On irregularities of distribution IV

W.W.L. Chen

1. Introduction

Suppose that P is a distribution of N points in the unit torus U* = [0, l)L, where
L > 1. For every y = (y1,...,yr) € U%, let

B(y)=10,y1) X ... x [0,y1),

and let
Z[P; B(y)] = #(P N B(y)),

where #S denotes the cardinality of the set S. We are interested in the discrepancy
function

Dr[P; B(y)l = Z1[P; B(y)] = NpL(B(y)),

where j;, denotes the usual volume in U”. The case L = 1 is trivial. For L > 2, we
have the following result.

Theorem 1. Suppose that W > 1 and the natural number N > 2.
(a) For every distribution P of N points in UY, we have

/L IDL[P; B(y)]|" dy > 1w (log N) P~ VW72,
U
(b) There exists a distribution P of N points in UL such that

/L |DL [P; B(Y)dey <r,w (log N)(L_l)W/Q.
U

Here the case W = 2 was established by Roth [11,12]. The general case was
established by Schmidt [13] and Chen [6]. Note also that the conclusions remain true
in the trivial case L = 1.

Suppose now that P is a distribution of N points in the unit torus U¥ = [0, 1]
where K > 2. Let A be a compact and convex body in U¥X. For any real number
X € (0,1], any proper orthogonal transformation 7 in R¥ and any vector u € UX, let

K
’

AN, mu) ={r(A\x)+u:x € A}
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(note that A(\,7,u) and A are similar to each other), and let
Zr[P; A\ 1,u)] = #(P N AN T,u)).
We are interested in the discrepancy function
Dg[P; A\, 1,u)] = Zg[P; A\, 7,u)] — Nug (A(XA, 7,u)),

where p1x denotes the usual volume in UX. Let 7 be the group of all proper orthogonal
transformations in R¥X, and let dr be the volume element of the invariant measure on
7T, normalized such that fT dr = 1. We have the following result.

Theorem 2. Suppose that W > 2 and the natural number N > 1. Suppose further
that A is a compact and convex body in UX satisfying r(A) > N~YK  where r(A)
denotes the radius of the largest inscribed ball of A.

(a) For every distribution P of N points in UX | we have

1
/// Dk [P; A\, 7, w)]]Y dudrd > 4 NO-V/EOW/2,
0 JT JUK

(b) There exists a distribution P of N points in UX such that

1
/// 1Dk [P; A\, 7, w)]]Y dudrdh < 4y NOA-/EOW/2,
o JrJux

Here the lower bound was established by Beck [3]. The upper bound was estab-
lished by Chen [7], although the case W = 2 can be deduced using ideas in Beck and
Chen [4].

Let us now combine these two problems. More precisely, suppose that P is a
distribution of N points in the unit torus UX*Y, where K > 2 and L > 1. Let A
be a compact and convex body in UX. For any real number A € (0,1], any proper
orthogonal transformation 7 in RX, any vectors u € UX and y € U¥, consider the
cartesian product

A, m,u) x B(y),

where A(\,7,u) C UX and B(y) C U% are defined as before, and let
Z[P; A(A,7,u) x B(y)] = #(P N (A(A, 7, u) x B(y))).
We are interested in the discrepancy function
DIP; A\, 7, u) x B(y)] = Z[P; A\, 7,u) x B(y)] = Nuk (A, 7,0))ur(B(y)).
In this paper, we shall establish the following result.
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Theorem 3. Suppose that W > 2 and the natural number N > 1. Suppose further
that A is a compact and convex body in UK satisfying r(A) > N~ where r(A)
denotes the radius of the largest inscribed ball of A.

(a) For every distribution P of N points in UX+L we have

1
/ // / ID[P; A\, 7, u) x B(y)]|" dydudrd) >4y NO-V/EW/2
0 7 JUK JUL

(b) There exists a distribution P of N points in UX+L such that

1
/ / / / |DIP; AR, 7, 1) X B(y)deydude)\ <LALW NA-1/K)W/2
0 7 JUK JUL

In fact, part (a) of Theorem 3 is easily deduced from part (a) of Theorem 2, while
the special case W = 2 of part (b) was established by Beck and Chen [5]. It therefore
remains to establish part (b) when W is an even positive integer. Note that the order
of magnitude of the estimates is independent of L.

The author takes great pleasure in thanking the referee for his very careful read-
ing of the original version of the paper, and for the many valuable comments and
suggestions.

2. The basic idea

Given any natural number N, we need to show that there exists a set P of N points
in UK*L such that the inequality in Theorem 3(b) holds.

As in Beck and Chen [5], we shall in fact construct a sequence of more than N
points in UKL and use only the first N terms of this sequence. The main ingredient in
the construction of this sequence in UX*¥ is the Chinese remainder theorem. This not
only makes it possible for the determination of the first K coordinates of the points
of the sequence to be carried out independently of the determination of the last L
coordinates of these points, but also enables us to treat the discrepancy arising from
A(A, T,u) quite separately from the discrepancy arising from B(y). Furthermore, it
ensures that important properties of the sequence are also present in many subsequences
that arise from our argument.

Indeed, we shall show that the construction in Beck and Chen [5] used to es-
tablished the special case W = 2 will be sufficient. However, the treatment of the
discrepancy arising from B(y) in Beck and Chen [5] is unnecessarily complicated due
to an elementary oversight. Here we give a much simpler argument in §9.

3. The sequence: general discussion

Let h be a natural number, to be fixed later, and let py,...,pr be the first L odd
primes.



For every p = 2,p1,...,pr, for every s =0,1,...,h and for every c € Z, let

I(p,s,c) =[cp™ %, (c+1)p~7%). (1)

In other words, I(p, s, ¢) is an interval of length p~* and whose endpoints are consecutive
integer multiples of p~*.
We shall construct an infinite sequence of points pg, p1, P2, . .. in UKL such that

the following is satisfied. For every sq, s1,...,s € {0,1,...,h}, every set of the form
1(2,s0,a1) X ... x I(2,s0,ax) X I(p1,81,b1) X ... x I(pr,SL,br)
in UKHL where ay,...,ax,b1,...,br, € Z, contains exactly one point of
{p, : c2Ksop* it <n<(c+ 1)2Ksopst N

where ¢ is any non-negative integer.

The construction of such a sequence involves ideas in combinatorics and poses no
real difficulty. However, such a sequence alone is insufficient to give a proof of the
desired result. As in Beck and Chen [5], we appeal to tools in probability theory. A
natural consequence of this is that our proof will not give any explicit description of
the well-distributed sets in question. This is a common phenomenon in most upper
bound proofs in irregularities of distribution.

Unlike in Beck and Chen [5], we observe that we need only to apply probabilistic
arguments to deal with the discrepancy arising from A(A,7,u). This is essentially
similar to the probabilistic arguments in Beck and Chen [5], and has its origins from
the work of Beck [1,2]. To deal with the discrepancy arising from B(y), we shall
use a simple counting argument which is sufficient to replace the complicated discrete
probabilistic techniques used in Beck and Chen [5].

For every non-negative integer n, let p, = (qn,yn) € UXTL, where q,, € UX and
v € UL, We shall discuss the sequence q,, in §§4-6 and the sequence y,, in §7.

4. A combinatorial approach

In this section, we closely follow Beck and Chen [5]. In particular, Lemmas 1 — 4 below
are precisely Lemmas 1 — 4 in [5], and we omit the proofs here.

For every integer s satisfying 1 < s < h, integers 71,...,7,_1 € {0,1,...,2K — 1}
and vectors ay,...,as_1 € {0, 1}K, let

Glr, ..., Te—1;a1,...,a,.1] : {0,1,...,25K =1} = {0,1}*

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[()]. Given these mappings, we can define a bijective mapping

F:{0,1,...,25" _1y ~{0,1,...,2" — 1} (2)
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as follows. Suppose that n is an integer satisfying 0 < n < 25" Write
n = ThQK(h_l) + Th_12K(h_2) + ...+ 7, (3)

where 71,...,7, € {0,1,...,2% —1}. We now let ay,...,a; € {0, 1}K be the solution
of the system of equations

((G[0](11) = ai,
G[7'1;a1](72) = ay,
G[11,T2; a1, a2](13) = ag,

G[Tl, ey Tg—15A1, ... ,asfl](TS) = ag,
Glr1,. - Th2;a1,. .., ap2](Th-1) = ap_1,
G[Tl, ey Th—1,A1, ... ,ah,l](Th) = ap.

Suppose now that for each integer t = 1,..., h,

a; = (arq,...,anx) € {01} (5)
We now write
FJ(TL) = a17j2h_1 +a2,j2h_2 —|—...—|—ah’j (6)
and let
F(n) = (Fi(n),..., Fy(n)). (7)

We next partition UK into a sequence of 25" smaller cubes
S(n)=1(2,h,F1(n)) x ... x I(2,h, Fx(n)), (8)
where, for every j =1,..., K and every n = 0, 1,..., 25" — 1, the interval I(2, h, F;(n))

is defined by (1) and (3)—(6). We further extend the range of definition of S(n) over
the set Z by periodicity so as to ensure that

S(n + 25" = S(n) (9)

for every integer n.
The following observation is a simple consequence of our definitions.

Lemma 1. Suppose that s is an integer satisfying 0 < s < h. Then for every integer
ng, the set

U S(n) (10)



is a cube of the form
C(s,c) =1(2,s,¢1) x ... x I(2,5,¢cx) C UK, (11)

where ¢ = (¢1,...,cx) € {0,1,...,2% — 1}K. On the other hand, every cube of the
form (11), where ¢ = (¢1,...,cx) € {0,1,...,2° — 1}K, is a union of the form (10) for
some integer ny.

A simple rescaling and congruence argument gives the following generalization.

Lemma 2. Suppose that s is an integer satisfying 0 < s < h, and that ¢ is an odd
natural number. Then for every integer ng, the set

U S(n)

0<n<2Khq
n=ng (mod 2K%¢)

is a cube of the form (11), where ¢ = (c1,...,cx) € {0,1,...,2% — 1}K.

For every ¢ = (c1,...,cx) € {0,1,...,2" — 1}K, let g(c) be a point in the cube
C(h;c) =1(2,h,c1) X ... x I[(2,h,cx) CUE.

Using F, we can define a permutation q, (0 < n < 25") of the q(c) as follows. For
n=0,1,...,25" — 1, let

an = q(F(n)) = a(Fi(n), ..., Fx(n)).

Clearly q, € S(n) for every n = 0,1,...,2%" — 1. Again, we extend the range of
definition of q,, over the set Z by periodicity with period 25" so as to ensure that

an € S(n)
for every integer n. Then it follows from Lemma 1 that
Lemma 3. Suppose that s and H are integers satisfying 0 < s < h and H > 0. Then
every cube of the form (11), where ¢ = (cy,...,cx) € {0,1,...,2° — 1}¥ contains
exactly one element of the set
{qn : H25 <n < (H 4 1)251.

We denote this element obtained by Lemma 3 by q(s;c; H). In other words, for

integers s, cq,...,cx, H satisfying the hypotheses of Lemma 3,

q(s;c; H) = {qy, : H25* <n < (H +1)25%°} N C(s; ).
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Lemma 4. Let q be an odd natural number and let ny be an integer satisfying
0 < ng < q. Then for every bijective mapping F of the form (2) defined by (3)—
(7), there exists a corresponding bijective mapping F' of the same type such that
S(no+qn) = S'(n) for every n € Z, where S’ is defined in terms of F' in the same way
as S is defined in terms of F' by (7)—(9).

In other words, the good distribution properties of the functions F' and G can be
extended to the more general situation first alluded to in Lemma 2.

5. Some probabilistic lemmas

As in Beck and Chen [4,5] and Chen [7], we now use some elementary concepts and facts
from probability theory (see, for example, Chung [8]), and define a “randomization” of
the deterministic points q(c) = q(ci,...,cx), mappings G[ri,...,Ts—1;81,...,a5_1]
and F', and the sequence q,, as follows.

(A) For c = (c1,...,cx) €{0,1,...,2" — I}K, let q(c) be a random point uni-
formly distributed in the cube C(h;c). More precisely,

Prob(q(c) € §) = Mif((c]*l&ii) (S)S)

for all Borel sets S C R¥X.

(B) For integer s € {1,...,h}, integers 71,...,7,_1 € {0,1,...,2% —1} and vec-
tors ay,...,as—1 € {0, 1}K, let (~}’[7'1, .y Ts—1;81,...,a5_1] be a uniformly distributed
random bijective mapping from {0, 1,...,2% — 1} to {0, l}K. More precisely, if the
mapping 7 : {0,1,...,25 — 1} — {0,1}" is one of the (25)! different (deterministic)
bijective mappings, then

~ 1
Prob(G[m,...,Ts—1;81,...,85_1] =7) = m

(C) Let F be the random bijective mapping from {0, 1,... ,2KM 11 to {0, 1,
..., 20 — 11K defined by (3), (5) and (5)—(7), where (4) denotes that in the system
(4) of equations, we replace each deterministic mapping by its corresponding random
mapping.

(D) Let @ (0 < n < 2KM) denote the random sequence defined by F, ie. for
n=0,1,...,28r _ 1, N

an = q(F(n)),

again, we extend q, over the set Z by periodicity with period 2%".
(E) Let q(s;c; H) denote the randomization of q(s;c; H), i.e. for integers s, cq,
..., i, H satisfying the hypotheses of Lemma 3,

q(s;c; H) = {qy : H25* <n < (H +1)25°} N C(s;¢). (12)
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(F) Finally, we may assume that the random variables

q(c) (c:(cl,...,cK)E{0,1,...,2h—1}K)

and

Gr1, ..., Ts—1;1,...,85_1] (1<s<handm,...,7s_1 €{0,1,...,25% —1}
and ay,...,a,_1 € {0,1}")

are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.
Let (2, F,Prob) denote the underlying probability measure space.
We shall first state that the independence and uniformity of the original random
variables lead to uniformity of the distribution of random points in special cubes. The
following is precisely Lemma 5 of [5], and we omit the proof here.

Lemma 5. Suppose that s and H are integers satisfying 0 < s < h and H > 0.
Then for every ¢ = (c¢1,...,cx) € {0,1,...,2°% — 1}K, the random point q(s;c; H) is
uniformly distributed in the cube C(s;c).

Let S be a fixed compact and convex set in UX. For integers s and H satisfying
0 <s<hand H > 0, consider the random set

P(s,H) ={q(s;c;H):c = (c1,...,cx) €{0,1,...,2° — 1}Y, (13)

and write

Zk[P(s, H); S| = #(P(s, H) N S)

and
D (s, H) = Z[P(s, H); S] — 2" g (S). (14)

Note that Dy (s, H) depends on S. Let
T(s,H)={ce{0,1,...,2° =1} : C(s;¢) NS £ 0 and C(s;c)\ S # 0}

It is easy to see that
#T(s, H) < 2K2K-Ds, (15)

Since every cube C(s;c) contains exactly one element (namely q(s;c; H)) of the (ran-
dom) set P(s, H), we have

Dk(s,H)y= > 1-25 3" ux(C(s;¢)nS).
ceT (s,H) ceT(s,H)
a(s;c;H)ES



For every ¢ € T'(s, H), let

ey = J 1 (alsies H) €8),

Elsici H) = {O (otherwise). (16)

By Lemma 5, we have, writing E for “expected value”,
pr(C(s;e)NS) %
Ef(s;c; H) = =20° C(s;c)NS),

so that writing

n(s;e; H) = &(s;e; H) — E€(s;¢; H), (17)
we have B

Di(s,H)= Y n(s;c;H). (18)
ceT(s,H)

Note that Enp =0 and |n| < 1.

We shall next state that the independence and uniformity of the original random
variables also lead to independence properties concerning the random points discussed
in Lemma 5.

Lemma 6. Suppose that 0 < s < h. Suppose further that H is an integer satisfying
H > 0 and that ¢ ...,cW) € {0,1,...,25 — l}K are distinct. Then the random
variables n(s;cM; H), ... n(s;c™W); H) are independent.

This is essentially Lemma 4 of Chen [7] on noting that, as in Lemma 3, we may
assume that H < 2K(=3) in view of periodicity.

6. An intermediate result

For every natural number N, let

éN:{aO,ala"'7aN—1}' (19)

For every compact and convex set S C UX let
Zk|On; S = #(On N S),

and write

Dk[On:S] = Zk[Qn; S] — Nug(S).

Lemma 7. Let W be an even natural number. There exists a positive constant
Co(K,W), depending at most on K and W, such that for every natural number N
satisfying 1 < N < 2K we have
- w
E(Dk[Qn:S]) < ColK, W)N(=1/EW/2,
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This is Lemma 5 of Chen [7], and we omit the technical proof here. In essence,
Lemma 7 asserts that the probabilistic model gives estimates that are of the order of
magnitude of the square root of the trivial estimate of the type

|Dx[Qn;:S]| <x N*VE,
Lemma 7 is sufficient for the study of the case L = 1. For L > 2, we need a

stronger version of Lemma 7. For every natural number N and every residue class R
of integers modulo ¢, let

ON(R) ={dn:0<n <N and n € R}.
For every compact and convex set S C UK let
Zk[Qn (R); 8] = #(Qn(R) N S),

and write

Dr[ON(R);S] = Zk[On(R); S| — N'ux(S),
where N’ = #Qn(R) = #(RN [0, N)).

Lemma 8. Let W be an even natural number, and let R be any residue class of
integers modulo q, where q is an odd natural number. For every natural number N
satisfying 1 < N < 2Khg, we have

~ w
E(Dk[On(R):S]) < Coll, W)(Ng™" +1)A-H/EIW/2,
where the positive constant Co(K, W) is the same as in Lemma 7.
Proof. Let R be the residue class ng modulo ¢, where 0 < ng < q. Then

éN(R) = {ano+qn : 0 S n < N,},

where
N'<[(N—ng)g ]4+1< N¢g ' +1. (20)

In view of Lemma 4 and the independence between the randomization of F' and the
randomization of the point q(c), we have

- w _ 1%
E(Dk[On(R):S]) =E(Dx[Qn;8]) - (21)
Lemma 8 now follows on combining (20), (21) and Lemma 7. &
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7. The van der Corput—Halton—Hammersley sequence
Let p; denote the j—th odd prime. For any integer n satisfying 0 < n < p?, write
n = O‘hJ‘p;L_l + O'h_Ljp;L—z 4+ ...+ 01,5,
where 01 5,...,04,; € {0,1,...,p; — 1}, and let
_ -1 —h
yi(n) = O14P; +... .+ O p; -

We extend the range of definition of y;(n) over the set Z by periodicity so as to ensure
that y;(n + p?) = y;(n) for every n € Z. Then the following result is almost trivial.

Lemma 9. Lets; € {0,1,...,h}. Ifb; € Z and I(p;,s;j,b;) C U, then
{n€Z:y;(n) € I(p;,s;,b5)}
is a residue class modulo p;j.
Let p1,...,pr denote the first L odd primes, and let

Yn = (yl(n)7 S 7yL(n))

for every n € Z. Then the result below follows immediately from Lemma 9 and the
Chinese remainder theorem.

Lemma 10. Let s1,...,s; € {0,1,... h}. Ifby,...,by € Z and
I(p1,81,b1) % ... x I(pp,sr,br) CUL, (22)

then
{neZ:y,€l(p,s1,b1) X ... x I(pr,sr,br)}

is a residue class modulo pi' ...p7".
The van der Corput—-Halton-Hammersley sequence y, has been used on many

occasions to give upper bound results in irregularities of distribution (see Halton [9],
Hammersley [10], Roth [12], Chen [6] and Beck and Chen [5]).

8. The randomized sequence in the cube
We summarize our argument thus far. For any non—negative integer n, we write
Prn = (dn,¥n) € UK+L7
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where q,, € UX is defined in §4 and where y,, € U” is the van der Corput-Halton—
Hammersley sequence defined in §7. We randomize the sequence q,, in §5 to obtain the
sequence q,. Consequently, we obtain a partly randomized version of p,,, namely

isn = (afm Yn)-

Note that the sequence q, satisfies Lemmas 7 and 8, while the sequence y,, satisfies
Lemma 10. We shall combine these in the next section.
We shall write

Py = {P0,P1,-- -, DN_1}- (23)

9. Subdivision of the rectangular box

In this section, we follow the argument in Roth [12] and simplify the argument in Beck
and Chen [5]. Let
B* =1[0,m) % ... x [0,n.) €U, (24)

where, for every j =1,..., L, the number n; # 1 and is an integer multiple of pj_h, SO
that there exist unique integers vy j,...,vp ; € {0,1,...,p; — 1} such that

n; = I/Ljpj_l +...+ Vh’jpj_h.
Forevery j=1,...,Land s=1,...,h, let
_ —1 —s
§sj =1,jp;  + ...+ Vs ;D5
denote the greatest integer multiple of pj_s not exceeding 7;, and write
I = [€s-15 = &s.4);

with the convention that &y ; = 0, so that
h
[0,77]') = U JSJ. (25)

s=1
Forevery j=1,...,L,s=1,...,handa=1,...,v,;, let
Jsgo = [§s—1,5 + (@ = 1)p;°, &s—1,5 + ap; ®),
so that

Joj = Jsjua- (26)
a=1
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Combining (25) and (26), we obtain

Vs,j

h
[Oanj) = U U s,J,a (27)

Hence it follows from (24) and (27) that

Vs Vs,L

h h
- U U U U s1,1,a1 .. X JSL,L,aL)~ (28)
s1=1 sr,=1 =1

[

Consider now the distribution Py of N points in UX*E given by (23). For any
sets S C UK and B C UL, let

D[Pn:S x Bl = #(Pn N (S x B)) — Nug (S)ur(B).

Since the union in (28) is pairwise disjoint, it follows that

Vs,1 Vs L
D[Py;S x B¥] Z Z > Y DIPNiSxJatia XX ey Lan) (29)
s1=1 sr=1a1=1 ar=1
If we write s = (s1,...,s.) and @ = (a1,...,ar), and let

D(ﬁN;S;s,a) = D[ﬁN;S X Joy 1,00 X oo X Jsp Loyl

then it follows from (29) that

DIPn;S x B | =YY D(Py;Sis,a), (30)

where, for simplicity, we write

Vs 1 Vs, L
g E E and E = E e E .
s1=1 sp=1 a a1=1 ar=1

Suppose that W is an even natural number. Then it follows from (30) and
Minkowski’s inequality that

(|D[7?N,S x B*] yW> <ZZE <|D Pn:S:s a)yW) ) . (31)

Note next that
sy 100 X oo X Jsp Loy
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is of the form (22), and so it follows from Lemma 10 that
D(Py;S;s, @) = Dg[Qn(R); S|
for some residue class modulo pi* ... p7~. It therefore follows from Lemma 8 that
E (|D(Py:Sis, @)™ < Co(K, W) (Npp ™ .opp ™ +1) 17/ FW/2,

Combining this with (31), we obtain

w
E (ID[ﬁN;S X B*HW) < Co(K, W) (Z Y (Nprtprtt 1)<1—1/K>/2>
S (27
< C(K,W)(py...pp)"W (NUTVEIWZ L p I, (32)
noting that there are no more than p; ...pr, summands in the summation ), and no

more than A% summands in the summation Y _. Here C;(K, W) is a suitably chosen
positive constant not less than Cy(K, W), and depends at most on K and W.

10. Completion of the proof
Suppose now that y = (y1,...,yr) € UL. Forevery j =1,...,L, let
—h
ni = n;(y;) = p; "[P}y;]

denote the greatest integer multiple of pj_h not exceeding y;. Let n = (n1,...,1L).
Writing h = [logy N| 4 1, we clearly have N < p;l for every j = 1,..., L. Furthermore,
as in Lemma 15 of Beck and Chen [5], one can show easily that for every S C UX | we

have
|D[Py;S x B(y)] — D[Py; S x B(n)]| < L. (33)

Since h = [log, N] + 1, it follows from (32) and (33) that

1
]E( / / / / |D[PN;A()\,T,u)xB(y)]]WdydudeA> Cap NOUEKW/2,
0 7T JUK JUL

This completes the proof of Theorem 3.
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