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1. Introduction

Suppose that s ∈ N is fixed. For any invertible real s× s matrix A, consider the lattice

Λ = {Am : m ∈ Zs},

and write
X = Λ ∩ Us,

where
Zs = {(m1, . . . ,ms) : m1, . . . ,ms ∈ Z}

is the s–dimensional integer lattice, and

Us = {(x1, . . . , xs) : 0 ≤ x1, . . . , xs < 1}

is the s–dimensional unit cube. In other words, X is the set of all the points of the
lattice Λ that fall into the unit cube Us.

By a matrix net generated by A, we mean a pair of the form (X, ρ), where the set
X is defined as above and ρ : X → R is a weight function on the points of the set X.

Remark. We emphasize here that the set X arises from a lattice Λ. If X is an
arbitrary set of N points in Us, not generated by a matrix as indicated above, then the
“natural” choice of weight function ρ(x) = 1/N may result in a very poorly distributed
net. To see this, consider the one–dimensional case with

X =
{

0,
1

4K
,

2
4K

, . . . ,
2K − 2

4K
,

2K − 1
4K

,
2K + 1

4K
,

2K + 3
4K

, . . . ,
4K − 3

4K
,

4K − 1
4K

}
,

where K is a positive integer and N = 3K. If ρ(x) = 1/N for every x ∈ X, then the
discrepancy

sup
I⊆[0,1)

∣∣∣∣∣∑
x∈I

ρ(x)− µ(I)

∣∣∣∣∣ ≥
∣∣∣∣∣∣
∑

x∈[0,1/2)

ρ(x)− 1
2

∣∣∣∣∣∣ =
∣∣∣∣23 − 1

2

∣∣∣∣ =
1
6
.
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Here the supremum is taken over all intervals I ⊆ [0, 1) and µ(I) denotes the length of
the interval I. On the other hand, if

ρ(x) =
{

1/4K, if x < 1/2,
1/2K, if x > 1/2,

then it is easily seen that there exists a positive constant c such that

sup
I⊆[0,1)

∣∣∣∣∣∑
x∈I

ρ(x)− µ(I)

∣∣∣∣∣ ≤ c

N
.

The purpose of this paper is to show that the phenomenon discussed in the remark
above cannot possibly happen for matrix nets. We shall show that in the approximation
of certain integrals and in certain discrepancy problems, matrix nets with equal weights
are essentially best possible. Here, we say that the matrix net (X, ρ) has equal weights
if there exists some fixed number ρ0 ∈ R such that ρ(x) = ρ0 for every x ∈ X.

We shall consider classes Φ of functions f : Rs → R which satisfy the following
conditions:

(Φ1) Integrability: Every f ∈ Φ is Riemann integrable on Us.
(Φ2) Periodicity: Every f ∈ Φ is periodic with period 1 in each variable.
(Φ3) Translation invariance: For every f ∈ Φ and every z ∈ Rs, we have fz ∈ Φ,

where fz(x) = f(x + z) for all x ∈ Rs.
Examples of such classes Φ are given by the class of characteristic functions of aligned
rectangular boxes modulo Us and the class of functions with restrictions on the absolute
values of Fourier coefficients which provide sufficient smoothness.

For every function f ∈ Φ and for every matrix net (X, ρ), write

R(f ;X, ρ) =
∑
x∈X

ρ(x)f(x)−
∫
Us

f(t)dt,

and let
R(Φ;X, ρ) = sup

f∈Φ
|R(f ;X, ρ)|,

where the supremum is taken over all functions f ∈ Φ. Furthermore, for every ρ0 ∈ R,
write

R(f ;X, ρ0) =
∑
x∈X

ρ0f(x)−
∫
Us

f(t)dt,

and let
R(Φ;X, ρ0) = sup

f∈Φ
|R(f ;X, ρ0)|,

where the supremum is again taken over all functions f ∈ Φ. Here we have used the
same letter R to denote four related, but distinct, quantities. However, this should not
lead to confusion in the subsequent argument.
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The following theorem shows that if the inverse of A has integer entries, then one
can always choose equal weights to minimize the error term in approximate integration.

Theorem 1. Suppose that A is an inverse of an integer-valued matrix. Then for
every class Φ satisfying conditions (Φ1)–(Φ3), we have

inf
ρ
R(Φ;X, ρ) = inf

ρ0
R(Φ;X, ρ0),

where the infima are taken over all functions ρ : X → R and over all numbers ρ0 ∈ R
respectively.

Theorem 1 shows that for any matrix A, the inverse A−1 of which has integer
entries, the weights may be chosen to be equal. This raises the question of whether the
natural choice ρ0 = 1/N , where N = |X| denotes the cardinality of the set X, is always
the best. Our next theorem shows that this is necessarily the case for any “reasonable”
point set X arising from a lattice.

Theorem 2. Suppose that A is an inverse of an integer-valued matrix, and that the
class Φ satisfies conditions (Φ1)–(Φ3). Let

M(Φ) = sup
f∈Φ

∣∣∣∣∫
Us

f(t)dt
∣∣∣∣ . (1)

Suppose further that for some fixed real number ε ∈ (0, 1), at least one of the following
two conditions holds:
(a) R(Φ;X, 1/N) ≤ ε−1M(Φ).
(b) infρ0 R(Φ;X, ρ0) ≤ (1− ε)M(Φ) and M(Φ) > 0.
Then

R(Φ;X, 1/N) ≤ 3
ε

inf
ρ
R(Φ;X, ρ),

where the infimum is taken over all functions ρ : X → R.

Observe that if condition (b) does not hold, then in view of Theorem 1, matrix
nets with the point set X are not suitable for approximate integration of functions in
Φ for any choice of weights. Condition (a) may be easier to verify.

Let us now concentrate on the special case of Theorem 2 when Φ is the class of
characteristic functions of all aligned rectangular boxes

B = [a1, b1)× . . .× [as, bs),

where we assume that 0 ≤ bi − ai ≤ 1 for every i = 1, . . . , s. We denote by B the
collection of all boxes of this type. For every x ∈ Rs and every B ∈ B, we shall write
x ∈ B (mod Us) to denote that there exists n ∈ Zs such that x− n ∈ B. We define

χB(x) =
{

1, if x ∈ B (mod Us),
0, otherwise.

3



For every matrix net (X, ρ), consider the discrepancy function

DB(X, ρ) =
∑
x∈X

χB(x)=1

ρ(x)− µ(B), (2)

where µ(B) denotes the s–dimensional volume of B, and let

D(X, ρ) = sup
B∈B

|DB(X, ρ)|, (3)

where the supremum is taken over all aligned rectangular boxes in B. In the case of
constant weight function ρ(x) = ρ0, we shall use the notation DB(X, ρ0) and D(X, ρ0)
respectively, so that in particular

DB(X, 1/N) =
1
N

∑
x∈X

χB(x)=1

1− µ(B). (4)

It is easily seen that the class Φ of all the functions χB satisfies the conditions
(Φ1) − (Φ3), and that for this class, M(Φ) = 1 and R(Φ;X, ρ) = D(X, ρ), the latter
identity in view of

R(χB ;X, ρ) =
∑
x∈X

ρ(x)χB(x)−
∫
Us

χB(t)dt =
∑
x∈X

χB(x)=1

ρ(x)− µ(B) = DB(X, ρ)

for every B ∈ B. Also, it is clear from (3) and (4) that D(X, 1/N) ≤ 1, and so condition
(a) of Theorem 2 is satisfied for any constant ε < 1. Therefore, as very special cases of
Theorems 1 and 2, we immediately have the following two corollaries.

Corollary 1. Suppose that A is an inverse of an integer–valued matrix. Then

inf
ρ
D(X, ρ) = inf

ρ0
D(X, ρ0),

where the infima are taken over all functions ρ : X → R and over all numbers ρ0 ∈ R
respectively.

Corollary 2. Suppose that A is an inverse of an integer–valued matrix. Then

D(X, 1/N) ≤ 3 inf
ρ
D(X, ρ),

where the infimum is taken over all functions ρ : X → R.

The situation becomes more complicated if the inverse matrix A−1 has some non–
integer entries. Indeed, the method for proving Theorem 1 does not extend directly to
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this more general case. Consequently, we are only able to prove a result analogous to
Corollary 2 above.

More precisely, our aim is to show that there is some positive constant c = c(s),
depending only on the dimension s, such that D(X, 1/N) ≤ c(s)D(X, ρ) for every
matrix net (X, ρ).

Theorem 3. Suppose that A is an arbitrary invertible real matrix. Then

D(X, 1/N) ≤ (2s)2s inf
ρ
D(X, ρ),

where the infimum is taken over all functions ρ : X → R.

In fact, the multiplicative constant on the right hand side can be slightly improved.
However, we make no serious attempt here to optimize this constant.

We shall prove Theorem 1 in §2, Theorem 2 in §3 and Theorem 3 in §§4–5.
The use of lattices in discrepancy problems is motivated by the study of the se-

quence {nα} of the fractional parts of nα, and dates back to the work of Hardy and
Littlewood, Kronecker, Ostrowski, Weyl and others in the first half of this century.
Later, Davenport [4] used lattices to show that Roth’s celebrated result on irregulari-
ties of distribution is best possible in dimension 2, and Korobov [5] initiated systematic
studies of parallelepipedal nets, which are a special case of nets generated by inverses
of integer–valued matrices. For more recent work involving the use of lattices in dis-
crepancy theory, see the papers of Beck and Chen [1–3] and Skriganov [6].

2. Proof of Theorem 1

The proof of Theorem 1 is based on the following observation concerning matrix nets
arising from matrices whose inverses have integer entries. For every y = (y1, . . . , ys) ∈
Rs, write

{y} = ({y1}, . . . , {ys}) ∈ Us;

in other words, {y} is obtained from y by replacing each coordinate by its fractional
part.

Lemma 1. Suppose that A is an inverse of an integer-valued matrix. Then for every
fixed w ∈ Λ, we have

{{x + w} : x ∈ X} = X;

in other words, the set X is invariant under translation modulo Us by any vector of Λ.

Proof. For every i = 1, . . . , s, let

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
s−i

).
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To prove the lemma, we shall first prove that Zs ⊆ Λ by showing that ei ∈ Λ for every
i = 1, . . . , s. Let mi denote the i–th column of the matrix A−1. Then clearly

mi = A−1ei ∈ Zs,

where mi and ei are written as column matrices. It follows that

ei = Ami ∈ Λ

as required. Next, for any fixed w ∈ Λ, consider the mapping ϕ : X → Us, defined by
ϕ(x) = {x + w} for every x ∈ X. Since x + w ∈ Λ and x + w − {x + w} ∈ Zs ⊆ Λ,
it follows that {x + w} ∈ Λ, so that ϕ maps X into itself. On the other hand, ϕ
is clearly injective, as ϕ(x′) = ϕ(x′′) implies x′′ − x′ ∈ Zs, and hence x′′ = x′ since
x′,x′′ ∈ Us. The assertion now follows since any injective mapping of a finite set into
itself is necessarily a bijection. ♣

We can now complete the proof of Theorem 1. First of all, it is obvious that

inf
ρ
R(Φ;X, ρ) ≤ inf

ρ0
R(Φ;X, ρ0),

so it remains to show that

inf
ρ
R(Φ;X, ρ) ≥ inf

ρ0
R(Φ;X, ρ0).

To do this, it clearly suffices to show that for every ρ : X → R, there exists ρ0 ∈ R
such that

R(Φ;X, ρ) ≥ |R(f ;X, ρ0)| (5)

for every f ∈ Φ. We choose

ρ0 =
1
N

∑
x∈X

ρ(x). (6)

In view of (Φ3), we have, for any y ∈ Rs,∣∣∣∣∣∑
x∈X

ρ(x)fy(x)−
∫
Us

fy(t)dt

∣∣∣∣∣ ≤ R(Φ;X, ρ).

This, in view of (Φ2), can be rewritten as∣∣∣∣∣∑
x∈X

ρ(x)f(x + y)−
∫
Us

f(t)dt

∣∣∣∣∣ ≤ R(Φ;X, ρ). (7)

The key idea here is to take an average over all y ∈ X. More precisely, in view of (Φ2),
Lemma 1 and (6), we have

1
N

∑
y∈X

∑
x∈X

ρ(x)f(x + y) =
1
N

∑
x∈X

ρ(x)
∑
y∈X

f(x + y) =
1
N

∑
x∈X

ρ(x)
∑
y∈X

f({x + y})

=
1
N

∑
x∈X

ρ(x)
∑
y∈X

f(y) = ρ0

∑
y∈X

f(y) =
∑
x∈X

ρ0f(x).
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It follows that∣∣∣∣∣∑
x∈X

ρ0f(x)−
∫
Us

f(t)dt

∣∣∣∣∣ ≤ 1
N

∑
y∈X

∣∣∣∣∣∑
x∈X

ρ(x)f(x + y)−
∫
Us

f(t)dt

∣∣∣∣∣ ≤ R(Φ;X, ρ).

This establishes the inequality (5), and completes the proof of Theorem 1.

3. Integral Nets with Normalized Weights

Suppose that for some f ∈ Φ and every constant C ∈ R, we also have f +C ∈ Φ. Then

R(f + C;X, ρ0) =
∑
x∈X

ρ0f(x)−
∫
Us

f(t)dt + (ρ0N − 1)C.

It follows that
R(Φ;X, ρ0) = sup

f∈Φ
|R(f ;X, ρ0)|

can be finite only if ρ0 = 1/N . In this case, we clearly have

R(Φ;X, 1/N) = inf
ρ0
R(Φ;X, ρ0).

Theorem 2 establishes a conclusion of this type, but under far less restrictive and more
acceptable conditions.

Note that the first condition in hypothesis (b) of Theorem 2 cannot be replaced
by the weaker condition

inf
ρ0
R(Φ;X, ρ0) ≤M(Φ).

Consider, for example, the class Φ of all Riemann integrable functions f : Rs → R,
periodic with period 1 in each variable and satisfying the condition that∣∣∣∣∫

Us

f(t)dt
∣∣∣∣ ≤ 1.

Obviously, for this class, M(Φ) = 1 and

inf
ρ
R(Φ;X, ρ) ≤ inf

ρ0
R(Φ;X, ρ0) ≤ R(Φ;X, 0) = 1,

but R(Φ;X, 1/N) =∞. On the other hand, the condition M(Φ) > 0 is also necessary.
Consider, for example, the class Φ of all Riemann integrable functions f : Rs → R,
periodic with period 1 in each variable and satisfying the condition that∫

Us

f(t)dt = 0.
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Obviously, for this class, M(Φ) = 0 and

0 ≤ inf
ρ
R(Φ;X, ρ) ≤ inf

ρ0
R(Φ;X, ρ0) ≤ R(Φ;X, 0) = 0,

but again R(Φ;X, 1/N) =∞.
To prove Theorem 2, we need the following lemma.

Lemma 2. For any net (X, ρ), we have

R(Φ;X, ρ) ≥ |Nρ0 − 1|M(Φ),

where ρ0 is defined by (6).

Proof. We return to the inequality (7), and apply a different averaging argument.
Instead of averaging over all y ∈ X, we integrate over y ∈ Us, and obtain∣∣∣∣∣

∫
Us

(∑
x∈X

ρ(x)f(x + y)−
∫
Us

f(t)dt

)
dy

∣∣∣∣∣ ≤ R(Φ;X, ρ).

In view of (Φ2), this gives∣∣∣∣∣∑
x∈X

ρ(x)− 1

∣∣∣∣∣
∣∣∣∣∫
Us

f(t)dt
∣∣∣∣ ≤ R(Φ;X, ρ).

The assertion follows on taking the supremum over all f ∈ Φ and noting (6). ♣

To prove Theorem 2, we shall in fact only use Lemma 2 in the case of constant
weight functions ρ(x) = ρ0. In this case, we have

R(Φ;X, ρ0) ≥ |Nρ0 − 1|M(Φ). (8)

We assume, for the sake of simplicity, that the infimum infρ0 R(Φ;X, ρ0) is attained
for some number ρ0 ∈ R, so that by Theorem 1, we have

R(Φ;X, ρ0) = inf
ρ
R(Φ;X, ρ).

Consider first the case |Nρ0| < 2ε/3. By (8), we have

R(Φ;X, ρ0) ≥ |Nρ0 − 1|M(Φ) ≥
(

1− 2ε
3

)
M(Φ),

contradicting hypothesis (b) of Theorem 2. It follows that hypothesis (a) is valid, and
so

R(Φ;X, ρ0) ≥
(

1− 2ε
3

)
M(Φ) ≥

(
1− 2ε

3

)
εR(Φ;X, 1/N) ≥ ε

3
R(Φ;X, 1/N).
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On the other hand, if |Nρ0| ≥ 2ε/3, then for every f ∈ Φ, we have

R(f ;X, 1/N) =
1
N

∑
x∈X

f(x)−
∫
Us

f(t)dt

=
1

Nρ0

(∑
x∈X

ρ0f(x)−
∫
Us

f(t)dt

)
−
(

1− 1
Nρ0

)∫
Us

f(t)dt,

so that

|R(f ;X, 1/N)| ≤ 1
|Nρ0|

R(Φ;X, ρ0) +
|Nρ0 − 1|
|Nρ0|

∣∣∣∣∫
Us

f(t)dt
∣∣∣∣

≤ 2
|Nρ0|

R(Φ;X, ρ0) ≤ 3
ε
R(Φ;X, ρ0),

in view of (1) and (8). This completes the proof of Theorem 2.

4. Preparation for the Proof of Theorem 3

We note first that if B ⊆ Us, then (2) becomes simply

DB(X, ρ) =
∑

x∈Λ∩B
ρ(x)− µ(B). (9)

Furthermore, if B contains no points of Λ, then D(X, ρ) ≥ µ(B). Indeed, this last
inequality remains valid for any aligned rectangular box B ⊆ Us which is free of points
of Λ, even without the additional restriction that B ∈ B, as B can be “approximated”
by another box in B. We shall use this remark later in the course of the proof of
Theorem 3.

It will be convenient to consider, along with D(X, ρ), the corresponding discrep-
ancy function arising only from those rectangular boxes B ∈ B contained in Us. Ac-
cordingly, we denote by B the collection of all boxes B ∈ B such that B ⊆ Us, and
write

D(X, ρ) = sup
B∈B

|DB(X, ρ)|, (10)

where the supremum is taken over all rectangular boxes B ∈ B. As before, in the case
of constant weight functions ρ(x) = ρ0, we shall use the notation D(X, ρ0).

Clearly, we have D(X, ρ) ≤ D(X, ρ) for any matrix net (X, ρ). In the other
direction, we have the following result.

Lemma 3. We have D(X, ρ) ≤ 2sD(X, ρ).
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Proof. For any box B ∈ B, there obviously exist at most 2s integer vectors ci ∈ Zs
and aligned rectangular boxes Bi ∈ B such that

B =
⋃
i

(ci +Bi),

and where the union is disjoint. Then it follows easily from (2) and (10) that

|DB(X, ρ)| =

∣∣∣∣∣∑
i

Dci+Bi
(X, ρ)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

DBi
(X, ρ)

∣∣∣∣∣ ≤ 2sD(X, ρ),

and the conclusion follows on taking the supremum over all B ∈ B. ♣

It now follows from Lemma 3 that, to prove Theorem 3, it suffices to establish the
estimate

D(X, 1/N) ≤ 2ss2sD(X, ρ) (11)

for every matrix net (X, ρ).
The idea underpinning the proof of Theorem 3 is to approximate the discrepancy

function DB(X, ρ) by another discrepancy function DB(Λ), arising from the lattice Λ
and not from the matrix net (X, ρ). We shall define this new discrepancy function by
assigning to each point of Λ the “correct” weight det Λ, instead of the “approximation”
1/N . For technical reasons, we shall also consider the supremum of DB(Λ) on all boxes
B ∈ B, not necessarily in Us and not reduced modulo Us. This enables us to apply the
averaging argument used in the proof of Theorem 1 to this new discrepancy function.

More precisely, for every B ∈ B, write

DB(Λ) =
∑

x∈Λ∩B
det Λ− µ(B), (12)

and let
D(Λ) = sup

B∈B
|DB(Λ)|,

where the supremum is taken over all aligned rectangular boxes in the collection B.
For any set B ⊆ Rs, let NB(Λ) = |Λ ∩B|, the number of points of Λ in B (hence,

for instance, NUs(Λ) = N). Then (12) becomes

DB(Λ) = NB(Λ) det Λ− µ(B),

and so ∣∣∣∣NB(Λ)− µ(B)
det Λ

∣∣∣∣ ≤ D(Λ)
det Λ

(13)

for any B ∈ B.

Lemma 4. We have D(X, 1/N) ≤ 2D(Λ).
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Proof. Suppose that B ∈ B. Then it follows from (9) and (12) that

|DB(Λ)−DB(X, 1/N)| =
∣∣∣∣det Λ− 1

N

∣∣∣∣ ∑
x∈Λ∩B

1 ≤ |N det Λ− 1|,

so that

|DB(X, 1/N)| ≤ |DB(Λ)|+ |N det Λ− 1| ≤ D(Λ) + |N det Λ− 1|.

Note next that Us ∈ B, so that

|N det Λ− 1| = |DUs(Λ)| ≤ D(Λ).

Hence
|DB(X, 1/N)| ≤ 2D(Λ).

The result now follows on taking the supremum over all B ∈ B. ♣

For any B ∈ B and any x ∈ Λ, consider the aligned rectangular box

Bx = (x−B) ∩ Us,

where x − B = {x − y : y ∈ B}. Note here that Bx 6∈ B in general. Clearly, Bx is
non–empty if and only if x ∈ Us +B = {y + z : y ∈ B, z ∈ Us}.

Lemma 5. The number NUs+B(Λ) = |Λ ∩ (Us + B)| of all lattice points x ∈ Λ for
which Bx = (x−B) ∩ Us is non–empty satisfies

NUs+B(Λ) ≤ 2s(1 +D(Λ))
det Λ

.

Proof. Clearly, the rectangular box Us + B can be written as the disjoint union of
at most 2s rectangular boxes in B. Hence it follows from (13) that

NUs+B(Λ) ≤ µ(Us +B) + 2sD(Λ)
det Λ

,

and the result follows on noting that µ(Us +B) ≤ 2s. ♣

Our next lemma implements the averaging idea from the proof of Theorem 1 and
is the heart of our argument.

Lemma 6. For every B ∈ B, we have∣∣∣∣∣Nρ0

∑
x∈Λ∩B

1−S

∣∣∣∣∣ ≤ NUs+B(Λ)D(X, ρ),
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where ρ0 is defined by (6) and

S =
∑
x∈Λ

µ((x−B) ∩ Us) =
∑
x∈Λ

µ(Bx). (14)

Proof. It is not difficult to see that given any box Bx = (x−B)∩Us and any positive
number ε, there exists B′x ∈ B such that

|µ(B′x)− µ(Bx)| < ε and B′x ∩ Λ = Bx ∩ Λ.

Since ∣∣∣∣∣∣
∑

y∈B′
x∩Λ

ρ(y)− µ(B′x)

∣∣∣∣∣∣ ≤ D(X, ρ),

and since ε can be chosen arbitrarily small, we have also∣∣∣∣∣∣
∑

y∈Bx∩Λ

ρ(y)− µ(Bx)

∣∣∣∣∣∣ ≤ D(X, ρ).

Summing over all x ∈ Λ for which Bx is non–empty, we obtain∣∣∣∣∣∣
∑
x∈Λ

∑
y∈Bx∩Λ

ρ(y)−
∑
x∈Λ

µ(Bx)

∣∣∣∣∣∣ ≤ NUs+B(Λ)D(X, ρ). (15)

Note now that ∑
x∈Λ

∑
y∈Bx∩Λ

ρ(y) =
∑
x∈Λ

∑
y∈Λ∩(x−B)∩Us

ρ(y)

=
∑

y∈Λ∩Us

ρ(y)
∑

x∈Λ∩(y+B)

1

=
∑

y∈Λ∩Us

ρ(y)
∑

x∈Λ∩B
1. (16)

The result follows on combining (6) and (14)–(16). ♣

To calculate S, we need two more lemmas.

Lemma 7. For every B ∈ B, we have∫
Us

NB+x(Λ)dx = S. (17)
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Furthermore, for any fundamental region R of the lattice Λ, we have∫
R
NB+x(Λ)dx = µ(B). (18)

Proof. We have

∫
Us

NB+x(Λ)dx =
∫
Us

 ∑
y∈Λ∩(B+x)

1

 dx =
∑
y∈Λ

∫
(y−B)∩Us

dx

=
∑
y∈Λ

µ((y −B) ∩ Us) = S,

in view of (14). On the other hand,

∫
R
NB+x(Λ)dx =

∫
R

 ∑
y∈Λ∩(B+x)

1

 dx =
∑
y∈Λ

∫
(y−B)∩R

dx

=
∑
y∈Λ

∫
B∩(y−R)

dz =
∫
B

dz = µ(B). ♣

Suppose now that R is a fixed fundamental region of Λ. We write Us = Ω0 ∪ Ω1,
where

Ω0 =
⋃

w∈Λ
R+w⊆Us

(R+ w) and Ω1 = Us \ Ω0. (19)

Then it follows from (17) that

S =
∫

Ω0

NB+x(Λ)dx +
∫

Ω1

NB+x(Λ)dx. (20)

Lemma 8. For every B ∈ B, we have∫
Ω0

NB+x(Λ)dx =
µ(B)µ(Ω0)

det Λ
.

Furthermore, ∣∣∣∣∫
Ω1

NB+x(Λ)dx− µ(B)µ(Ω1)
det Λ

∣∣∣∣ ≤ µ(Ω1)D(Λ)
det Λ

.
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Proof. We have, by (18) and (19), that∫
Ω0

NB+x(Λ)dx =
∑
w∈Λ

R+w⊆Us

∫
R+w

NB+x(Λ)dx =
∑
w∈Λ

R+w⊆Us

µ(B)

=
µ(B)
µ(R)

∑
w∈Λ

R+w⊆Us

µ(R) =
µ(B)µ(Ω0)
µ(R)

=
µ(B)µ(Ω0)

det Λ
.

This proves the first assertion. The second assertion follows immediately on applying
(13) to the box B + x and integrating with respect to x over Ω1. ♣

To use Lemma 8, we need an estimate for µ(Ω1).

Lemma 9. Suppose that s ≥ 2. Suppose further that for every fundamental region
R of the lattice Λ, the inequality µ(Ω1) > 1/2 holds. Then D(X, ρ) > (2s)−2s for any
choice of the weight function ρ.

Proof. Consider the aligned cube

Q =
{
x = (x1, . . . , xs) ∈ Rs : |xi| ≤

1
4s2

}
,

centred at the origin. We claim that this cube cannot possibly contain s linearly inde-
pendent vectors of Λ. Indeed, if it does, then for the fundamental region R generated
by those s points, we have

d = sup
x,y∈R

max
1≤i≤s

|xi − yi| ≤
1
4s
,

where the supremum is taken over all pairs of vectors x = (x1, . . . , xs), y = (y1, . . . , ys)
in R. But Us has 2s faces, each of area 1, so that µ(Ω1) ≤ 2sd ≤ 1/2, clearly a
contradiction. It follows that all the points of Q ∩ Λ lie on some (s − 1)–dimensional
hyperplane L. We now consider the 2s open cubes

Q(δδδ) = {x ∈ Q : δixi > 0 for every i = 1, . . . , s},

where δδδ = (δ1, . . . , δs) ∈ {−1, 1}s. At most 2s−1 of these can have a non–empty
intersection with L. Hence at least one of these small cubes, say Q0, does not contain
any point of Λ. We observe that the edge length of Q0 is 1/(4s2). Now consider the
cube

B =
{
x = (x1, . . . , xs) ∈ Us :

1
4s2
≤ x1, . . . , xs < 1− 1

4s2

}
.

If B ∩ Λ is empty, then it follows from (3) and (9) that

D(X, ρ) ≥ µ(B) =
(

1− 1
2s2

)s
≥
(

1
2s2

)s
> (2s)−2s.
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On the other hand, if B ∩Λ is non–empty, then there exists a lattice vector y ∈ B ∩Λ.
Consider the translation Q0 +y. Since Q0 ∩Λ = ∅, we clearly have (Q0 +y)∩Λ = ∅.
Note also that Q0 + y ⊆ Us. Hence it follows again from (3) and (9) that

D(X, ρ) ≥ µ(Q0 + y) = µ(Q0) = (4s2)−s = (2s)−2s. ♣

5. Completion of the Proof of Theorem 3

Suppose first of all that s = 1. If det Λ > 1, then the distance between any two
neighbouring points of Λ is greater than 1. Hence for any weight function ρ, we clearly
have

D(X, ρ) ≥ 1 = D(X, 1/N).

If det Λ ≤ 1, then the distance between any two neighbouring points of Λ is det Λ ≤ 1,
so that D(X, ρ) ≥ det Λ for any ρ and hence by Lemmas 3 and 4,

D(X, 1/N) ≤ 2D(X, 1/N) ≤ 4D(Λ) = 4 det Λ ≤ 4D(X, ρ)

as required. For the remainder of this paper, we shall assume that s ≥ 2.
Suppose that B ∈ B, and that ρ0 and S are defined by (6) and (14) respectively.

Then

|DB(Λ)| =

∣∣∣∣∣ ∑
x∈Λ∩B

det Λ− µ(B)

∣∣∣∣∣ ≤ I1 + I2 + |S det Λ− µ(B)|, (21)

where

I1 =

∣∣∣∣∣(1−Nρ0)
∑

x∈Λ∩B
det Λ

∣∣∣∣∣ and I2 =

∣∣∣∣∣Nρ0

∑
x∈Λ∩B

det Λ−S det Λ

∣∣∣∣∣ .
It is easy to see from (6), (9) and (10) that

|Nρ0 − 1| = |DUs(X, ρ)| ≤ D(X, ρ).

On the other hand, it follows from (13) that∑
x∈Λ∩B

det Λ = NB(Λ) det Λ ≤ µ(B) +D(Λ) ≤ 1 +D(Λ).

Hence
I1 ≤ D(X, ρ)(1 +D(Λ)). (22)

Next, it follows from Lemma 6 and Lemma 5 that

I2 ≤ 2sD(X, ρ)(1 +D(Λ)). (23)
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Finally, it follows from (20), Lemma 8 and µ(Ω0) + µ(Ω1) = 1 that

|S det Λ− µ(B)| ≤ µ(Ω1)D(Λ). (24)

In view of Lemma 9, we may assume that there exists a fundamental region R such
that µ(Ω1) < 1/2. We may also assume, without loss of generality, that

D(X, ρ) < 2−ss−2s; (25)

for otherwise D(X, 1/N) ≤ 1 ≤ 2ss2sD(X, ρ), so that (11) follows immediately.
Substituting (22)–(24) into (21) and noting (25), we get

|DB(Λ)| ≤ (2s + 1)D(X, ρ)(1 +D(Λ)) + µ(Ω1)D(Λ)

≤ 2s+1D(X, ρ)(1 +D(Λ)) +
1
2
D(Λ)

≤ 2s+1D(X, ρ) +
(

2s−2s +
1
2

)
D(Λ)

≤ 2s+1D(X, ρ) +
3
4
D(Λ).

Taking the supremum over all B ∈ B, we obtain

D(Λ) ≤ 2s+1D(X, ρ) +
3
4
D(Λ),

so that
D(Λ) ≤ 2s+3D(X, ρ).

It now follows from Lemma 4 that

D(X, 1/N) ≤ 2s+4D(X, ρ).

The inequality (11) follows on noting that 2s+4 ≤ 2ss2s. This completes the proof of
Theorem 3.
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