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ABSTRACT
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1. Introduction

Suppose that Ay is a distribution of N > 1 points, not necessarily distinct, in the
n-dimensional unit cube U™ = [0,1)". The Ly-discrepancy Ls[An] is defined by

cian = ([ |£[AN;Y1|2dy)1/2,

where for every Y = (y1,...,yn) € U™, the local discrepancy L[Ay;Y] is given by
(1.1) E[.AN,Y] = #(ANﬂBy) —NVOlBy.

Here By = [0,y1) X...Xx[0,y,) C U™ is a rectangular box of volume vol By = y1 ...y,
while #(S) denotes the number of points of a set S, counted with multiplicity.

In 1954, Roth [20] established a lower bound for the Ls-discrepancy. For an
arbitrary distribution Ay of N points in the unit cube U", we have

(1.2) Lo]An] > cn(logN)%(”’l),

with a positive constant ¢,, depending only on the dimension n. This lower bound (1.2)
turns out to be best possible. More precisely, for every dimension n and every N > 1,
there exist distributions By of IV points in the unit cube U™ such that

(1.3) Lo[By] < Cyp(log N)z (1),

with a positive constant C,, depending only on the dimension n.

The first constructions of distributions By satisfying the inequality (1.3) were
given in dimensions n = 2 and n = 3 by Davenport [6] and Roth [21] respectively, and
in arbitrary dimensions by Roth [22]. For the early history of this problem, we refer
the reader to Beck and Chen [1]. Other distributions By satisfying the upper bound
(1.3) were also constructed by Chen [3,4], Frolov [10], Dobrovol’skii [7] and Skriganov
[24,25].

Until recently, apart from Davenport’s construction in 1956 for dimension n = 2,
all known constructions of point sets By for dimensions n > 2 with minimal order of
the Lo-discrepancy (1.3) involve probabilistic arguments and are therefore not explicit.
Note that the arguments in [4] and [7] involve discrete variables and can be considered
to be effective. However, any implementation of the ideas in these two papers will be
excessively complicated.

In this paper, we give a complete solution to the explicit construction problem in
arbitrary dimensions. More precisely, we prove the following result.

Theorem. Let p > 2n? be a prime. Then for every N > 1, a distribution Dy of N
points in the unit cube U™ can be constructed explicitly to satisfy the inequality

Lo[Dy] < 271" (log N + 2n + 1)3 (=1,
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We remark here that recently Larcher and Pillichshammer [12] have independently
studied the problem for dimension n = 3, with an upper bound of order of magnitude
(log N)(loglog N)'/2. Their approach uses the point sets constructed in 1982 by Faure
[8], and involves a lengthy analysis of the binomial coefficients involved.

Here we shall consider distributions which possess the structure of vector spaces
over finite fields with respect to a certain p-ary arithmetic operation. Such point sets
are distributed very uniformly in the unit cube with respect to the supremum norm
if the corresponding vector spaces have large weights relative to a special metric, as
shown in a paper of the second author [26], where the theory of uniform distribution
was studied in detail in the context of coding theory. In the present paper, we shall
show that such point sets satisfy the inequality (1.3) if the corresponding vector spaces
have large weights simultaneously in two special metrics. We shall briefly discuss these
ideas from [26], adapted to our present context, in the last two sections of this paper.

Another crucial concept of our approach is the use of suitably generalized Walsh
functions. The classical Walsh functions were first used in our earlier investigations
in [5]. The generalized Walsh functions, like the classical ones, form an orthonormal
basis of the space Lo(U™), and can be used to obtain very convenient expressions for
the local discrepancy (1.1). At the same time, such functions are additive characters
of vector spaces over finite fields. This allows us to give a very precise evaluation of
the corresponding Ls-discrepancy.

A pleasant surprise in our present approach is that we do not need the concept of
the Davenport reflection principle, a crucial idea in [5] to replace probabilistic argu-
ments in earlier work. This has the benefit of substantially simplifying the argument.
It appears that the point sets we consider here have some “self-averaging” property
which is not present in other point sets used before.

It is hoped that the approach given in the present paper may have wider applica-
tions in the theory of uniform distribution.

The paper is organized as follows. In Section 2, we shall discuss point sets that
have the structure of vector spaces over finite fields, as well as two special metrics
central to our argument. We shall state a number of lemmas crucial to the proof of our
result. This section contains many ideas first discussed in [26] in a slightly different
form, and we shall leave some of the detailed justifications until Sections 7 and 8. In
Section 3, we shall show how we may combine the various lemmas in Section 2 to deduce
the Theorem. Sections 4—6 are devoted to the establishment of the crucial Lemma 2D.
In Section 4, we recall necessary facts on the generalized Walsh functions. These will
be used in Section 5 to obtain Fourier-Walsh expansions for characteristic functions of
intervals and rectangular boxes. We then deduce Lemma 2D in Section 6.

Throughout, the letter p denotes a prime satisfying certain conditions depending
only on the dimension n, which we shall specify later. For this prime,

F, ={0,1,...,p—1}

denotes the finite field of residues modulo p. For convenience, N denotes the set of all
positive integers, Ny denotes the set of all non-negative integers, Q denotes the set of
all rational numbers, and C denotes the set of all complex numbers. If z € C, then
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z € C denotes its complex conjugate. Finally, if S is a finite set, then #(S) denotes
the number of elements of S.

Acknowledgments. We thank our friends Ralph Alexander, Jozsef Beck, Gerhard
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2. Nets and Linear Distributions

For a,m € Ny satisfying 0 < m < p®, we shall consider elementary intervals of the

type
A" = [mp™*, (m+1)p™°).

a

For vectors A = (a1,...,a,) and M = (mq,...,m,) in Nj} satisfying 0 < m; < p% for
every j = 1,...,n, we shall consider elementary boxes of the type
(2.1) AN = AT L x AT

Clearly any such box has volume vol A} = p=a1=--=an,

Definition. Suppose that s,0 € Ny satisfy 0 < § < s. A set D C U™ of p°® points
is called an (n,s,d)-net (in base p) with deficiency § if every elementary box A} of
volume p®~* contains precisely p® points of D.

These sets were first constructed by Sobol [27] and Faure [8]. For a systematic
treatment of nets, including nets in arbitrary integer bases, see [16] or the survey [17].
It is almost trivial to show that for such a set D, the inequality

(2.2) LID;Y]=0(p’s" ") = O(p(log N)" )

holds for every Y € U™, where N = #(D) = p° and where the implied constants in
(2.2) depend only on n and p. It follows that such nets fill out the unit cube very
uniformly as s — oo. For a proof of the inequality (2.2), see Section 3.2 of [1] or
Section 3 of [16].

We shall also be concerned with a class of sets D C U™ which possess the structure
of vector spaces over the finite field F,.



For any s € Ny, let
Q*)={mp~®:m=0,1,...,p° = 1}
and

Q"(p®) ={X =(x1,...,zpn) 1 21,..., 2, € Q(p°)}.

Furthermore, we write
Qr™)=JQp) and Q"(p™)=JQ"(").
s=0 s=0

Points in Q"(p*°) are sometimes called the p-ary rational points.
Observe that any = € [0,1) can be represented in the form

(2.3) T = Zm(a:)p_i,

where the coefficients 7;(x) € F, = {0,1,...,p—1} for every ¢ € N. This representation
is unique if we agree that the series in (2.3) is finite for every x € Q(p™).

For any two vectors X = (z1,...,2,) and Y = (y1,...,¥y,) in Q" (p>°) and any
two scalars «, 3 € F,,, we write

(2.4) aX & BY = (az1 @ By1,. .., ax, D Pyy,) € Q" (p™)

by setting
ni(ox; ® By;) = ani(x;) + Bni(y;)  (mod p)

for every i € Nand j = 1,...,n. It is easy to see that with respect to the arithmetic
operations (2.4), each set Q"(p*) forms a vector space of dimension ns over F,, while
the set Q" (p>) forms an infinite dimensional vector space over F),.

Definition. We say that a subset D C Q"(p™) is a linear distribution (in base p) if
D is a subspace of the vector space Q™ (p™).

In this paper, we shall only consider linear distributions of finitely many points.
Clearly any such finite linear distribution is a subspace of the vector space Q"(p®) for
all sufficiently large values of s € Nj.

Suppose now that s € Ny is chosen and fixed. Then any = € Q(p®) can be
represented also in the form

(2.5) z = Z &(x)p' 7L,
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where &;(x) = nsy1-i(x) € F), for every ¢ =1,...,s. Using this representation, we can
define an inner product on the space Q"(p®) as follows. For every z,y € Q(p*), we let

(2'6) <x y Zfz €S+1 7 )

For vectors X = (z1,...,z,) and Y = (y1,...,y,) in Q"(p°), we write

(2.7) (X,Y) = (x5, u;)-
j=1

Remark. Instead of using the representation (2.5) and the definition (2.6), we could
use the representation (2.3) and write (z,y) = m(x)m(y) + ... + ns(z)ns(y). In this
case, we have (z,y) = (x, Py), where ® is a non-singular s x s matrix with entries in the
finite field F),. Unfortunately, this matrix ® would then be involved in all subsequent
consideration.

Definition. Suppose that D C Q"(p®) is a linear distribution, where s € Ny. The
dual distribution D+ C Q"(p*) is defined by

={X eQ"(p®): (X,Y) =0 for every Y € D}.

It is easy to check that D+ is a subspace of Q"(p*), and is therefore also a linear
distribution. Furthermore, we have (D+)* = D, so that D and D+ are mutually dual
subspaces of Q™ (p®), with the sum of the dimensions equal to ns. It follows immediately

that #(D)#(D") =

Lemma 2A. Suppose that D, D+ C Q™(p®) are mutually dual linear distributions.
Then for every A = (a1, ...,a,) € N§ satisfying 0 < a; <s for every j =1,...,n, we
have

#(DNAY) =p~ " (D)#(DT N AL,

where A* = (ai,...,a;,) € NU satisfies aj +aj = s for every j =1,...,n.

We shall establish this result, which is Lemma 4.3 in [26], in Section 7.

We next introduce two metrics on the vector space Q" (p®).

Recall that any x € Q(p®) can be written in the form (2.5), where &;(z) € F), for
every i = 1,...,s. By the Hamming weight »(x), we mean the number of non-zero
coefficients &;(x) in the representation (2.5); see [14]. We also define a non-Hamming
weight by writing p(0) = 0 and writing

(2.8) plz) =max{i=1,...,s:&(x) # 0}
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for every x # 0. For X = (z1,...,2,) € Q"(p*), we now let

n

(2.9) AX) =) and p(X) =3 play).

j=1
It is easy to check that »(X) = p(X) = 0 if and only if X = 0. One can also easily
check the triangle inequalities for both weights. These give rise to metrics (or distances)
on the vector space Q" (p®).

We remark here that the metric p was first introduced in the context of coding
theory by Rosenbloom and Tsfasman [19], and in the context of uniform distribution
independently by Martin and Stinson [15] and by Skriganov [26]. The interested reader
is referred to [26] for further discussion.

Here we establish the following property of p which we shall need in Section 6.

Lemma 2B. Suppose that Y = (y1,...,yn) € Q"(p®) satisfies p(y;) < aj, where
0<a;j <sforeveryj=1,...,n. ThenY € AY., where A* = (a},...,a}) € Ny
satisfies a; + a; = s for every j =1,...,n.

Proof. Simply note that for every 7 = 1,...,n, we have
a; a;
yi = &Gu)p T < (p—1)) p T <ph Tt =p . O
i=1 i=1

Suppose now that a linear distribution D C Q™(p®) contains at least two points.
We shall consider a Hamming weight

(2.10) »(D) = min{x»(X) : X € D\ {0}},
and a non-Hamming weight

(2.11) p(D) =min{p(X): X € D\ {0}}.

Lemma 2C. Suppose that D, D+ C Q"(p*) are mutually dual linear distributions of
dimensions s and (n — 1)s respectively. Then the following statements are equivalent:
(i) D is an (n,s,d)-net.

(ii) The non-Hamming weight p(D+) > s+ 1 — 6.

This is a special case of Theorem 4.2 in [26]. It shows that the points of a linear
distribution D are uniformly distributed in the cube U™ if the points of the dual
distribution D+ are well spaced with respect to the metric p. We shall give a proof of
this in Section 7.

The main part of this paper is concerned with establishing the following result.
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Lemma 2D. Suppose that D, D+ C Q"(p*®) are mutually dual linear distributions of
dimensions s and (n — 1)s respectively. Suppose further that

x(DY) >2n+1 and p(DY) > s4+1—4,
where § is an integer satisfying 0 < § < s. Then
EQ[D] < 2n+1pn+5(5 n 1)%(71—1).
Remark. To establish our Theorem, it is sufficient to consider the special case when
0 = 0. However, we shall establish Lemma 2D for arbitrary d.

The existence of distributions that satisfy the hypotheses of Lemma 2D above is
established in the following way.

Let I, [2] denote the ring of polynomials with coefficients in F,,, the finite field of
residues modulo p. Consider any polynomial

t—1
f(2)=>_ f:7
=0

in F,[z], where t = deg f + 1. For every integer j > 1, we shall consider the j-th
hyperderivative

t—1 .
. 7 .
o' =3 (1)
where (Z) denotes a binomial coefficient modulo p, with the usual convention that
J
(Z) = 0 when j > i. For more details, see Section 6.4 of [13].
J

Suppose that the prime p satisfies the condition p > gn, where g € N is fixed.
Then there exist gn distinct residues 3; , € F, with 1 <¢ <mnand 1 < /¢ < g. For every
o€ Nand f e€Fp(z), let

X(f) = @(f), - zalf)),

where for every i = 1,...,n,
g i . .
wi(f) =Y p Y I (Bie)p
=1 j=1

It is easy to see that the set

(2.12) D(g,0) ={X(f): f €Fp(z) and deg f < go}

is a set of p97 points in U".



Lemma 2E. For every g,0 € N satisfying p > gn, the set D(g,0) C Q" (p97)
is a linear distribution of dimension go. Furthermore, the dual linear distribution
(D(g,0))* C Q™ (p99) is of dimension (n — 1)go, with

#(D(g,0) ) 2 g+1  and  p((D(g,0)") = go+1.

This is a consequence of variants of Lemma 5.1 and Theorem 6.1 in [26]. We shall
discuss this in Section 8. We remark also that the set (2.12) in the special case g = 1
was studied earlier by Faure [8].

3. Proof of the Theorem

Let g = 2n, and let p > gn = 2n? be a prime. Given any natural number N > 1,
we choose o € N such that
pg(Ufl) < N < p9,

By Lemma 2E, the set D(g,0) of p9? points in U™ is a linear distribution, and satisfies
the hypotheses of Lemma 2D with s = go and § = 0, and so

£a[D(g.0)] < 2"1p" (g + )2,
It also follows from Lemma 2C that D(g,0) is an (n, go,0)-net, so that the subset
Di(g) = D(g,0) N ([0, Np~97) x [0,1)" )
contains exactly NV points. Now let
Dy =Dn(9) = {(N 0921, 20,...,2,) : (x1,72,...,2,) € Di(9)}.

Then it is easy to see that

/ L[Dx(g): Y] dY = N-1poe / L[D(g,0); Y] dY
n [0,Np—97)x[0,1)n—1
< N-1po / 1L(D(g,0); Y]] dY

< N71p9022n+2p2n(go_+ 1)7171
log N nel
< p922n—|—2p2n ( g + g + 1>
logp
< 22n+2p4n(10gN + m + l)n—l'

The Theorem now follows on taking square roots.
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4. Walsh Functions

First of all, we consider p-ary representation of integers ¢ € Ny. Observe that any
¢ € Ny can be written uniquely in the form

o0

(4.1) 0= Z Xi(Op*,

where the coefficients \;(¢) € F, = {0,1,...,p — 1} for every i € N. By the Hamming
weight s(¢), we mean the number of non-zero coefficients \;(¢) in (4.1). We also define
a non-Hamming weight by writing p(0) = 0 and writing

p(f) =max{i € N: \;(¢) # 0}
for every £ € N. Note that for every ¢ € N, we have
pp(ﬁ)—l </l< pp(é)_

For L = ({4,...,¢,) € Nij, we now let

Consider the set
Ng(p®) ={L=(¢1,...,4,) e Ny :0</{; <p®forevery j=1,...,n}.

For any two vectors L = ({1,...,4,) and K = (ki,...,k,) in Nj(p®) and any two
scalars o, 8 € F),, we write

(4.2) aL ® BK = (aly @ Bki,...,al, ® Bk,) € Ni(p*)

by setting
Ai(aly @ Bkj) = aXi(l;) + BAi(k;)  (mod p)

for every © = 1,...,s and 7 = 1,...,n. It is easy to see that with respect to the
arithmetic operations (4.2), each set N{j(p®) forms a vector space of dimension ns over
IF),, while the set Nj forms an infinite dimensional vector space over F,,.

We observe also that the mapping

(4.3) 0:Q"(p°) = NG(P°) : (x1,...,2n) — (P°z1,...,p°Ty)

is clearly an isomorphism of vector spaces. Furthermore, this isomorphism preserves
the metrics » and p. More precisely, for every X € Q"(p®), we have

#(X) = #(6(X))  and  p(X) = p(8(X)).
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For every ¢ € Ny and every z € [0,1), we let

we(z) = ep <Z Ai(f)m(w)) :

where e,(z) = e*™#/P for every real number z, and where the coefficients \;(¢) and
ni(x) are given by (4.1) and (2.3) respectively. The functions w, are known as the
Walsh functions if p = 2 and the Chrestenson or Chrestenson-Levy functions if p > 2.
For simplicity, we refer to them all as Walsh functions here. A detailed study of such
functions can be found in [11] or [23].

It is easy to see that wq(x) = 1 for every x € AY = [0,1). Furthermore, for every
¢ € N satisfying p* < £ < p**! where a € Ny, wy(x) is constant and equal to a p-th
root of unity on each interval A7 |, where 0 < m < p®T1. Furthermore, elementary
intervals of the type A}’ ; are maximal where w(x) is constant.

The Walsh functions in higher dimensions are defined as follows.

For every L = ({1,...,¢,) € N and every X = (z1,...,x,) € U™, we let

Wi(X) =[] we, (z;)-
j=1

It is well known that
Wier(X) = WL(X)Wk(X)

for every X € U™ and L, K € N, and that
WX aY)=WrL(X)WL(Y)

for every X,Y € Q"(p™) and L € Nj. Indeed, Walsh functions restricted to points
X € Q"(p®) are the additive characters of the vector space Q" (p®). For more details,
see Chapter 5 of [13].

Furthermore, one can show that

Wov)(X) = ep({Y, X))

for every X, Y € Q™(p®), where the vector 6(Y) is defined by the mapping (4.3) and
the inner product (Y, X) is given by (2.7). In other words, each additive character of
the vector space Q™ (p®) can be obtained as the restriction of a Walsh function W, (X)
on Q"(p®) for some L € Nj(p*).

It is well known that the Walsh functions form an orthonormal basis in the Hilbert
space Lo(U™) of square-integrable functions on the n-dimensional unit cube U™. More
precisely, we have

— 1 ifK=1L,
. Wi (X)WL (X)dX = {0 K AL
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For each f € Lo(U™), we have the Fourier-Walsh expansion
(4.4) FX) = Y fiWi(X),
LeNp
where the Fourier-Walsh coefficient
fo=[ Wi(X)f(X)dX.
Un

Here the symbol ~ denotes that the series (4.4) converges in the Ls-norm. We also

have the identity
JRECSIREED IR
" LENy

Known results on characters of abelian groups can be restated in terms of Walsh
functions. See [13] or [14].

Lemma 4A. Suppose that D, D+ C Q"(p®) are mutually dual linear distributions.
Then for every L € Nj(p®), we have

Z Wi(X) = {#(D) if L e Q(DJ_)7

= 0 if L & 0(D),

where (D+) = {0(Y) : Y € D1} denotes the image of D+ under the mapping 0.
To handle Fourier-Walsh expansions pointwise, we consider the following. For
more details, see Section 2.8 of [11].

Suppose that f € Ly([0,1)) is given. For every s € Ny, for every m € Ny satisfying
0 <m < p®, and for every z € AT = [mp~—*, (m + 1)p~*%), we let

(4.5) fs(x) =p° . ft)de
It is clear that if f is real valued, then for every z € A7", we have

(4.6) inf{f(z):x € A’} < fs(z) <sup{f(x):z € AT'}.

Lemma 4B. Suppose that f € L2([0,1)). Then for every s € Ny, the function fs has
the finite Fourier- Walsh expansion

where the coefficients
1
fi= [ wdo)f(@) s
0

are the Fourier-Walsh coefficients of f.
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5. Preparation for the Proof of Lemma 2D

For any Y = (y1,...,yn) € U™, we consider the characteristic function x (Y, X) of
the rectangular box By = [0,y1) X ... X [0,9y), so that

o 1 if X € By,
(¥, X) = {o if X ¢ By.

It is clear that if X = (x1,...,2,), then

XY, X) =[] x5, ),

=1
where for every j =1,...,n,

o R U

Our task is to find the Fourier-Walsh expansions of the characteristic functions.

For y € [0,1), let Ag(y) = [mp~*, (m + 1)p~*) be the unique elementary interval
of length p~° containing y, and let €5(y,x) denote the characteristic function of this
interval Ag(y), so that

1 ifx e As(y),
&y, x) = {o if 2 & Ay(y).

Lemma 5A. For every s € N, we have

(5'2) X(ya :L') = Xs(y7 .%’) + rs(y, $)7

where xs(y,x) is a piecewise constant function of x € [0,1) with the finite Fourier-
Walsh expansion

(53) W) = Y wm@ =yt Yt u ).
£=0 /=1

with Xo(y) =y and

(5.4 wly) = [ wila)ds

whenever ¢ > 1, and where

(5.5) 0<xs(y,2) <1 and  0<7s(y,z) < ey, x).
In particular, rs(y,x) = 0 whenever x & Ag(y).
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Proof. Let f(x) = x(y,x), and let xs(y,x) = fs(x), where fs(z) is given by (4.5). The
relations (5.3) and (5.4) follow immediately from Lemma 4B, while the inequalities (5.5)
follow immediately from the inequalities (4.6). O

Suppose that Y = (y1,...,yn) and X = (z1,...,2,) are vectors in U". For every

j=1,...,n and every s € N, let ¢ (Y, X) = €5(yj,x;) denote the characteristic
function of the elementary box

A s(Y)=10,1)771 x Ag(y;) x [0,1)" 7.

Furthermore, let
(56) XS(Y7X) = H Xs(yja xj)a
j=1

where the terms x(y;, ;) are given by (5.3) and (5.4).

Lemma 5B. For every s € N, we have

n

(5.7) XY, X) = x:(V, X) + > (Y, X)),
j=1

where

(5.8) 0 <r;s(Y, X) < es(Y, X)

for every j =1,...,n. In particular, r; (Y, X) =0 whenever X ¢ A; ;(Y).

Proof. We proceed by induction on n. The case n = 1 is given by Lemma 5A. Assume
next that the assertion holds for a particular value of n. Write X = (z1,...,z,) and
Y = (y1,.-,Yn), and let XT = (X, 2,41) and YT = (Y, y,11) be in UL, Then it
follows from (5.6), (5.7) and (5.2) that

XY, XT) = x(Y, X)X (Yn+1, Tnt1)

= | X (V. X)+ ) 16V X) | X1, Tngr)
j=1

n

= xs(Y, X)X(yn+1u Tpi1) + Z T]}S(Yv X)X(yn+17 xn+1)
j=1

= Xs (Ya X)Xs (yn—I—la xn—H) + Xs (Ya X)TS (yn+17 xn—i—l)

+ Z Tj,s (Y, X)X (Ynt15Tns1)

j=1
n+1
= XY, XH) + ) (YT, X,
j=1
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where
T”"‘LS(Y—’_? X+) = Xs (Y7 X)Ts (yn—l—l, ajn—|—1)

and
ijs(Y+ﬂ X+) = rj,S(Yv X)X(yn—i-b mn—l—l)

for every j = 1,...,n. Using (5.1), (5,5), (5.6) and (5.8), we conclude that for every
7=1,...,n4+ 1, we have

0<rs(YT,XT) <ejo(Y,XT). O
We now return to Lemma 5A. The evaluation of the integral (5.4) is a very inter-

esting problem, and was studied by Fine [9] for p = 2 and by Price [18] for p > 2.
For every ¢ € N, let 7(¢) € Ny be given by the truncation

p(£)—1

(5.9) T(0) = Z Xi(O)pit,

where the largest term in the p-ary representation of ¢ has been removed. Note that
0= Xy (Op" O~ 4 7(0).

We have the Fine-Price formula, that for every £ € N,

(5.10) pr® /Oy we(z)dz = (1 — M) w0 (y) + @e(y),

where A(£) = X\ ) (£), where ¢ = ej(1) is a primitive p-th root of unity, and where

1 B o] _ p—1 . -
(5:11) ely) = (5 — (1= ) ) we(y) + 30" D (1= ) e ().
i=1 j=1
Note that for j =1,...,p — 1, we have
. ] 4
11— ¢ =2 sinﬂ' > 2sin & >
p pp

so that the series in (5.11) converges absolutely for every y € [0,1). Note also that

11— MO >

|~

by a similar argument, since A(¢) # 0 (mod p).
It is convenient to write 7(0) = 0, so that the expression (5.9) remains valid.
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Definition. Suppose that H is a complex Hilbert space with norm || - ||3. Suppose
also that A is a finite or countable index set. We say that a subset {1, : @ € A} C'H

is quasi-orthonormal if
2

< Z |Ca‘2

H a€cA

> catba

a€cA

for all square-summable complex sequences {c, : @ € A}.

Lemma 5C. Suppose that 1o(y) = y and ¥e(y) = p~Loe(y) for every £ € N. Then
the set {1y : £ € No} C Lo([0,1)) is quasi-orthonormal.

Proof. For every ¢ € N, we can write

= Qrewr(y)
k=1

where

Q= (3- 0= a0 +Zp-220 L5k, € jpPOHL).

Here the Kronecker function §(k,¢) = 1if k = £ and §(k,¢) = 0if k # £. Orthonormality
of the Walsh functions in Ly([0, 1)) implies that

(]
< QlQQZ |C£|2
=1

L,

for all square-summable complex sequences {cy : ¢ € N}, where

Q1 —SUPZ\QM! and Qz—SUPZ’de

teN keN, 2

For details, see Theorem 6 of Section 2.5 of [2]. For any fixed i,k € N and any
j=1,...,p—1, there is at most one value ¢ € N such that ¢+ jp?ODt=1 =k, in view
of the uniqueness of p-ary representations. Hence

i p  (p—Dp~ i p+l
Q17Q2_§+ +Zp Z|1—C3| - Sty L =
j=1 =1

It follows that as long as p > 3, we have

2 2

ZCW@ < 2| |eol®ll0ll7, + Zcﬂ/’f =2 §|CO|2 + = ZQW
=0 Lo =1 L2 /=1 Lo
2 2, (P"‘ 1) 2 2
< gleol” + Z |ce|” < Z |cel” O
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We remark that we are not trying to find the best numerical constants in our
estimates.

We next return to Lemma 5B.

For every L = ({1,...,0,) € NJ, Y = (y1,...,yn) € U™ and J C {1,...,n}, let

(5.12) V) = | I we, i) | | T we, ()

Jj&J jeJ

Lemma 5D. For every J C {1,...,n}, the set
(O L e NI} € Ly(U™)
1S quasi-orthonormal.
Proof. The Hilbert space Ly(U™) is a tensor product of n copies of the Hilbert space
L5(]0,1)). The functions (5.12) are also tensor products of the functions 1, and wy.

The result follows from Lemma 5C and the orthonormality of the Walsh functions. O

To use Lemma 5D, we need to consider the truncation of integer vectors. For every
L=(,...,0,) e Ny and J C {1,...,n}, let 75(L) = (k1,...,k,), where

Lo — T(fj) lfjej,
VA TN

Lemma 5E. For every s € N, we have the Fourier-Walsh expansion

(5.13) Y X) =yt Y p PPV(NWL(X),
LeNg (p*)\{0}
where
J
(5.14) VL(Y) = Z CJ,L\IIE”)(L)(Y)7
J

with complex coefficients cj 1, satisfying the bound

(5.15) lcsn] <p",

and where the summation in (5.14) is extended over all subsets J C {1,...,n}.
Proof. Note from (5.4) and (5.10) that for every ¢ € N, we can write

(5.16) Xe(y) = p~" 9 (agw, 4y (y) + bepe(y)),
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where a; = (1 — (M9)~! and b, = p for every £ € N. The identity (5.16) can be
extended to include the case £ = 0 if we take ag = 0 and by = 1. Clearly

(5.17) all<p and bl <p
for every ¢ € Ny. On the other hand, it follows from (5.6), (5.3) and (5.16) that

p®—1

(Y, X) H Z D —p(t; )(ae Wr(e; )(yg) +be ¢£ (yy))wﬁ (“f])

;=0

We now multiply out, and note that each coefficient c;, is a product of n numbers,
each of which is equal to ag; or by;. The desired result now follows on noting the
inequalities (5.17). O

We complete this section with a simple but crucial result on the relationship be-
tween the truncated integer vectors 7;(L) and the values s(L) given by the Hamming
metric. The reader familiar with coding theory will see easily that the arguments in
the proofs of Lemma 5F and of Lemma 6B below are typical of methods related to
error-correcting codes. The interested reader is referred to [14].

Lemma 5F.
(i) Suppose that 7;(L) =0, where L € Nij. Then (L) < #(J) <n
(ii) Suppose that 7;(L) = 7;(L"), where L, L € N§J. Then »(L © L") < 2#(J) < 2n,
where © denotes subtraction related to the operation @ in Nj.

Proof. 1t is easy to see from (5.9) and 7(0) = 0 that the inequality »(¢) < 1 holds for
every ¢ € Ny satisfying 7(¢) = 0, and that the inequality (¢ © ¢') < 2 holds for every
0,0 € Ny satisfying 7(¢) = 7(¢). O

6. Proof of Lemma 2D

Suppose that D, D+ C Q"(p*) are mutually dual linear distributions of dimensions
s and (n—1)s respectively. Suppose further that s(D*) > 2n+1 and p(D*) > s+1-4.
Recall that #(D) = p® and #(D+) = p»~1s,

Using Lemma 5B, we can write

LID;Y] = M[D;Y] + i R;[D;Y],

Jj=1

(6.1) = > (V. X) = pyr. = > (G X) =y ),
XeD XeD
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and where, for every j =1,...,n,

Ri[D;Y] =) 1.V, X).
XeD

Lemma 6A. Suppose that p(D+) > s+1—68. Then for every j = 1,...,n and every
Y € U™, we have 0 < R;[D;Y] < p°.
Proof. To see this, note that it follows from Lemma 5B that

0< Ri[D;Y]< ) €u(YV,X) = #(DNA;L(Y)),
XeD

The elementary box A; s(Y) has volume p~® and is contained in some elementary box
AAA” of volume p°~%. On the other hand, it follows from Lemma 2C that D is an
(n, s,d)-net, so that AY contains precisely p? points of D. Hence

#(DNA;(Y)) S #(DNAY) =p°. O

It now follows that for every Y € U™, we have

[L[D; Y]] < |M[D;Y]| +np’.

Write s
My[D] = (/ IM[D;Y]? dY) .

Then

(6.2) (L2[D))? < 2(Ma[D])? + 2n2p%.

Next, it follows from (6.1), (5.13), Lemma 4A and (5.14) that

M[D;Y] = Z Z p P PVL(Y)WL(X)
X€D LeN; (p*)\{0}

= Y pBVLY)) ] Wi(X)

LeN? (p*)\{0} XeD
= Z ps_p(L) VL(Y)
Lef(DL)\{o0}

=3 Y e ()

J Led(DH)\{0}

=3 > ek,

J KeN§(p*)
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where for every K € N (p®),

s—p(L
VJ,K = E CJ,LP P(L)
LEQJ,K

with
Qyr={Le€ H(DL) \ {0} :7,(L) = K}.

If we write

s—p(L
UK = E p o )7
LeQ; ik

then it follows from (5.15) that
vy k| < pug k.

Note that there are exactly 2" subsets J C {1,...,n}. It follows from Lemma 5D
that

2

(6.3) Ml <2y [ S )| ay
J U

" KeNz (p*)

< 2”2 Z lvyxl? < 2”292”;UJ7

J KeNg(p*)

where

— E 2
UJ— UJ,K'

KeNg (p®)

Lemma 6B. Suppose that (D*) > 2n + 1. Then the following hold:
(i) Each subset 1y is empty.
(ii) Each subset Q1 i, where K € Nij(p®), either is empty or consists of a single point
L= Lk €6(D")\{0}.

Proof. Suppose that ;¢ contains a point L € 6(D*)\ {0}. Then »(L) < n by
Lemma 5F(i). Write L = §(Y), where Y € DL\ {0}. Then 5(Y) < n, contradicting
the assumption that s(D1) > 2n + 1. Suppose next that € 7,k contains two dintinct
points L, L' € §(D+) \ {0}. Then »(L © L') < 2n by Lemma 5F(ii). Write L = §(Y)
and L' = 0(Y"), where Y, Y’ € D+\ {0}. Then (Y ©Y"’) < 2n. This means that there
exists Y € DL\ {0} such that s(Y") < 2n, again contradicting the assumption that
x(D4) > 2n + 1. O

Write
Q[DL]: Z p2(s—p(Y))‘

YeDL\{0}
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Since the mapping 6 is metric preserving, it follows that

Q[DL] — Z p2(s—p(L))'

Led(D+)\{0}

Lemma 6C. Suppose that (Dt) > 2n + 1. Then for every subset J C {1,...,n},
we have Uy = Q[D*]. In particular, the value of Uj is independent of the choice of
the subset J C {1,...,n}.

Proof. Write
Er={K € Ny(p®) : Qj K is non-empty}.

In view of Lemma 6B, we have the following:
e 0&¢&;.
e For every K € &7, there exists a unique element L € 6(D+)\ {0} such that
Qs ={Lsk}
e For every L € §(D+) \ {0}, there exists a unique element K = K € £; such
that QJ,KJ’L = {L}
It follows that for every J, there is a bijection between the sets £; and 6(D+)\ {0}. It
is easy to see that
i {ps p(LyK) ?f K e &,
0 if K ¢ 5J.

Hence

U, = Z p2le—r(Lix)) — Z p2e=rB) = Q[D4. O

Ke&;y Leo(D+)\{0}

Lemma 6D. Suppose that p(D*) > s+1—3. Then Q[D*] < p*(s+1)"7L.

Proof. 'We can write

Q[DJ_] _ Z p2(5—a1—...—an)'uA,

ar+...Fan>s+1-6
where for every A = (a1,...,a,) € Nj with 0 <a; < s forevery j=1,...,n,
pa=#{Y = (y1,...,yn) € D : p(y;) = a; for every j =1,...,n}).
Using Lemma 2B and Lemma 2A, we have

pa < #{Y = (y1,...,yn) € D p(y;) < aj for every j =1,...,n})
< #(DF N AY) = ot (D 0 AY),

Note that the elementary box A% has volume p=@ =~ < p®~s71 < p®~%, so that it
is contained in an elementary box of volume p®~*. On the other hand, it follows from
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Lemma 2C that D is an (n,s,d)-net. Hence #(D N AY%) < p?, and so we must have
pa < putetan=std Tt follows that

ns
Q[DJ_] < pcS Z ps—al—...—an _ p6 Z ps_tVt,
ai+...+a,>s+1-9 t=s+1—96

where
v =#{(a1,...,an) ENj a1 +...+a, =t and a; < s forevery j=1,...,n}).
It is easy to show that v; < (s +1)""! always. Hence

o
Q[DL] < p s+ 1" Z p*t < 25_1(3 + 1)”—1 Zp_t < p25(s + 1)"‘1. O
t=s+1—§ t=0

Recall that there are precisely 2" subsets J C {1,...,n}. Combining (6.3), Lemma
6C and Lemma 6D, we have

(MQ[D])2 < 22np2n+26(8 + 1)17,71
It follows from (6.2) that
(£2[D]>2 < 22n+1p2n—|—26(8 + 1)n—1 + 2n2p26 < 22n+2p2n—|—25(8 + l)n—l

and so )
EQ[D] < 2n+1pn+5(s+ l)ﬁ(n_l).

This completes the proof of Lemma 2D.

7. Linear Distributions

In this section and the next, we shall discuss ideas in [26], adapted to the context
of our investigation here.

We begin by defining a special class of elementary boxes. For every s € Ny, we
denote by € the class of all elementary boxes of the type A defined by (2.1) but with
the extra restriction that the vector A = (ay,...,ay) satisfies the condition 0 < a; <s
for every 7 = 1,...,n. In other words, &, denotes the class of all elementary boxes
with side lengths at least p=%.

Definition. Suppose that s,k € Ny satisfy 0 < k < n. A set D C U™ of p*® points
is called an optimum [n, k, s|-distribution (in base p) if every elementary box in &, of
volume p~** contains exactly one point of D.
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Remark. Tt is easy to show that any optimum [n, k, s]-distribution (in base p) is also
an (n, ks, (k—1)s)-net (in base p). The case k = 1 is of special interest. Any optimum
[n, 1, s]-distribution (in base p) is also an (n, s,0)-net (in base p).

Suppose that a subset D C Q™ (p®) contains at least two points. We shall define a
Hamming weight »(D) and a non-Hamming weight p(D) as follows.
For any X € Q"(p®), we define s(X) and p(X) as before by (2.9), and write

(7.1) »(D)=min{x(Xe X'): X, X' € Dand X # X'}
and
(7.2) p(D) =min{p(X & X'): X, X" € D and X # X'}.

It is not difficult to show that if D C Q™(p®) is a linear distribution, then (7.1) and
(7.2) are equivalent to (2.10) and (2.11) respectively.

Lemma 7A. Suppose that D C Q"(p®) is a set of p** points, where 0 < k < n. Then
the non-Hamming weight p(D) < (n — k)s + 1.

Proof. For any X = (x1,...,2,) € Q"(p®), the projection
P.X = (z1,...,7,0,...,0) € Q"(p®)
clearly satisfies X = P, X @ (X © P, X), and
p(X) =p(PrX)+p(X 6 PX) < p(PX)+ (n—Fk)s

trivially. It follows that

p(D) < (n—k)s+ min{p(PtX & P.X"): X, X' € D and X # X'}
Note that #({P.X : X € Q*(p*)}) = p** = #(D). There are two possibilities. If
Py X = P X’ for some distinct X, X’ € D, then clearly p(D) < (n—k)s. Alternatively,
we must have {P,X : X € D} = {P,X : X € Q"(p®)}, and clearly p(D) < (n—k)s+1
in this case. O

Suppose that AN € &,. Then it is easy to see that the intersection
Vil =Q () n A

is an affine subspace of the vector space Q™ (p®), and that
(7.3) vii=vievy,
where the vector Y1 € Q" (p?®) is defined uniquely up to translations in V3.
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Lemma 7B.
1) For any X € p®), we have p < (n—k)s if and only i € or some
) Fo X € Q" (p* h X k)s i d only if X € AY
elementary box AY € €, with volume at most p~*>.
1) For any X, X' € p°), we have p(X & < (n—k)s if and only if X, X' €
i) F X, X' e Q(p* h XoX k)s if and only if X, X' € AN
for some elementary box A% € &, with volume at most p—*s.

Proof. 'We shall only prove (i), as (ii) follows from (i) in view of the observation that
VM is a translate of V. It is easy to see that pPE)=s=1 < g < pP®)=5 for any non-zero
x € Q(p®), in view of (2.5) and (2.8).

e Suppose that p(X) < (n—k)s. For every j =1,...,n, we clearly have z; < p~%,
where a; = s—p(x;). Then ay+...+a, =ns—p(X) > ks, and so AY has volume
at most p~*3. Clearly 0 < aj < s for every j =1,...,n, so that AY € &,.

e Suppose that p(X) > (n — k)s. For every j =1,...,n, we have z; > pP(@i)=s=1 if
z; #0. If X € AY for some elementary box AY € €&, then 0 < a; < s — p(x;) for
every j = 1,...,n, noting that p(0) = 0. Hence a1 + ...+ a, < ns — p(X) < ks,
and so the volume of AY must exceed p=*¢. O

Lemma 7C. Suppose that a set D C Q"(p®) contains exactly p** points, where 0 <
k <n. Then the following statements are equivalent:

(i) D is an optimum [n, k, s|-distribution.
(ii) The non-Hamming weight p(D) = (n — k)s + 1.

Proof. Suppose that D is an optimum [n, k, s]-distribution. Then any elementary box
in €, with volume p~** contains exactly one point of D. It follows from Lemma 7B(ii)
that p(D) > (n — k)s + 1. Equality follows in view of Lemma TA.

Suppose now that p(D) = (n — k)s + 1. Then it follows from Lemma 7B(ii) that
any elementary box in &, with volume p~** contains at most one point of D. Since D
contains exactly p** points, a density argument now shows that any such elementary
box must therefore contain exactly one point of D. O

For any X,Y € Q"(p®), let ®(X,Y) = e,((X,Y)), where the inner product (X,Y)
is defined by (2.7), and where e,(z) = e2™*/? for every real number z.
For any function f : Q"(p®) — C, we consider the Fourier transform

(7.4) fY)y=">_ oY, X)f(X).

XeQn(p*)

The following result is well known in the theory of abelian groups. For details, see
Chapters 5 and 9 of [13] or Chapter 5 of [14].
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Lemma 7D. Suppose that D, D+ C Q"(p®) are mutually dual linear distributions.
Then

(7.5) Z (Y, X) = {#(D) ZZ}{ ; gi’
XeD

Furthermore, for any function f : Q"(p®) — C, we have the Poisson summation for-
mula

(7.6) Y FX)=pH#D) Y f(Y

XeD YeD+

Suppose that A = (a1,...,a,) € Nj satisfies 0 < a; < s for everyj =1,.
For convenience, we shall write A* = (aj,...,a;,) € Ni, where a; + aj = s for every
j=1,...,n

Lemma 7E. Suppose that A = (a1,...,a,) € Nf satisfies 0 < a; < s for every
7=1,...,n. Then
(i) (VI)t =V3.; and
(ii) for every Y € Q"(p*), we have Y4 (Y) = pms=a1=~an\8 (Y'), where X% and xY-
denote respectively the characteristic functions of the sets V3 and V§..

Proof. Tt is easy to see that V{ consists of points X = (x1,...,2,) € Q"(p®) with

coordinates
S— CLJ‘

_ Z &(Ij)pi_s_l
=1

for every j = 1,...,n, so that (V{)! consists of points Y = (y1,...,y,) € Q"(p*)

which satisfy the equation £41-;(y;) =0 forevery j =1,...,nandi=1,...,s — a;;
or in equivalent form, &;(y;) = 0 for every j =1,...,n and i € [s+1—a}, s]. This gives
(i). On the other hand, (ii) is a simple consequence of (7.4), (7.5) and the observation
that #(VJ) = prs—a—=an, O

Lemma TF. Suppose that D, D+ C Q"(p*®) are mutually dual linear distributions.
Then for any elementary box AN € &, we have

#(DNAY) =p~ 7 "4(D) Y (Y, YA X% (V).

YeD-+

Proof. Let i denote the characteristic function of the set V2. Then it follows from
the Poisson summation formula (7.6) that

(7.7) #DNAY) = > XN (X)) =p#(D) Y W

XeD YeD+
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On the other hand, it follows from (7.3) that x4 (X) = x4 (X © Y M), and so, in view
of (7.4), we have

(78) XAV = Y ey XN4Xevi)= > oV, XaYi LX)
XeQm(p®) XeQn(p®)
=0V, Y3) > oY, X)X%(X) =&Y, VAHRL(Y).
XeQn(p?)

The result now follows on combining (7.7), (7.8) and Lemma 7E(ii). O

Note that in the special case M = 0 of Lemma 7F, we can take YX = 0. Since
®(Y,0) = 1 for every Y € D, Lemma 2A follows immediately.

We next need a simple result in the same spirit as Lemma 7B. It can be established
by an argument very much similar to the proof of Lemma 7B, so we omit the proof.
See Lemma 3.3 of [26].

Lemma 7G. Let B(t) ={X € Q"(p®) : p(X) < t}. Then

By= |J A%,

ai1+...+a, <t

where every elementary box in the union belongs to €.

Lemma 7H. Suppose that D, D+ C Q"(p®) are mutually dual linear distributions of
dimensions d and ns — d respectively. Then for any integer § satisfying 0 < 6 < d, the
following statements are equivalent:

(i) Fach elementary box in €5 of volume p contains exactly p® points of D.

(ii) The non-Hamming weight p(D+) > d+1 — 6.

s—d

Proof. Suppose that (i) holds. Then by Lemma 2A, we have #(D+ N A%.) =1
whenever a} + ...+ a), = ns—d+9. It follows from Lemma 7G that the ball of radius
d — & contains no point of D+ apart from the point 0, and so p(D+) > d+1—4. On the
other hand, suppose that (ii) holds. Then by Lemma 7G, the set D+ N AY. contains
only the point 0 whenever a] + ...+ a), = ns —d+ J. It follows from Lemma 7F that
for any elementary box AY in &, of volume p°~?, we have

#(DNAY) =p (0, VL) = p’. O
Note that the special case d = s gives Lemma 2C. Also, we shall need the following
consequence in the next section.

Lemma 7I. A subset D C Q"(p®) is a linear optimum [n,k, s|-distribution if and
only if its dual D+ is a linear optimum [n,n — k, s]-distribution.
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Proof. Using Lemma 7TH with d = ks and § = 0, we deduce that D is a linear optimum
[n, k, s]-distribution if and only if p(D*) > ks + 1, if and only if p(D+) = ks + 1 in
view of Lemma 7A. On the other hand, it follows from Lemma 7C that D' is a linear
optimum [n,n — k, s]-distribution if and only if p(D+) = ks + 1. O

8. Isomorphisms of Vector Spaces Q9" (p?) and Q" (p??)

Suppose that o, g € N. The mapping 7 : Q9(p?) — Q(p97), where

g
T(wi, ..., wy) = Zp_(g_l)”wg
=1

for every (wi,...,wy) € Q9(p7), is related to the well known Peano mapping which

gives a bijection between points in U9 and points in U, restricted here to Q9(p?). It is

easy to see that 7 gives an isomorphism between the vector spaces Q9(p”) and Q(p?7).
We now extend 7 to a mapping IT : Q9" (p?) — Q™ (p?7) by writing

M(wy,...,w,) = (7(w1), ..., 7(w,))

for every wy,...,w, € QI(p?). It is easy to see that II gives an isomorphism between
the vector spaces Q9" (p?) and Q" (p97). The following result is a simple consequence
of this observation.

Lemma 8A. Suppose that D C Q9"(p”). Then
(i) #(D) = #(IL(D)); and

(ii) if D is a linear distribution, then I1(D) is also a linear distribution.

We next study the effect of the mapping II on the metrics s and p.
Lemma 8B.
(i) For every Q € Q9™ (p?), we have »(IL(2)) = #(Q) and p(I1(Q)) > p(Q2).
(ii) For every D C Q9" (p?), we have »x(II(D)) = (D) and p(II(D)) > p(D).
Proof. The result for s follows easily as the number of non-zero coefficients remains
unchanged. Suppose now that (wi,...,wy) € Q9(p”) satisfies w; = ... =wp—1 =0 and
we # 0. Then p(wy) = ... = p(we—1) =0, and

p(m(wi, ... ,wg)) = (g — £)o + p(we) = plwg) + ... + plwe) = p(wr, . .., wy).

The assertions for p now follow easily. O

Remark. The validity of Lemma 8B for the weight p dictates our choice for the
isomorphisms 7 and II. It should be mentioned that there are other choices for such
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isomorphisms. Indeed, in the paper [26], such isomorphisms were defined in terms
of the well known Peano mapping which gives a bijection between points in the unit
cubes U9 and U™, restricted to Q9" (p”) and Q"(p97) respectively. However, our
present choice of the isomorphisms 7 and II makes the proof of Lemma 8B a little bit
simpler.

Lemma 8C. Suppose that D C Q9™ (p?) is an optimum [gn, gk, o|-distribution. Then
p(II(D)) = (n — k)go + 1 and »(II(D)) > (n — k)g + 1.

Proof. 1In view of Lemma 7C, we have p(D) = (n — k)go + 1. It follows from Lemma
8B that p(II(D)) > (n — k)go + 1. Equality follows in view of Lemma 7A. Next, note
that for every D C Q9" (p°), we have (D) > o 1p(D) = (n — k)g + 01, so that
#(D) > (n—k)g+ 1. The second assertion now follows from Lemma 8B. O

To study dual distributions, we need to introduce a reflection mapping.
For every w = (w1,...,wy) € Q9(p”), we consider the reflection

@ = (wgs o w1) € QP

It is easy to check that for every w;q,ws € Q9(p?), we have
(8.1) (m(w1), m(w2)) = (@1, w2) = (@1, @57,
For every Q = (wy,...,w,) € Q9" (p?), we now let

Q7 = (=, @, ) € Q7).
It follows from (8.1) that for every 4,Qs € Q9" (p?), we have
(82) (I(€1), I(22)) = (77, Q2) = {1, 057).
For any D C Q9" (p?), write D™ = {Q~ : Q € D}.
Lemma 8D. Suppose that D C Q9"(p?) is a linear distribution. Then

(I(D)* =T((D)7).

Proof. We can write (II(D))* = II(D;). Then it follows from (8.2) that D" = D+,
so that Dy = (D+)*. O

Lemma 8E. Suppose that D C Q9"(p?) is a linear optimum [gn, gk, o]-distribution.
Then p((TI(D))*) > kgo + 1 and »((IL(D))*) > kg + 1.

Proof. Note first of all that for every D C Q9" (p?), we have
(8.3) p(D7) = p(D) and #(D7) = x(D).
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Suppose that D C Q9" (p?) is a linear optimum [gn, gk, o]-distribution. Then it follows
from Lemma 7I that D= is a linear optimum [gn, g(n — k), o]-distribution. Hence it
follows from Lemma 8D, Lemma 8B, (8.3) and Lemma 7C that

A(II(D)Y) = p(II((DY) ™)) 2 p(D)™) = p(DY) = kg + 1.
Similarly, we have
((I(D)) ") = »(L((DH)7)) = 5((D7)7) = (D).
Note now that »(D+) > o~ 1p(D+) = kg + o~ 1, so that »x(D+) > kg + 1. O

Let us return to Lemma 2E, and use the notation in Section 2. Consider a set
D C Q9"(p?) of the form

D = {(wi(f),...,wn(f)) : f € Fplz] and deg f < go},
where for every i = 1,...,n,

g g

@;(f) = Zaj_lf(ﬁi,l)p_j,---,Zaj_lf(ﬁi,g)p_j € QI(p7).

Jj=1 Jj=1

It is easy to see that D has exactly p9? elements, and that II(D) = D(g,0). It follows
from Lemma S8E with £ = 1 that to prove Lemma 2E, it remains to show that D is
a linear optimum [gn, g, o]-distribution. Since the collection of polynomials f € F,[z]
with deg f < go is closed under addition and scalar multiplication in IF, it follows
that D is a linear distribution. Our proof of Lemma 2E is therefore complete if we can
establish the following result.

Lemma 8F. FEvery elementary box in €, of volume p~97 contains exactly one point
of D.

Proof. Suppose that an elementary box in &, of volume p~97 is chosen. Then the
number of points of D that fall into this elementary box is given by the number of
solutions of a system

(i,0) e T CA{1,...,n} x{1,...,g},
j=1,...,ti¢ where t;, <o,

4 i1 £(8: ) = a')
(8.4) O f(Bie) = azy, S tis = go.
(1,£)eT

This is the so-called Hermite interpolation problem and has a unique solution f € F,[z]
with deg f < go. To see this, consider the polynomials

&+

i
Til(Z) = aE,JK) (Z - ﬁi,é)j_17 (27 6) €l
1

J
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The system (8.4) is equivalent to the system of congruences

(8.5)

f(z) =rie(z) mod (2 — Big)tt, (i,0) € T.

Since the polynomials (z — (3;¢)%, where (i,¢) € Z, are pairwise coprime, it follows
that the system (8.5) of congruences has a unique solution f € F,[z] with deg f < go,

in view of the Chinese remainder theorem in the ring [F[z]. O
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