari-
ties of distribution is best possible in dimension 2, and Korobov [5] initiated systematic
studies of parallelepipedal nets, which are a special case of nets generated by inverses
of integer—valued matrices. For more recent work involving the use of lattices in dis-
crepancy theory, see the papers of Beck and Chen [1-3] and Skriganov [6].

2. Proof of Theorem 1

The proof of Theorem 1 is based on the following observation concerning matrix nets
arising from matrices whose inverses have integer entries. For every y = (y1,...,ys) €

R?, write
{y} = ({yl}a T {ys}) S U5§

in other words, {y} is obtained from y by replacing each coordinate by its fractional
part.

Lemma 1. Suppose that A is an inverse of an integer-valued matrix. Then for every
fixed w € A, we have
{{x+w}:xe X} =X;

in other words, the set X is invariant under translation modulo U® by any vector of A.

Proof. Foreveryi=1,...,s, let



To prove the lemma, we shall first prove that Z° C A by showing that e; € A for every
i=1,...,5. Let m; denote the i—th column of the matrix A~!. Then clearly

m; = A_lei SYAR
where m; and e; are written as column matrices. It follows that
e, = Am,; € A

as required. Next, for any fixed w € A, consider the mapping ¢ : X — U?, defined by
p(x) = {x+w} for every x € X. Since x+w € A and x+w — {x+w} € Z° C A,
it follows that {x + w} € A, so that ¢ maps X into itself. On the other hand, ¢
is clearly injective, as ¢(x') = ¢(x”) implies x” — x’ € Z*, and hence x” = x’ since
x’,x" € U?. The assertion now follows since any injective mapping of a finite set into
itself is necessarily a bijection. ¢

We can now complete the proof of Theorem 1. First of all, it is obvious that

inf R(®; X, p) < inf R(®; X, po),
P Po

so it remains to show that
inf R(®; X, p) > inf R(P; X, po).
P PO
To do this, it clearly suffices to show that for every p : X — R, there exists py € R

such that

for every f € ®. We choose

po = % > p(x). (6)

In view of (®3), we have, for any y € R®,

> r60f 00— [ y(tar

xeX

< R(®; X, p).

This, in view of ($2), can be rewritten as

< R(®; X, p). (7)

> ) fx+y) - | fwadt

xeX

The key idea here is to take an average over all y € X. More precisely, in view of ($2),
Lemma 1 and (6), we have

Y S p st y) = 3 ) Y Flcty) = 3 00 Y (x4 v)

yeX xeX xeX yeX xeX yeX
1
=N D) Y Fy) =p0 > f¥) =D pof(x).
xeX yeX yeX xeX
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It follows that

> )= [ s

xeX

1
<5l

yeX

< R(®; X, p).

> px)f(x+y) - T

xeX

This establishes the inequality (5), and completes the proof of Theorem 1.

3. Integral Nets with Normalized Weights

Suppose that for some f € ® and every constant C' € R, we also have f+C € ®. Then

R(f+C; X, p0) = > pof(x) — . f(£)dt + (poN — 1)C.

xeX

It follows that
R(®; X, po) = sup |R(f; X, po)|
feP

can be finite only if pg = 1/N. In this case, we clearly have

R(®; X,1/N) = inf R(®; X, po).
PO

Theorem 2 establishes a conclusion of this type, but under far less restrictive and more
acceptable conditions.
Note that the first condition in hypothesis (b) of Theorem 2 cannot be replaced
by the weaker condition
inf R(®; X, po) < M(2).
0]

Consider, for example, the class ® of all Riemann integrable functions f : R® — R,
periodic with period 1 in each variable and satisfying the condition that

f(t)dt' <1.
U

Obviously, for this class, M(®) =1 and

inf R(®; X, p) <inf R(®; X, pg) < R(P; X,0) =1,
P Po

but R(®; X,1/N) = co. On the other hand, the condition M (®) > 0 is also necessary.
Consider, for example, the class ® of all Riemann integrable functions f : R® — R,
periodic with period 1 in each variable and satisfying the condition that

F(t)dt = 0.
US
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Obviously, for this class, M(®) = 0 and

0 <inf R(®; X, p) <inf R(®; X, pg) < R(P; X,0) =0,
p PO

but again R(®; X,1/N) = co.
To prove Theorem 2, we need the following lemma.

Lemma 2. For any net (X, p), we have
R(®; X, p) = [Npo — 1|M(®),
where pg is defined by (6).

Proof.  We return to the inequality (7), and apply a different averaging argument.
Instead of averaging over all y € X, we integrate over y € U?®, and obtain

/| (Z P fxty) = [ f(t)dt> ay

In view of (®2), this gives

> px)—1

xeX

< R(®; X, p).

f(t)dt' < R(®: X, p).
.

The assertion follows on taking the supremum over all f € ® and noting (6). &

To prove Theorem 2, we shall in fact only use Lemma 2 in the case of constant
weight functions p(x) = pg. In this case, we have

R(®; X, po) > [Npo — 1|M(®). (8)

We assume, for the sake of simplicity, that the infimum inf,, R(®; X, po) is attained
for some number py € R, so that by Theorem 1, we have

R(®; X, po) = inf R(®; X, p).
P

Consider first the case |[Npg| < 2¢/3. By (8), we have

R(®; X, po) > [Npy — 1|M(®) > (1 - %) M (@),

contradicting hypothesis (b) of Theorem 2. It follows that hypothesis (a) is valid, and
SO

2e

R(®; X, po) > (1 - §> M(®) > (1 - %) eR(®; X,1/N) > —R(®; X,1/N).

Wl ™
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On the other hand, if | Npg| > 2¢/3, then for every f € ®, we have

R(FXAN) =5 3 00 [ rit)ar

xeX

_ Nipo (xezx pof)~ [ f(t)dt) - (1 = N%@) / f(t)dt,

so that
1 [Npo — 1 ’
R(f; X,1/N)| < ——R(®; X, po) + —LO— 21 [ pp)de
3
< R(®; X < -R(®; X
> |Npo| ( ) 7p0)_€ ( ) 7p0)a

in view of (1) and (8). This completes the proof of Theorem 2.

4. Preparation for the Proof of Theorem 3

We note first that if B C U?, then (2) becomes simply

Dp(X,p)= Y p(x)—u(B). (9)

xEANB

Furthermore, if B contains no points of A, then D(X,p) > u(B). Indeed, this last
inequality remains valid for any aligned rectangular box B C U® which is free of points
of A, even without the additional restriction that B € 98, as B can be “approximated”
by another box in B. We shall use this remark later in the course of the proof of
Theorem 3.

It will be convenient to consider, along with D(X, p), the corresponding discrep-
ancy function arising only from those rectangular boxes B € B contained in U®. Ac-
cordingly, we denote by B the collection of all boxes B € B such that B C U*®, and
write

D(X, p) = sup |Dp(X, p)l, (10)
BeB

where the supremum is taken over all rectangular boxes B € B. As before, in the case
of constant weight functions p(x) = pg, we shall use the notation D(X, p).

Clearly, we have D(X,p) < D(X,p) for any matrix net (X,p). In the other
direction, we have the following result.

Lemma 3. We have D(X, p) < 2°D(X, p).

9



Proof.  For any box B € B, there obviously exist at most 2° integer vectors c¢; € Z°
and aligned rectangular boxes B; € B such that

B = U(CZ -+ Bz),

and where the union is disjoint. Then it follows easily from (2) and (10) that

|DB(X,p)|: SQSD(X7P)7

Z DCH-Bi (Xv p)

ZDBi<X7P)

and the conclusion follows on taking the supremum over all B € B. &

It now follows from Lemma 3 that, to prove Theorem 3, it suffices to establish the
estimate

D(X,1/N) < 2°5**D(X, p) (11)

for every matrix net (X, p).

The idea underpinning the proof of Theorem 3 is to approximate the discrepancy
function Dp (X, p) by another discrepancy function Dp(A), arising from the lattice A
and not from the matrix net (X, p). We shall define this new discrepancy function by
assigning to each point of A the “correct” weight det A, instead of the “approximation”
1/N. For technical reasons, we shall also consider the supremum of Dg(A) on all boxes
B € 8, not necessarily in U® and not reduced modulo U?®. This enables us to apply the
averaging argument used in the proof of Theorem 1 to this new discrepancy function.

More precisely, for every B € B, write

Dp(A)= > detA—pu(B), (12)
x€EANB

and let

D(A) = sup Ds(A)],

where the supremum is taken over all aligned rectangular boxes in the collection 8.
For any set B C R®, let Ng(A) = |AN B, the number of points of A in B (hence,
for instance, Ny=(A) = N). Then (12) becomes
Dp(A) = Np(A)det A — u(B),

and so

- 53R < T 13

for any B € B.
Lemma 4. We have D(X,1/N) < 2D(A).

10



Proof.  Suppose that B € B. Then it follows from (9) and (12) that

Dp(A) — Dp(X,1/N)| = |det A — %

> 1< |NdetA—1],
xEANB

so that
|Dp(X,1/N)| <|Dp(A)|+ |[Ndet A — 1| < D(A) + |N det A — 1.
Note next that U® € B, so that
INdet A — 1| = |Dys(A)| < D(A).

Hence
|Dp(X,1/N)| <2D(A).

The result now follows on taking the supremum over all B € B. &

For any B € B and any x € A, consider the aligned rectangular box
By =(x—B)NU?,

where x — B = {x —y : y € B}. Note here that Bx ¢ B in general. Clearly, By is
non—empty if and only if x e U+ B={y+z:y € B, z€ U*}.

Lemma 5. The number Ny:1p(A) = |AN(U® + B)| of all lattice points x € A for
which Bx = (x — B) N U® is non-empty satisfies

2°(1+D(A))

Nirs A) <
vern(A) < det A

Proof.  Clearly, the rectangular box U® + B can be written as the disjoint union of
at most 2° rectangular boxes in 8. Hence it follows from (13) that

w(U® + B) 4+ 2°D(A)
det A ’

Nysy1p(A) <
and the result follows on noting that u(U* + B) < 2°. &

Our next lemma implements the averaging idea from the proof of Theorem 1 and
is the heart of our argument.

Lemma 6. For every B € B, we have




where pg is defined by (6) and

& =Y ullx-B)NU") =3 u(By). (14)

x€A xEA

Proof. It is not difficult to see that given any box Bx = (x—B)NU?® and any positive
number &, there exists By € B such that

luw(By) —u(Bx)|<e and  BL.NA=ByNnA.

Since

> ply) —w(BL)| < D(X,p),
yEB/NA

and since € can be chosen arbitrarily small, we have also

Y. oly) = u(Bx)| < D(X,p).
yEBxNA

Summing over all x € A for which By is non—empty, we obtain

S S py) = Y w(Bx)| < Nus(A)D(X. p). (15)

xeAyeBxNA xEA

Note now that

Yood = > ey

xEAyEBxNA x€EAyeAN(x—B)NU*

= Y oy) > 1

yeANU# x€AN(y+DB)

= Y oy) DL (16)

yeANU* xEANB
The result follows on combining (6) and (14)—(16). &
To calculate G, we need two more lemmas.

Lemma 7. For every B € B, we have

Npix(A)dx = 6. (17)
U.S
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Furthermore, for any fundamental region R of the lattice A, we have

/ N ix(A)dx = u(B). (18)
R

Proof.  We have

N yx(A)dx = /

Us Us

= wly-B)NU*) =86,

yeEA

in view of (14). On the other hand,

/Rj\fmx(z\)dx:/72 o1 dx:Z/ dx

yEAN(B+x) yeA/ (y—B)NR

=) /Bm(y_n) dz = /de = u(B). &

yeEA

Suppose now that R is a fixed fundamental region of A. We write U® = g U 24,
where
Q= [J R+w) and Q=U"\Q. (19)

weEA
R4+wCU?®

Then it follows from (17) that

S = Npx(Ndx+ [ Npix(A)dx. (20)
Qo Ql

Lemma 8. For every B € B, we have

1(B)p(€)
Npix(A = —F—
Qo B+ ( )dX det A
Furthermore,
p(B)pu(21) | _ p(21)D(A)
_ < )
o Nix(A)dx det A —  detA

13



Proof.  We have, by (18) and (19), that

Npyx(A)dx = Z Npx(A)dx = Z n(B)
Q0 weA R+w weA
R+wCU* R+wCU?

_ wB) S u(R) = wB)p(S) _ p(B)pu($)

— u(R)

= 1(R) det A

RAwCU®

This proves the first assertion. The second assertion follows immediately on applying
(13) to the box B 4 x and integrating with respect to x over ;. &

To use Lemma 8, we need an estimate for ().

Lemma 9. Suppose that s > 2. Suppose further that for every fundamental region
R of the lattice A, the inequality p(Q1) > 1/2 holds. Then D(X, p) > (2s)™2% for any
choice of the weight function p.

Proof.  Consider the aligned cube

1
NQ=<x=(x1,...,25) ER?: || < — ¢,
(r1, o rs) €R® ol < 1
centred at the origin. We claim that this cube cannot possibly contain s linearly inde-
pendent vectors of A. Indeed, if it does, then for the fundamental region R generated
by those s points, we have

d | | < 1
= sup max |r; —y;| < —
vaepnlgigs i Yl > ds’
where the supremum is taken over all pairs of vectors x = (z1,...,25), ¥y = (y1,---,Ys)

in R. But U® has 2s faces, each of area 1, so that u(Q;) < 2sd < 1/2, clearly a
contradiction. It follows that all the points of Q N A lie on some (s — 1)-dimensional
hyperplane L. We now consider the 2° open cubes

Q@) ={xeN:dx;>0foreveryi=1,...,s},

where § = (01,...,0s) € {—1,1}*. At most 257! of these can have a non—empty
intersection with L. Hence at least one of these small cubes, say g, does not contain
any point of A. We observe that the edge length of Qg is 1/(4s?). Now consider the
cube

" 452 452

If BN A is empty, then it follows from (3) and (9) that

1 1
B:{x:(:l;l,...,:z:s)EUs'—gxl,...,x3<1——}.

D(X, p) > u(B) = (1 _ %) > (%) > (25)°2".
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On the other hand, if BN A is non—empty, then there exists a lattice vector y € BNA.
Consider the translation Q¢ +y. Since QN A = &, we clearly have (Qo+y)NA = 2.
Note also that Qg +y C U®. Hence it follows again from (3) and (9) that

D(X,p) > u(Qo +y) = 1(Qo) = (4s)7° = (25)7%. L]

5. Completion of the Proof of Theorem 3

Suppose first of all that s = 1. If det A > 1, then the distance between any two
neighbouring points of A is greater than 1. Hence for any weight function p, we clearly

have
D(X,p) > 1 = D(X,1/N).

If det A < 1, then the distance between any two neighbouring points of A is det A < 1,
so that D(X, p) > det A for any p and hence by Lemmas 3 and 4,
D(X,1/N) <2D(X,1/N) < 4D(A) = 4det A < 4D(X, p)

as required. For the remainder of this paper, we shall assume that s > 2.
Suppose that B € B, and that pg and & are defined by (6) and (14) respectively.
Then

Dp(A)| =| > detA—pu(B)| <L+ I+ |Sdet A — u(B), (21)
xEANB
where
Ii=|(1-Npo) Y  detA and 12:|Np0 > detA— &detAl.
xceANB xEANB

It is easy to see from (6), (9) and (10) that
[Npo — 1| = [Dy=(X, p)| < D(X, p).
On the other hand, it follows from (13) that

> detA = Np(A)det A < pu(B) +D(A) < 1+ D(A).
xeANB

Hence
I, < D(X, p)(1 +D(A)). (22)

Next, it follows from Lemma 6 and Lemma 5 that

I, < 2°D(X, p)(1 + D(A)). (23)
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Finally, it follows from (20), Lemma 8 and u(€) + ©(©21) = 1 that
S det A — p(B)| < u(21)D(A). (24)

In view of Lemma 9, we may assume that there exists a fundamental region R such
that ©(€21) < 1/2. We may also assume, without loss of generality, that

D(X,p) <27%s7%; (25)

for otherwise D(X,1/N) <1 < 2%s2°D(X, p), so that (11) follows immediately.
Substituting (22)—(24) into (21) and noting (25), we get

Dp(A)] < (2° +1)D(X, p)(1 4+ D(A)) + u(21)D(A)

< 2HD(X, p)(1+ D(A)) + %D(A)

_ 1
< 2°T'D(X, p) + (23—28 + 5) D(A)

< 2°T'D(X, p) + ZD(A).

Taking the supremum over all B € B, we obtain

D(A) < 27 D(X, p) + SD(A),

so that o
D(A) < 2°TD(X, p).

It now follows from Lemma 4 that
D(X,1/N) < 27HD(X, p).

The inequality (11) follows on noting that 2574 < 25s2%. This completes the proof of
Theorem 3.
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