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1. Introduction

Suppose that P is a distribution of N points in the unit torus UL = [0, 1)L, where
L ≥ 1. For every y = (y1, . . . , yL) ∈ UL, let

B(y) = [0, y1)× . . .× [0, yL),

and let
ZL[P;B(y)] = #(P ∩B(y)),

where #S denotes the cardinality of the set S. We are interested in the discrepancy
function

DL[P;B(y)] = ZL[P;B(y)]−NµL(B(y)),

where µL denotes the usual volume in UL. The case L = 1 is trivial. For L ≥ 2, we
have the following result.

Theorem 1. Suppose that W > 1 and the natural number N ≥ 2.
(a) For every distribution P of N points in UL, we have∫

UL

|DL[P;B(y)]|Wdy�L,W (logN)(L−1)W/2
.

(b) There exists a distribution P of N points in UL such that∫
UL

|DL[P;B(y)]|Wdy�L,W (logN)(L−1)W/2
.

Here the case W = 2 was established by Roth [11,12]. The general case was
established by Schmidt [13] and Chen [6]. Note also that the conclusions remain true
in the trivial case L = 1.

Suppose now that P is a distribution of N points in the unit torus UK = [0, 1]K ,
where K ≥ 2. Let A be a compact and convex body in UK . For any real number
λ ∈ (0, 1], any proper orthogonal transformation τ in RK and any vector u ∈ UK , let

A(λ, τ,u) = {τ(λx) + u : x ∈ A}
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(note that A(λ, τ,u) and A are similar to each other), and let

ZK [P;A(λ, τ,u)] = #(P ∩A(λ, τ,u)).

We are interested in the discrepancy function

DK [P;A(λ, τ,u)] = ZK [P;A(λ, τ,u)]−NµK(A(λ, τ,u)),

where µK denotes the usual volume in UK . Let T be the group of all proper orthogonal
transformations in RK , and let dτ be the volume element of the invariant measure on
T , normalized such that

∫
T dτ = 1. We have the following result.

Theorem 2. Suppose that W ≥ 2 and the natural number N ≥ 1. Suppose further
that A is a compact and convex body in UK satisfying r(A) ≥ N−1/K , where r(A)
denotes the radius of the largest inscribed ball of A.
(a) For every distribution P of N points in UK , we have∫ 1

0

∫
T

∫
UK

|DK [P;A(λ, τ,u)]|Wdudτdλ�A,W N (1−1/K)W/2.

(b) There exists a distribution P of N points in UK such that∫ 1

0

∫
T

∫
UK

|DK [P;A(λ, τ,u)]|Wdudτdλ�A,W N (1−1/K)W/2.

Here the lower bound was established by Beck [3]. The upper bound was estab-
lished by Chen [7], although the case W = 2 can be deduced using ideas in Beck and
Chen [4].

Let us now combine these two problems. More precisely, suppose that P is a
distribution of N points in the unit torus UK+L, where K ≥ 2 and L ≥ 1. Let A
be a compact and convex body in UK . For any real number λ ∈ (0, 1], any proper
orthogonal transformation τ in RK , any vectors u ∈ UK and y ∈ UL, consider the
cartesian product

A(λ, τ,u)×B(y),

where A(λ, τ,u) ⊆ UK and B(y) ⊆ UL are defined as before, and let

Z[P;A(λ, τ,u)×B(y)] = #(P ∩ (A(λ, τ,u)×B(y))).

We are interested in the discrepancy function

D[P;A(λ, τ,u)×B(y)] = Z[P;A(λ, τ,u)×B(y)]−NµK(A(λ, τ,u))µL(B(y)).

In this paper, we shall establish the following result.
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Theorem 3. Suppose that W ≥ 2 and the natural number N ≥ 1. Suppose further
that A is a compact and convex body in UK satisfying r(A) ≥ N−1/K , where r(A)
denotes the radius of the largest inscribed ball of A.
(a) For every distribution P of N points in UK+L, we have∫ 1

0

∫
T

∫
UK

∫
UL

|D[P;A(λ, τ,u)×B(y)]|Wdydudτdλ�A,L,W N (1−1/K)W/2.

(b) There exists a distribution P of N points in UK+L such that∫ 1

0

∫
T

∫
UK

∫
UL

|D[P;A(λ, τ,u)×B(y)]|Wdydudτdλ�A,L,W N (1−1/K)W/2.

In fact, part (a) of Theorem 3 is easily deduced from part (a) of Theorem 2, while
the special case W = 2 of part (b) was established by Beck and Chen [5]. It therefore
remains to establish part (b) when W is an even positive integer. Note that the order
of magnitude of the estimates is independent of L.

The author takes great pleasure in thanking the referee for his very careful read-
ing of the original version of the paper, and for the many valuable comments and
suggestions.

2. The basic idea

Given any natural number N , we need to show that there exists a set P of N points
in UK+L such that the inequality in Theorem 3(b) holds.

As in Beck and Chen [5], we shall in fact construct a sequence of more than N
points in UK+L and use only the first N terms of this sequence. The main ingredient in
the construction of this sequence in UK+L is the Chinese remainder theorem. This not
only makes it possible for the determination of the first K coordinates of the points
of the sequence to be carried out independently of the determination of the last L
coordinates of these points, but also enables us to treat the discrepancy arising from
A(λ, τ,u) quite separately from the discrepancy arising from B(y). Furthermore, it
ensures that important properties of the sequence are also present in many subsequences
that arise from our argument.

Indeed, we shall show that the construction in Beck and Chen [5] used to es-
tablished the special case W = 2 will be sufficient. However, the treatment of the
discrepancy arising from B(y) in Beck and Chen [5] is unnecessarily complicated due
to an elementary oversight. Here we give a much simpler argument in §9.

3. The sequence: general discussion

Let h be a natural number, to be fixed later, and let p1, . . . , pL be the first L odd
primes.
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For every p = 2, p1, . . . , pL, for every s = 0, 1, . . . , h and for every c ∈ Z, let

I(p, s, c) = [cp−s, (c+ 1)p−s). (1)

In other words, I(p, s, c) is an interval of length p−s and whose endpoints are consecutive
integer multiples of p−s.

We shall construct an infinite sequence of points p0,p1,p2, . . . in UK+L such that
the following is satisfied. For every s0, s1, . . . , sL ∈ {0, 1, . . . , h}, every set of the form

I(2, s0, a1)× . . .× I(2, s0, aK)× I(p1, s1, b1)× . . .× I(pL, sL, bL)

in UK+L, where a1, . . . , aK , b1, . . . , bL ∈ Z, contains exactly one point of

{pn : c2Ks0ps11 . . . psL

L ≤ n < (c+ 1)2Ks0ps11 . . . psL

L },

where c is any non-negative integer.
The construction of such a sequence involves ideas in combinatorics and poses no

real difficulty. However, such a sequence alone is insufficient to give a proof of the
desired result. As in Beck and Chen [5], we appeal to tools in probability theory. A
natural consequence of this is that our proof will not give any explicit description of
the well-distributed sets in question. This is a common phenomenon in most upper
bound proofs in irregularities of distribution.

Unlike in Beck and Chen [5], we observe that we need only to apply probabilistic
arguments to deal with the discrepancy arising from A(λ, τ,u). This is essentially
similar to the probabilistic arguments in Beck and Chen [5], and has its origins from
the work of Beck [1,2]. To deal with the discrepancy arising from B(y), we shall
use a simple counting argument which is sufficient to replace the complicated discrete
probabilistic techniques used in Beck and Chen [5].

For every non-negative integer n, let pn = (qn,yn) ∈ UK+L, where qn ∈ UK and
yn ∈ UL. We shall discuss the sequence qn in §§4-6 and the sequence yn in §7.

4. A combinatorial approach

In this section, we closely follow Beck and Chen [5]. In particular, Lemmas 1 – 4 below
are precisely Lemmas 1 – 4 in [5], and we omit the proofs here.

For every integer s satisfying 1 ≤ s ≤ h, integers τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1}
and vectors a1, . . . ,as−1 ∈ {0, 1}K , let

G[τ1, . . . , τs−1; a1, . . . ,as−1] : {0, 1, . . . , 2K − 1} → {0, 1}K

be a bijective mapping, with the convention that the mapping in the case s = 1 is
denoted by G[∅]. Given these mappings, we can define a bijective mapping

F : {0, 1, . . . , 2Kh − 1} → {0, 1, . . . , 2h − 1}K (2)
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as follows. Suppose that n is an integer satisfying 0 ≤ n < 2Kh. Write

n = τh2K(h−1) + τh−12K(h−2) + . . .+ τ1, (3)

where τ1, . . . , τh ∈ {0, 1, . . . , 2K − 1}. We now let a1, . . . ,ah ∈ {0, 1}K be the solution
of the system of equations

G[∅](τ1) = a1,
G[τ1; a1](τ2) = a2,
G[τ1, τ2; a1,a2](τ3) = a3,

...
G[τ1, . . . , τs−1; a1, . . . ,as−1](τs) = as,

...
G[τ1, . . . , τh−2; a1, . . . ,ah−2](τh−1) = ah−1,
G[τ1, . . . , τh−1; a1, . . . ,ah−1](τh) = ah.

(4)

Suppose now that for each integer t = 1, . . . , h,

at = (at,1, . . . , at,K) ∈ {0, 1}K . (5)

We now write
Fj(n) = a1,j2h−1 + a2,j2h−2 + . . .+ ah,j (6)

and let
F (n) = (F1(n), . . . , Fk(n)). (7)

We next partition UK into a sequence of 2Kh smaller cubes

S(n) = I(2, h, F1(n))× . . .× I(2, h, Fk(n)), (8)

where, for every j = 1, . . . ,K and every n = 0, 1, ..., 2Kh− 1, the interval I(2, h, Fj(n))
is defined by (1) and (3)–(6). We further extend the range of definition of S(n) over
the set Z by periodicity so as to ensure that

S(n+ 2Kh) = S(n) (9)

for every integer n.
The following observation is a simple consequence of our definitions.

Lemma 1. Suppose that s is an integer satisfying 0 ≤ s ≤ h. Then for every integer
n0, the set ⋃

0≤n<2Kh

n≡n0 (mod 2Ks)

S(n) (10)
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is a cube of the form

C(s, c) = I(2, s, c1)× . . .× I(2, s, cK) ⊆ UK , (11)

where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K . On the other hand, every cube of the

form (11), where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , is a union of the form (10) for
some integer n0.

A simple rescaling and congruence argument gives the following generalization.

Lemma 2. Suppose that s is an integer satisfying 0 ≤ s ≤ h, and that q is an odd
natural number. Then for every integer n0, the set⋃

0≤n<2Khq

n≡n0 (mod 2Ksq)

S(n)

is a cube of the form (11), where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K .

For every c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K , let q(c) be a point in the cube

C(h; c) = I(2, h, c1)× . . .× I(2, h, cK) ⊆ UK .

Using F , we can define a permutation qn (0 ≤ n < 2Kh) of the q(c) as follows. For
n = 0, 1, . . . , 2Kh − 1, let

qn = q(F (n)) = q(F1(n), . . . , FK(n)).

Clearly qn ∈ S(n) for every n = 0, 1, . . . , 2Kh − 1. Again, we extend the range of
definition of qn over the set Z by periodicity with period 2Kh so as to ensure that

qn ∈ S(n)

for every integer n. Then it follows from Lemma 1 that

Lemma 3. Suppose that s and H are integers satisfying 0 ≤ s ≤ h and H ≥ 0. Then
every cube of the form (11), where c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , contains
exactly one element of the set

{qn : H2Ks ≤ n < (H + 1)2Ks}.

We denote this element obtained by Lemma 3 by q(s; c;H). In other words, for
integers s, c1, . . . , cK , H satisfying the hypotheses of Lemma 3,

q(s; c;H) = {qn : H2Ks ≤ n < (H + 1)2Ks} ∩ C(s; c).
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Lemma 4. Let q be an odd natural number and let n0 be an integer satisfying
0 ≤ n0 < q. Then for every bijective mapping F of the form (2) defined by (3)–
(7), there exists a corresponding bijective mapping F ′ of the same type such that
S(n0 + qn) = S′(n) for every n ∈ Z, where S′ is defined in terms of F ′ in the same way
as S is defined in terms of F by (7)–(9).

In other words, the good distribution properties of the functions F and G can be
extended to the more general situation first alluded to in Lemma 2.

5. Some probabilistic lemmas

As in Beck and Chen [4,5] and Chen [7], we now use some elementary concepts and facts
from probability theory (see, for example, Chung [8]), and define a “randomization” of
the deterministic points q(c) = q(c1, . . . , cK), mappings G[τ1, . . . , τs−1; a1, . . . ,as−1]
and F , and the sequence qn as follows.

(A) For c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K , let q̃(c) be a random point uni-
formly distributed in the cube C(h; c). More precisely,

Prob(q̃(c) ∈ S) =
µK(C(h; c) ∩ S)
µK(C(h; c))

for all Borel sets S ⊆ RK .
(B) For integer s ∈ {1, . . . , h}, integers τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1} and vec-

tors a1, . . . ,as−1 ∈ {0, 1}K , let G̃[τ1, . . . , τs−1; a1, . . . ,as−1] be a uniformly distributed
random bijective mapping from {0, 1, ..., 2K − 1} to {0, 1}K . More precisely, if the
mapping π : {0, 1, ..., 2K − 1} → {0, 1}K is one of the (2K)! different (deterministic)
bijective mappings, then

Prob(G̃[τ1, . . . , τs−1; a1, . . . ,as−1] = π) =
1

(2K)!
.

(C) Let F̃ be the random bijective mapping from {0, 1, . . . , 2Kh − 1} to {0, 1,
. . . , 2h − 1}K defined by (3), (5̃) and (5)–(7), where (4̃) denotes that in the system
(4) of equations, we replace each deterministic mapping by its corresponding random
mapping.

(D) Let q̃n (0 ≤ n < 2Kh) denote the random sequence defined by F̃ , i.e. for
n = 0, 1, . . . , 2Kh − 1,

q̃n = q(F̃ (n));

again, we extend q̃n over the set Z by periodicity with period 2Kh.
(E) Let q̃(s; c;H) denote the randomization of q(s; c;H), i.e. for integers s, c1,

. . . , cK , H satisfying the hypotheses of Lemma 3,

q̃(s; c;H) = {q̃n : H2Ks ≤ n < (H + 1)2Ks} ∩ C(s; c). (12)
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(F) Finally, we may assume that the random variables

q̃(c) (c = (c1, . . . , cK) ∈ {0, 1, . . . , 2h − 1}K)

and

G̃[τ1, . . . , τs−1; a1, . . . ,as−1] (1 ≤ s ≤ h and τ1, . . . , τs−1 ∈ {0, 1, . . . , 2K − 1}
and a1, . . . ,as−1 ∈ {0, 1}K)

are independent of each other. In fact, the existence of such a set of random variables
follows immediately from the Kolmogorov extension theorem in probability theory.

Let (Ω,F ,Prob) denote the underlying probability measure space.
We shall first state that the independence and uniformity of the original random

variables lead to uniformity of the distribution of random points in special cubes. The
following is precisely Lemma 5 of [5], and we omit the proof here.

Lemma 5. Suppose that s and H are integers satisfying 0 ≤ s ≤ h and H ≥ 0.
Then for every c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K , the random point q̃(s; c;H) is
uniformly distributed in the cube C(s; c).

Let S be a fixed compact and convex set in UK . For integers s and H satisfying
0 ≤ s ≤ h and H ≥ 0, consider the random set

P̃(s,H) = {q̃(s; c;H) : c = (c1, . . . , cK) ∈ {0, 1, . . . , 2s − 1}K}, (13)

and write
ZK [P̃(s,H);S] = #(P̃(s,H) ∩ S)

and
D̃K(s,H) = ZK [P̃(s,H);S]− 2KsµK(S). (14)

Note that D̃K(s,H) depends on S. Let

T (s,H) = {c ∈ {0, 1, . . . , 2s − 1}K : C(s; c) ∩ S 6= ∅ and C(s; c) \ S 6= ∅}.

It is easy to see that
#T (s,H) ≤ 2K2(K−1)s. (15)

Since every cube C(s; c) contains exactly one element (namely q̃(s; c;H)) of the (ran-
dom) set P̃(s,H), we have

D̃K(s,H) =
∑

c∈T (s,H)

q̃(s;c;H)∈S

1− 2Ks
∑

c∈T (s,H)

µK(C(s; c) ∩ S).
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For every c ∈ T (s,H), let

ξ(s; c;H) =
{

1 (q̃(s; c;H) ∈ S),
0 (otherwise). (16)

By Lemma 5, we have, writing E for “expected value”,

Eξ(s; c;H) =
µK(C(s; c) ∩ S)
µK(C(s; c))

= 2KsµK(C(s; c) ∩ S),

so that writing
η(s; c;H) = ξ(s; c;H)− Eξ(s; c;H), (17)

we have
D̃K(s,H) =

∑
c∈T (s,H)

η(s; c;H). (18)

Note that Eη = 0 and |η| ≤ 1.
We shall next state that the independence and uniformity of the original random

variables also lead to independence properties concerning the random points discussed
in Lemma 5.

Lemma 6. Suppose that 0 ≤ s ≤ h. Suppose further that H is an integer satisfying
H ≥ 0 and that c(1), . . . , c(W ) ∈ {0, 1, . . . , 2s − 1}K are distinct. Then the random
variables η(s; c(1);H), . . . , η(s; c(W );H) are independent.

This is essentially Lemma 4 of Chen [7] on noting that, as in Lemma 3, we may
assume that H < 2K(h−s), in view of periodicity.

6. An intermediate result

For every natural number N , let

Q̃N = {q̃0, q̃1, . . . , q̃N−1}. (19)

For every compact and convex set S ⊂ UK , let

ZK [Q̃N ;S] = #(Q̃N ∩ S),

and write
DK [Q̃N ;S] = ZK [Q̃N ;S]−NµK(S).

Lemma 7. Let W be an even natural number. There exists a positive constant
C0(K,W ), depending at most on K and W , such that for every natural number N
satisfying 1 ≤ N ≤ 2Kh, we have

E
(
DK [Q̃N ;S]

)W
≤ C0(K,W )N (1−1/K)W/2.
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This is Lemma 5 of Chen [7], and we omit the technical proof here. In essence,
Lemma 7 asserts that the probabilistic model gives estimates that are of the order of
magnitude of the square root of the trivial estimate of the type

|DK [QN ;S]| �K N1−1/K .

Lemma 7 is sufficient for the study of the case L = 1. For L ≥ 2, we need a
stronger version of Lemma 7. For every natural number N and every residue class R
of integers modulo q, let

Q̃N (R) = {q̃n : 0 ≤ n < N and n ∈ R}.

For every compact and convex set S ⊂ UK , let

ZK [Q̃N (R);S] = #(Q̃N (R) ∩ S),

and write
DK [Q̃N (R);S] = ZK [Q̃N (R);S]−N ′µK(S),

where N ′ = #Q̃N (R) = #(R ∩ [0, N)).

Lemma 8. Let W be an even natural number, and let R be any residue class of
integers modulo q, where q is an odd natural number. For every natural number N
satisfying 1 ≤ N ≤ 2Khq, we have

E
(
DK [Q̃N (R);S]

)W
≤ C0(K,W )(Nq−1 + 1)(1−1/K)W/2,

where the positive constant C0(K,W ) is the same as in Lemma 7.

Proof. Let R be the residue class n0 modulo q, where 0 ≤ n0 < q. Then

Q̃N (R) = {q̃n0+qn : 0 ≤ n < N ′},

where
N ′ ≤ [(N − n0)q−1] + 1 ≤ Nq−1 + 1. (20)

In view of Lemma 4 and the independence between the randomization of F and the
randomization of the point q(c), we have

E
(
DK [Q̃N (R);S]

)W
= E

(
DK [Q̃N ′ ;S]

)W
. (21)

Lemma 8 now follows on combining (20), (21) and Lemma 7. ♣
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7. The van der Corput–Halton–Hammersley sequence

Let pj denote the j–th odd prime. For any integer n satisfying 0 ≤ n < phj , write

n = σh,jp
h−1
j + σh−1,jp

h−2
j + . . .+ σ1,j ,

where σ1,j , . . . , σh,j ∈ {0, 1, . . . , pj − 1}, and let

yj(n) = σ1,jp
−1
j + . . .+ σh,jp

−h
j .

We extend the range of definition of yj(n) over the set Z by periodicity so as to ensure
that yj(n+ phj ) = yj(n) for every n ∈ Z. Then the following result is almost trivial.

Lemma 9. Let sj ∈ {0, 1, . . . , h}. If bj ∈ Z and I(pj , sj , bj) ⊆ U , then

{n ∈ Z : yj(n) ∈ I(pj , sj , bj)}

is a residue class modulo p
sj

j .

Let p1, . . . , pL denote the first L odd primes, and let

yn = (y1(n), . . . , yL(n))

for every n ∈ Z. Then the result below follows immediately from Lemma 9 and the
Chinese remainder theorem.

Lemma 10. Let s1, . . . , sL ∈ {0, 1, . . . , h}. If b1, . . . , bL ∈ Z and

I(p1, s1, b1)× . . .× I(pL, sL, bL) ⊆ UL, (22)

then
{n ∈ Z : yn ∈ I(p1, s1, b1)× . . .× I(pL, sL, bL)}

is a residue class modulo ps11 . . . psL

L .

The van der Corput–Halton–Hammersley sequence yn has been used on many
occasions to give upper bound results in irregularities of distribution (see Halton [9],
Hammersley [10], Roth [12], Chen [6] and Beck and Chen [5]).

8. The randomized sequence in the cube

We summarize our argument thus far. For any non–negative integer n, we write

pn = (qn,yn) ∈ UK+L,
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where qn ∈ UK is defined in §4 and where yn ∈ UL is the van der Corput–Halton–
Hammersley sequence defined in §7. We randomize the sequence qn in §5 to obtain the
sequence q̃n. Consequently, we obtain a partly randomized version of pn, namely

p̃n = (q̃n,yn).

Note that the sequence q̃n satisfies Lemmas 7 and 8, while the sequence yn satisfies
Lemma 10. We shall combine these in the next section.

We shall write
P̃N = {p̃0, p̃1, . . . , p̃N−1}. (23)

9. Subdivision of the rectangular box

In this section, we follow the argument in Roth [12] and simplify the argument in Beck
and Chen [5]. Let

B∗ = [0, η1)× . . .× [0, ηL) ⊆ UL, (24)

where, for every j = 1, . . . , L, the number ηj 6= 1 and is an integer multiple of p−hj , so
that there exist unique integers ν1,j , . . . , νh,j ∈ {0, 1, . . . , pj − 1} such that

ηj = ν1,jp
−1
j + . . .+ νh,jp

−h
j .

For every j = 1, . . . , L and s = 1, . . . , h, let

ξs,j = ν1,jp
−1
j + . . .+ νs,jp

−s
j

denote the greatest integer multiple of p−sj not exceeding ηj , and write

Is,j = [ξs−1,j − ξs,j),

with the convention that ξ0,j = 0, so that

[0, ηj) =
h⋃
s=1

Js,j . (25)

For every j = 1, . . . , L, s = 1, . . . , h and α = 1, . . . , νs,j , let

Js,j,α = [ξs−1,j + (α− 1)p−sj , ξs−1,j + αp−sj ),

so that

Js,j =
νs,j⋃
α=1

Js,j,α. (26)
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Combining (25) and (26), we obtain

[0, ηj) =
h⋃
s=1

νs,j⋃
α=1

Js,j,α. (27)

Hence it follows from (24) and (27) that

B∗ =
h⋃

s1=1

. . .
h⋃

sL=1

νs,1⋃
α1=1

. . .

νs,L⋃
αL=1

(Js1,1,α1 × . . .× JsL,L,αL
). (28)

Consider now the distribution P̃N of N points in UK+L given by (23). For any
sets S ⊆ UK and B ⊆ UL, let

D[P̃N ;S × B] = #(P̃N ∩ (S × B))−NµK(S)µL(B).

Since the union in (28) is pairwise disjoint, it follows that

D[P̃N ;S×B∗] =
h∑

s1=1

. . .
h∑

sL=1

νs,1∑
α1=1

. . .

νs,L∑
αL=1

D[P̃N ;S×Js1,1,α1× . . .×JsL,L,αL
]. (29)

If we write s = (s1, . . . , sL) and ααα = (α1, . . . , αL), and let

D(P̃N ;S; s, ααα) = D[P̃N ;S × Js1,1,α1 × . . .× JsL,L,αL
],

then it follows from (29) that

D[P̃N ;S ×B∗] =
∑
s

∑
ααα

D(P̃N ;S; s, ααα), (30)

where, for simplicity, we write

∑
s

=
h∑

s1=1

. . .
h∑

sL=1

and
∑
ααα

=
νs,1∑
α1=1

. . .

νs,L∑
αL=1

.

Suppose that W is an even natural number. Then it follows from (30) and
Minkowski’s inequality that

E
(
|D[P̃N ;S ×B∗]|W

)
≤

(∑
s

∑
ααα

E
(
|D(P̃N ;S; s, ααα)|W

)1/W
)W

. (31)

Note next that
Js1,1,α1 × . . .× JsL,L,αL
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is of the form (22), and so it follows from Lemma 10 that

D(P̃N ;S; s, ααα) = DK [Q̃N (R);S]

for some residue class modulo ps11 . . . psL

L . It therefore follows from Lemma 8 that

E
(
|D(P̃N ;S; s, ααα)|W

)
≤ C0(K,W )(Np−s11 . . . p−sL

L + 1)(1−1/K)W/2.

Combining this with (31), we obtain

E
(
|D[P̃N ;S ×B∗]|W

)
≤ C0(K,W )

(∑
s

∑
ααα

(Np−s11 . . . p−sL

L + 1)(1−1/K)/2

)W
≤ C1(K,W )(p1 . . . pL)W (N (1−1/K)W/2 + hLW ), (32)

noting that there are no more than p1 . . . pL summands in the summation
∑
ααα and no

more than hL summands in the summation
∑

s. Here C1(K,W ) is a suitably chosen
positive constant not less than C0(K,W ), and depends at most on K and W .

10. Completion of the proof

Suppose now that y = (y1, . . . , yL) ∈ UL. For every j = 1, . . . , L, let

ηj = ηj(yj) = p−hj [phj yj ]

denote the greatest integer multiple of p−hj not exceeding yj . Let ηηη = (η1, . . . , ηL).
Writing h = [log2N ] + 1, we clearly have N ≤ phj for every j = 1, . . . , L. Furthermore,
as in Lemma 15 of Beck and Chen [5], one can show easily that for every S ⊆ UK , we
have

|D[P̃N ;S ×B(y)]−D[P̃N ;S ×B(ηηη)]| ≤ L. (33)

Since h = [log2N ] + 1, it follows from (32) and (33) that

E
(∫ 1

0

∫
T

∫
UK

∫
UL

|D[P̃N ;A(λ, τ,u)×B(y)]|Wdydudτdλ
)
�A,L,W N (1−1/K)W/2.

This completes the proof of Theorem 3.
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